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1. INTRODUCTION

Fractional Laplacian equations have been applied to many subjects, such as,
anomalous diffusion, elliptic problems with measure data, gradient potential theory,
minimal surfaces, non-uniformly elliptic problems, optimization, phase transitions,
quasigeostrophic flows, singular set of minima of variational functionals, and water
waves (see [2]-[I1] and the references therein). Fractional Brezis-Nirenberg problems

had been investigated by many researchers (such as [2, [10]).

(=A)*u + Au = |[u|*2u inQ,
u=20 in RN . Q,

where 0 < s < 1,N > 2s, 2% := Nziv% is the fractional Sobolev critical exponent,

Q is an open bounded domain in RY with Lipschitz boundary, and the fractional

Laplacian is defined by

Cn.s u(x w(x —y) — 2u(x
~(~A)ule) = = /RN ( +y)+|y|(N+25y) (z)

-1
(1.1) Ons = (/RN mdg) .

Define Hilbert space D*(2) as the completion of C'2°(€2) with respect to the norm

dy, zeRY,

I - || ps induced by the following scalar product

CN,S/ (u(z) — u(y)) (v(z) — v(y))
R2N

2 |$—y|N+2S

(u,v)ps 1= dzdy.

ISupported by NSFC(11701248) and NSFLN(2021-MS-275).
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If Q is an open bounded Lipschitz domain, then D*() coincides with the Sobolev

space
Xo:={feX:f=0ae in Q°Y,

where X is a linear space of Lebesgue measurable functions from RY to R such
that the restriction to Q of any function f in X belongs to L?(2) and the map
(z,y) — (f(z) —f(y))|m—y|*%+5 isin L? (R*N < (Q° x Q°), dady), and Q° is the
complement of © in RY. Consider fractional Sobolev space
HG(RN) = = LQ(RN) . |U(Z‘) B j\f(y” c LQ(R2N) ;
[z —ylz "
equiped the Gagliardo seminorm
Cn s |u(@) — u(y)®
2 — )
[l vy = =5~ /Rw T — Vs 4oy
The fractional Laplacian operator can be defined by
u(z) — u(y)
—A)°® = CnsP.V. ——="d
(-8 utw) = O P. [ Ay

u(z) — u(y)

=Cp,s lim WIEE

+ c (1 -
e—0 Be(z) |.’,E

1CN,S /N u(z+y) +ulx—y) — 2u(ac)dy7

~— 5 y[VF2s

where Cn s is given by (L.1)) and P.V. is the principle value defined by the latter

formula. Define the fractional Sobolev space

H*(Q):={z € HS(RN):u =0 ae.in Q°},

equipped with the seminorm

1
Cn.s |u(z) — uy)l? i
o i= (A [ upde+ S5 ) = S ey )
“ o 2 Jrev (gexqey | —y[NT2E
which was introduced in [10]. From v = 0 a.e. in Q°, it is easy to see that
lu|3 = / |u|?dz = / lul?dw,
Q RN
— 2 _ 2
/ M) g, [ MU
R2N < (Q¢ xQ¢) |z —yl r2N [T — Y
Hence, we just denote |[u||zs(q) by

1
Cns lu(z) — u(y)|? 2
si= (A 24 — —2——7 dzd .
[l e ( /RN [ul*dz + 5 /Rw |z — y|[N+2s rdy

It follows from Lemma 7 in [§] that (H*(Q),| - ||#-) is a Hilbert space.
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In present paper, we study the following fractional Laplacian equation involving

a perturbation

(1.2)

(=AY u+ = |uP2u+h(z) in Q,
w=0 in 0

where 0 < s < 1, A is a real parameter, p € (2,2%), h € L?(Q), and Q C R is
an open bounded Lipschitz domain. Via classic methods (see [I] for example), we
obtain multiplicity of solutions for fractional Laplacian equation . The solutions
of equation coincide with the critical points of the following energy functional

1 u 2
J(U)ZZ/RzN| |(x)— |Ni25| dzdy + 5 /|“| dx—*/ \U|pd$—/hUd$

1
= 5”“”%{ - 5|u|£ — /Q hudz, Yue H®(9Q).
If h =0, then equation (1.2]) becomes

(1.3) (—A) + M= ul2u i Q,
' u=0 in °.

