Известия НАН Армении, Математика, том 56, н. 6, 2021, стр. 39 – 50.

MULTIPLICITY OF SOLUTIONS FOR A FRACTIONAL LAPLACIAN EQUATION INVOLVING A PERTURBATION

Z. GUO, Y. DENG

Liaoning Normal University, Dalian, China¹ E-mails: guozy@163.com; dengyanab@163.com

Abstract. A fractional Laplacian equation involving a perturbation is investigated. Under certain conditions, we obtain at least two solutions to this equation.

MSC2010 numbers: 35R11; 47J30.

Keywords: Nehari manifold; fractional Laplacian; multiple solutions.

1. INTRODUCTION

Fractional Laplacian equations have been applied to many subjects, such as, anomalous diffusion, elliptic problems with measure data, gradient potential theory, minimal surfaces, non-uniformly elliptic problems, optimization, phase transitions, quasigeostrophic flows, singular set of minima of variational functionals, and water waves (see [2]-[11] and the references therein). Fractional Brezis-Nirenberg problems had been investigated by many researchers (such as [2, 10]).

$$\begin{cases} (-\Delta)^s u + \lambda u = |u|^{2^s_s - 2} u & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^N \smallsetminus \Omega, \end{cases}$$

where $0 < s < 1, N > 2s, 2_s^* := \frac{2N}{N-2s}$ is the fractional Sobolev critical exponent, Ω is an open bounded domain in \mathbb{R}^N with Lipschitz boundary, and the fractional Laplacian is defined by

$$-(-\Delta)^{s}u(x) = \frac{C_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{u(x+y) + u(x-y) - 2u(x)}{|y|^{N+2s}} \mathrm{d}y, \quad x \in \mathbb{R}^{N},$$
1)
$$C_{N,s} = \left(\int_{\mathbb{R}^{N}} \frac{1 - \cos(\zeta_{1})}{|y|^{N+2s}} \mathrm{d}\zeta\right)^{-1}$$

(1.1)
$$C_{N,s} = \left(\int_{\mathbb{R}^N} \frac{1 - \cos(\zeta_1)}{|\zeta|^{N+2s}} \mathrm{d}\zeta \right) \quad .$$

Define Hilbert space $D^s(\Omega)$ as the completion of $C_c^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{D^s}$ induced by the following scalar product

$$\langle u, v \rangle_{D^s} := \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{\left(u(x) - u(y)\right) \left(v(x) - v(y)\right)}{|x - y|^{N + 2s}} \mathrm{d}x \mathrm{d}y$$

¹Supported by NSFC(11701248) and NSFLN(2021-MS-275).

If Ω is an open bounded Lipschitz domain, then $D^{s}(\Omega)$ coincides with the Sobolev space

$$X_0 := \{ f \in X : f = 0 \text{ a.e. in } \Omega^c \}$$

where X is a linear space of Lebesgue measurable functions from \mathbb{R}^N to \mathbb{R} such that the restriction to Ω of any function f in X belongs to $L^2(\Omega)$ and the map $(x, y) \mapsto (f(x) - f(y))|x - y|^{-\frac{N}{2} + s}$ is in $L^2(\mathbb{R}^{2N} \setminus (\Omega^c \times \Omega^c), dxdy)$, and Ω^c is the complement of Ω in \mathbb{R}^N . Consider fractional Sobolev space

$$H^{s}(\mathbb{R}^{N}) := \left\{ u \in L^{2}(\mathbb{R}^{N}) : \frac{|u(x) - u(y)|}{|x - y|^{\frac{N}{2} + s}} \in L^{2}(\mathbb{R}^{2N}) \right\},\$$

equiped the Gagliardo seminorm

$$[u]_{H^s(\mathbb{R}^N)}^2 := \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} \mathrm{d}x \mathrm{d}y.$$

The fractional Laplacian operator can be defined by

$$\begin{split} (-\Delta)^s u(x) &= C_{N,s} \mathbf{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \mathrm{d}y \\ &= C_{N,s} \lim_{\varepsilon \to 0^+} \int_{B^c_\varepsilon(x)} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \mathrm{d}y \\ &= -\frac{1}{2} C_{N,s} \int_{\mathbb{R}^N} \frac{u(x + y) + u(x - y) - 2u(x)}{|y|^{N+2s}} \mathrm{d}y, \end{split}$$

where $C_{N,s}$ is given by (1.1) and P.V. is the principle value defined by the latter formula. Define the fractional Sobolev space

$$H^{s}(\Omega) := \left\{ x \in H^{s}(\mathbb{R}^{N}) : u = 0 \text{ a.e. in } \Omega^{c} \right\},$$

equipped with the seminorm

$$\|u\|_{H^{s}(\Omega)} := \left(\lambda \int_{\Omega} |u|^{2} \mathrm{d}x + \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N} \smallsetminus (\Omega^{c} \times \Omega^{c})} \frac{|u(x) - u(y)|^{2}}{|x - y|^{N + 2s}} \mathrm{d}x \mathrm{d}y\right)^{\frac{1}{2}},$$

which was introduced in [10]. From u = 0 a.e. in Ω^c , it is easy to see that

$$\begin{split} |u|_{2}^{2} &:= \int_{\Omega} |u|^{2} \mathrm{d}x = \int_{\mathbb{R}^{N}} |u|^{2} \mathrm{d}x, \\ \int_{\mathbb{R}^{2N} \smallsetminus (\Omega^{c} \times \Omega^{c})} \frac{|u(x) - u(y)|^{2}}{|x - y|^{N + 2s}} \mathrm{d}x \mathrm{d}y = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{N + 2s}} \mathrm{d}x \mathrm{d}y. \end{split}$$

Hence, we just denote $||u||_{H^s(\Omega)}$ by

$$\|u\|_{H^s} := \left(\lambda \int_{\mathbb{R}^N} |u|^2 \mathrm{d}x + \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} \mathrm{d}x \mathrm{d}y\right)^{\frac{1}{2}}.$$

It follows from Lemma 7 in [8] that $(H^s(\Omega), \|\cdot\|_{H^s})$ is a Hilbert space.