Define the energy functional of equation (1.3) and corresponding Nehari manifold

as follows:
I0) = gl = Sl Vue H (),
and
N={ueH*(Q):u#0,I'(uu=0}={ueH* Q) :u0,ulj =|u?}.
Our main result reads as follows.

Theorem 1.1. There exists € > 0 such that for every h € L? () with |h|z < e,
equation (1.2) has at least two solutions.

2. THE PROOF OF THEOREM [[.1]

We need the following fractional Sobolev embedding results, which was proved
in [§].

Lemma 2.1. Let Q C RY be an open bounded Lipschitz domain. Then H® () —
L1 (Q) for every q € [1,2%], and H® () —— L1(Q) for every q € [1,2%).
From Lemma 2.1 we can define a constant S,,.
Sy :=inf {C > 0: |u], < C|lu||gs,Yu € H* (Q)}.
Next, we give some numbers which will be used in the proof.

1 = 1,\7 1. as
al = m , A2 = 5011 ,agzimln (Zhsfp .

It is easy to find that ag < a;.
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Lemma 2.2. There exists e > 0 such that for every h € L? (Q) with |h|2 < €1 and
for every uw € H® (Q), if
(2.1) llull%. = / |ulP dx —|—/ hudz = [ulh +/ hudz,

Q Q Q

then either ||ul|gs > a1 and |ulp, > ag or ||u|lgs < as .

Proof. It follows from (2.1)) that
lullfe < SHllull? + |hl2|ul2.
By Lemma 2.1} we get |uly < Cilullss. Then, |jul3. < SE||ullP + Culhls|ul g If
u# 0in H*(Q), then
lull = = S|P~ = Cilhl2 < 0.
For calculation convenience, we define function ¢: [0, +00) — R by
¢ (t) =t — SEtP~! — Cy|ha.
Since ¢’ (t) = 1 — (p—1)ShtP~2, we get the maxinmum point of ¢ as a; =
1
((p -1) S;j) »=2 It is easy to see that ¢ is strictly increasing on (0,a;), strictly
decreasing on (a1, +00) and ¢ (0) < 0, . ligl @ (t) = —o0.
—+o0
In order to observe the characteristics of the function ¢, we calculate the maximum

value of ¢,

_1_ p—1

o= (i) () e

1 \72 7 1 \'"T7z 1\
(p—1> () _(p—l) <S£’> ~ Clal:
1
p—1
1

1 1
Sp
1 \7»2 1
_ — 1-— ) —-C|h
) ()" (1-75) -ome
1
1\72p-—2
(p—]_) (Sp) —_— — C‘h|2 =. 01 — C‘h|2,
and if we take |hlo < &, then
:a1—7:7>0,

p—1
> _ =L
¢(a1) > = C5n 2 2
which means the function ¢ has two zeros ¢, t3 and t; < a1 < to. Then ¢ (¢) > 0
for all ¢t € (t1,t2), while ¢ (¢t) < 0 for all ¢ € [0,¢1) U (t2, +00). Substituting ¢; into
the function ¢, we get that

Clhla =ty = SpE" =1 (1= 5072,

p—2
_1_
p—2
1
p—2

aq aq aq

Since t; < a1, we have

1 -2
C|h|2 >t1 (1755&11)72) :tl (1 > :tlp
p
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ie., t1 < ;%C”L‘g. If we take

p—1las
hla < ———,
[hl2 p—1C
then
p—1p—2ag
<——"—" " =aqs.
! p—2p—1C a3
In summary, for
. p—2a3 (6731
h < T T AN oy )
[l mm{p1c 20}

we get ¢ < 0 implies ¢t < ag or t > a;. If hold and |ju||gs > a1, we get
Julp = JullF- — /Q hudz > af — |hlz|ulz > af — alh|s|ul,,
where a = |Q|% Namely
(2.2) |u\g + alh|z|ulp, — a% > 0.
Regarding |ul, as a variable, we get a function 7 : [0, +00) — R, defined by
v (t) = t* + alh|st — a3.

Since v/ (t) = ptP~! + alh|y > 0, for all t > 0, v is strictly increasing. Therefore, if

2
a
hly < ——,
[hl2 2aas
then
p 21, 2
fy(a?) = ay + a|h‘2a2 —ay = §CL1 + a|h|2a2 —aj
1 a? 1
= a|h‘2a2 - 503 < a2a22 as — 5(1% =0.

We see that y(t) < 0 for ¢ € [0, az]. By (2.2) we derive that |u|, > as.

Summing up, if we choose

. p—2a3 a%
€L =mins —-—, —
! p—1C"2C 2aas |’

then Lemma [2.2] holds. O
In the sequel, we always assume |h|s < €;. Now define
Ny ={ue H(Q): J (u)u =0, |u||g: > a1}

~{ue e @ty =g+ [ mde e > o},
Q

and my, = ir}\f} J (u). Notice that N}, is a subset of Nehari mainfold and for v € N},
ueNp

T (u) = (; - ;) [l — (1 _ ;) /Qhuda:.

Now, we prove that N} is not empty.

we have

Lemma 2.3. There exists ez € (0, €1] such that for every h € L? () with |h|z < e,
there results Ny, # 0.
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Proof. Consider function

s J(tu) tu =t2||ul|%. —tp/ |u|pdx—t/ hudz
Q Q

=t [t||u||2 — tp71|u|£ - /Q hudz] ,

where u € H* (Q) \ {0}, t € (0,400). Since ¢t > 0, we only consider the following

function
V(ﬂZZtHUH%«‘—tp_”uﬁi—t/’hudx,
Q
since p € (2,2%), the function « has a global maximum. Solving
v (1) = llullfe — (= 1) 2[ulf =0,

we have the function ~ has a global maximum at

_1
T
DI,

and
2p-1) 2e—1)
2 1 2
v () :”uHHL T _/ hudz =: %a—/hudx
lulg (p—-1)72 Je Julp™ °
2(1)721)
|| e
> Lo [ hude > fullae—a — Clhlslu
[ S5
(6%
= |[ufl - (s —C|h|2>.
p
Thus, if
(6%
|hlo < ———,
2087~

there results « (¢') > 0. Moreover, ~ () is strictly increasing in (0,t’), strictly

decreasing in (¢, +00) and . 1i$1 v (t) = —oo. Then the function v has at least
—+o0

one zero t; € (t',400). Then there exists v = tyu satisfies (2.1]). Next, we verify

that v satisfies ||v||g= > a1, we get v € Nj. Since

U 2 p—2
ol = levade = alule > ¢l = (0 )

(0 — 1) [ul}
P (LT (N
=i (;25) " (ap)
P 1 1 p=2 1 p=2
> (5) (1) ()
1 \72/1\72
-(5) () =
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the proof is completed with €3 = min < ey, —%— » . O
208p?
We now show that m;, are uniformly bounded from above and below by three

Lemmas below.

Lemma 2.4. Let e3 = min{1,e3}. Then there exists C > 0 such that for every

|hl2 < €3, there results mp < C.

Proof. Denote ug and mg as the solution and the level of the solution of equation

(1.2)), that is, ug € N, I (ug) = mij{lf] (u) = mp. Due to Lemma letting |h|2 < €3,
ue
there exists t;, > 0 such that tjug € NV},. Then

(2.3) ltnuo |3 :/ |thu0\pdx+/ hudz.
Q Q
Noticing ug € N, i.e., [|uol|F. = |uol% , ([2.3) is equivalent to
(t7 — ) |luol }e = th/ﬂhuodx,

namely,

(00— 271 Nuol%e = / huodz,
Q

which implies that

(tn = 57) luolF > —Calhalluo -,

that is
_ Cilh C
(24) th_tz}i 12_ 1| |2 > 1 .
l[wol| = l[wol| 2
Consider function ¢ : ¢t — t — tP~!. Since . li+m ¢ (t) = —oo, there exists Cy > 0
—+00

there t;, < Cs, and then

1 1 1
mp S J(thuo) = (2 — p) ||thu0||%ls - (1 — p) / hudx
Q

1 1 1
<|l=—- 02U025+<1—>0201h2u0 Hs
(3-3) Bl + (1-3) CaCulnlalul

1 1 1
< <2 - p) C3lluolF- + (1 - p> C2Chluo| s =: C.
Il

To prove that my, are uniform bound from below, we need a related Lemma.

Lemma 2.5. For h that satisfies the condition in Lemma[2.]}, there exists a normal
number Cs and a minimizing sequence {uy}, for my such that ||ug|| s < Cs, and
luklp < SpCs for all k .
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Proof. Let {v;}, be a minimizing sequence for my, i.e., vy € N} and J (v) —
my, since my, < C, there exists k' such that for every k > k', J (v;) < 2C. Then

1 1 1
Q

1 1 1
> ( - p) ol — (1 - p) Cullolloel e = alloZe — bllow e

2
We get
b+ Vb7 +8ac _
% =: (3,
and |vg|p < Spllvkllgs = SpCs, where ug = vgryp. O

The preparation work has been completed. Now we prove the boundness from

below.

Lemma 2.6. There exists 4 € (0, €3] such that if |h|s < €4, then my, > 2mgy > 0.

Proof. We consider {uk}k obtained in Lemma Let t3, be such that tpuy € N,

which is equivalent to
HtkukH%{s = / \tkuk|pdx7
Q
namely,

2 sl = £ / juglPda,

1
lullFe\ 72
tk» == 7? .
|uklp

larllZe = fuel? + /Q hugda.

ie.,

Since ux € Ny, we have

Then

_1 _1
= (I et ()

kb |uklp ’
and

1 1
mo < I (truy) = (2 - p) tillug| %

11 1 1
25 =(=—2)|u 25—<1—>t2/hudx+<1—>t2/hudm
@) =(5-2) @ty - (1-1) 2 [ ma )it [
1
tiJ(uk)+(l)ti/hukdz.
p Q

By Lemma P.2] and Lemma, we have

_1_ _1 _1_
te = <1 L o h“kdf”> e (1 L Cilhla]luni ) < (1 + 0103|h|2> "

|urlp |urlp aj
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If
p 3 1)2;2
a
hly < =2 = -11,
s < g (4) ]
then

p
tr < (Clpcg 2
[£5) 0103

B 7-0)"

1 3 1
< (1 - ) 2{h1sC lulle < IRl (1 - 0103) .
p 4 D

Now we consider ([2.5)

1
’(1 — )t | hupde
p Q

If we take
4
bl < ——=3
9(1-1)cucy
then
‘(1 — )ty | hugdx| < Mo,
Q 3

Then we can write mo < ¢7J (ug) + 32, ie., t2.J (ux) = 2mg. Since

we get that Zmg < 627 (ur) < 3J (ug) , ie.,
1

(2.6) mo < J (ug),as k — oo,

2
which implies that %mo < my,. If we choose
- a? <4) = X mo
€ =minq ez, ——— || -1,
0103 3 a (1 - %) 0103
then Lemma [2.6] holds. O

The next thing to prove is an important part of the theorem, namely the minimum

of J on NV}, is attained.

Lemma 2.7. There exists €5 € (0, 4] such that for every |h|a < €5, my, is attained

by some u € Np,.

Proof. We consider {u;}, obtained in Lemma and |h|2 < €4. Since Q is
bounded, there exists u € H*(Q2) such that ury — u in H* (Q). By Lemma we
have ux — u in LP () and in L? (Q2). Then we derive that

(2.7) J(u) < limkian (ug) = mp,
and
(2.8) llull?. < \u|g+/ﬂhudx.
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Consider the case of equal sign in (2.8). From the Lemma[2.1] we have if hold,
then either ||ullgs > a1 or ||ullgs < as. If |jul|g= > a1, then u € N}, and
implies that u is the minimum we are looking for. If ||u||gs < a3, then

ag
Sp
which is a controdiction with |u|, > a2 from Lemma Next consider the case of

strict inequality in (2.8]), namly,
(2.9) llul|%. < \u|§+/9hudx.

If we can show that (2.9) dose not hold, then (2.8]) only holds when the equal sign

is taken. At this time, according to the previous proof, u is the minimum we are

lulp < Spllullas < Spas < Spo= = az,

looking for, and the proof of Lemma is completed. So we only need to show that
(2.9) can not hold. By (2.9), there exists t* > 0 such that t*u € N, and t* > t/
according to (2.8)), we have
1 1
v < <u|g—|—fQ hudx)P2 _ < 1 N Jq hudz >P2
(p— 1) [ulp p—1 (p—1)ulp

1 e, 2\ 2 1 hlyCiCs \ 72
<< +| |2 1||U||I;) << + | ‘2 1 :;,)) .
p—1  (p—1)[ulp p—1 (p—1)a;

If we choose

) -2 (p—1db
65:m1n{(p Q)CS?Cg ) 2,64}7

then ¢/ < 1.
For the function « in Lemma since t*u € Ny, we have v (t*) = 0 and the
ineqality (2.9) is equivalent to v (1) < 0. Since ¢’ < 1 and ¢’ < t*, we see that t* < 1.

According to the definition of my, we derive that

1 1 1
méJt*ut*2<>u25t*(1>/hudx
nsJ () =) 5 , l[ullz o),
< (t*)? lim inf 1.1 llwn|/2e — ¢ lim (1 1 hud
< iminf { 5 ’ U || s im o)/ udx
1 1 1
< () Uminf | = = = ) [Jugl|%. — (1—)/hudm]
(e timnt | (5 =) bl o
=t* limkian (ug) =t myp < myp,.

Observing the first and last two terms of the above inequality, we obtain that
my, < my, which is impossible, so the inequality (2.9) does not hold. a

Now we prove that u is the critical point of the functional J.

Lemma 2.8. There exists ¢ € (0,€5) such that if |hla < €, then u satisfies
J (w)v =0 for allv € H* ().
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Proof. Fix v € H® () and consider function ¢ : R x (0, +00) — R defined by
¢ (s,t) == t2|lu+ sv||%. —tP|u + sv|P — t/ﬂ h(u+ sv)dx.
Since u € Ny, we have ¢ (0,1) = 0. So ¢ is a first-order continuous function and
B (0.0) =2l — pluly ~ [ hude = @) JulP + (1) [ huds
Letting % (0,1) =0, then

2 p—1 p—1
s = —F hudxr < ——1h|2C s,
||u||H 2/ udx 2| |2 1||u||H

ie.,
p—1
s < ——|h|2Ch.
- < E=5mlacy
If we take
p—2
hlo < =——ay,
1l G -0
then
p—1 p—2
s < ——————0a10C1 = ay,
s < P s =

which contradicts u € Ap,. So for such choices of h, there must be % (0,1) # 0.
By the Implicit Function Theorem, there exist a number § > 0 and a C* function
t(s):(—d,0) — Rsuch that ¢ (s,t(s)) = 0 for every s € (—6,0) and ¢ (0) = 1. Since
||| s > a1, we can also take § small enough such that ¢ (s) (u + sv) > a;. We now
study the behaivior of the function v (s) = J (¢ (s) (u+ sv)). It can be obtained

that ~y is differentiable and has a local minimum at s = 0. Since u € N}, we have

0=~"00)=J (u)[t' (0)u+t(0)v] =t (0)J (w)u+J (u)v=J (u)v,

which implies that when €5 < min {65, g’l z;lall) } , the minimum v satisfies J' (u) v =

0 for all v € H® (2). O
So far, we have found a solution to equation (|1.2]). Next, we show that equation
(L.2) has other solution.

Lemma 2.9. For every € > 0, there exists § > 0 such that if |h|a < 0, equation
(1.2) admits a solution up, satisfying ||up||ms < €.

Proof. Recalling I (u) = 3|ul|%. — %|u|g, since

S, =inf {C > 0: |ul, < Cllulle,Yu € H* (@)},

we have
P

1 S
I(w) > 5 lullf - fIIUIlp

The function

.7]‘2 SZZ;;D
¢@yf§t—5¢
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is continuous, strictly increasing in a right neighborhood of 0, and ¢ (0) = 0. There

exists € < e such that for all ¢ € (0,€'), we have ¢ (¢t) > 0. Then for any n € (0, €),

we have I (u) > ¢ (n) > 0 for ||ul| g« = n. We also have

J(w) = T (u) - /Qhudx > 6 (n) — |hl2Cin.

Choosing § = 2. and |hl2 < &, we derive that J (u) > 20) > 0 for [l grs = m.
Define

and n, = infuep, J (u). Obviously, —oco < n, < J(0

201’)7 2

Bn = {u € H® (Q) : HUHHS < 77}7
)

= 0. Then we may proved

that n, is achieved by some w, € B,. Since J (up) = n, < 0, it can not be

|lun||zrs = m, which means wuy, lies in the interior of the ball B, and uj is a local

minimum for J, moreover, uy, is a solution of equation (L.2)). (Il
Proof of Theorem[I.]l By Lemma choosing € = a;, we can fix § > 0 such that
for every |h|a < d there exists a solution uy, of equation with [Jup||gs < ai.
If we take |h|es < ¢ := min {eg,d}, then, by Lemma we obtain a different
solution u to equation (1.2), satisfying ||u|m- > a;. O
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