In present paper, we study the following fractional Laplacian equation involving a perturbation

(1.2)
$$\begin{cases} (-\Delta)^s u + \lambda u = |u|^{p-2}u + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \Omega^c, \end{cases}$$

where 0 < s < 1, λ is a real parameter, $p \in (2, 2_s^*)$, $h \in L^2(\Omega)$, and $\Omega \subset \mathbb{R}^N$ is an open bounded Lipschitz domain. Via classic methods (see [1] for example), we obtain multiplicity of solutions for fractional Laplacian equation (1.2). The solutions of equation (1.2) coincide with the critical points of the following energy functional

$$J(u) = \frac{1}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dx dy + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx - \frac{1}{p} \int_{\Omega} |u|^p dx - \int_{\Omega} hu dx$$

= $\frac{1}{2} ||u||^2_{H^s} - \frac{1}{p} |u|^p_p - \int_{\Omega} hu dx, \quad \forall u \in H^s(\Omega).$

If $h \equiv 0$, then equation (1.2) becomes

(1.3)
$$\begin{cases} (-\Delta)^s + \lambda u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0 & \text{in } \Omega^c \end{cases}$$

Define the energy functional of equation (1.3) and corresponding Nehari manifold as follows:

$$I(u) = \frac{1}{2} ||u||_{H^s}^2 - \frac{1}{p} |u|_p^p, \quad \forall u \in H^s(\Omega),$$

and

$$\mathcal{N} = \{ u \in H^{s}(\Omega) : u \neq 0, I'(u)u = 0 \} = \{ u \in H^{s}(\Omega) : u \neq 0, \|u\|_{H^{s}}^{2} = |u|_{p}^{p} \}.$$

Our main result reads as follows.

Theorem 1.1. There exists $\epsilon > 0$ such that for every $h \in L^2(\Omega)$ with $|h|_2 \leq \epsilon$, equation (1.2) has at least two solutions.

2. The proof of Theorem 1.1

We need the following fractional Sobolev embedding results, which was proved in [8].

Lemma 2.1. Let $\Omega \subset \mathbb{R}^N$ be an open bounded Lipschitz domain. Then $H^s(\Omega) \hookrightarrow L^q(\Omega)$ for every $q \in [1, 2^*_s]$, and $H^s(\Omega) \hookrightarrow L^q(\Omega)$ for every $q \in [1, 2^*_s)$.

From Lemma 2.1, we can define a constant S_p .

$$S_p := \inf \{ C > 0 : |u|_p \leqslant C ||u||_{H^s}, \forall u \in H^s(\Omega) \}.$$

Next, we give some numbers which will be used in the proof.

$$a_{1} = \left(\frac{1}{(p-1)S_{p}^{p}}\right)^{\frac{1}{p-2}}, a_{2} = \left(\frac{1}{2}a_{1}^{2}\right)^{\frac{1}{p}}, a_{3} = \frac{1}{2}\min\left\{a_{1}, \frac{a_{2}}{S_{p}}\right\}$$

It is easy to find that $a_3 < a_1$.

Lemma 2.2. There exists $\epsilon_1 > 0$ such that for every $h \in L^2(\Omega)$ with $|h|_2 \leq \epsilon_1$ and for every $u \in H^s(\Omega)$, if

(2.1)
$$\|u\|_{H^s}^2 = \int_{\Omega} |u|^p dx + \int_{\Omega} hu dx = |u|_p^p + \int_{\Omega} hu dx,$$

then either $||u||_{H^s} > a_1$ and $|u|_p \ge a_2$ or $||u||_{H^s} < a_3$.

Proof. It follows from (2.1) that

$$||u||_{H^s}^2 \leqslant S_p^p ||u||^p + |h|_2 |u|_2.$$

By Lemma 2.1, we get $|u|_2 \leq C_1 ||u||_{H^s}$. Then, $||u||_{H^s}^2 \leq S_p^p ||u||^p + C_1 |h|_2 ||u||_{H^s}$. If $u \neq 0$ in $H^s(\Omega)$, then

$$||u||_{H^s} - S_p^p ||u||^{p-1} - C_1 |h|_2 \leq 0.$$

For calculation convenience, we define function $\phi: [0, +\infty) \to \mathbb{R}$ by

$$\phi(t) = t - S_p^p t^{p-1} - C_1 |h|_2.$$

Since $\phi'(t) = 1 - (p-1) S_p^p t^{p-2}$, we get the maximum point of ϕ as $a_1 = ((p-1) S_p^p)^{-\frac{1}{p-2}}$. It is easy to see that ϕ is strictly increasing on $(0, a_1)$, strictly decreasing on $(a_1, +\infty)$ and $\phi(0) < 0$, $\lim_{t \to +\infty} \phi(t) = -\infty$.

In order to observe the characteristics of the function ϕ , we calculate the maximum value of ϕ ,

$$\begin{split} \phi\left(a_{1}\right) &= \left(\frac{1}{\left(p-1\right)S_{p}^{p}}\right)^{\frac{1}{p-2}} - S_{p}^{p}\left(\frac{1}{\left(p-1\right)S_{p}^{p}}\right)^{\frac{p-1}{p-2}} - C|h|_{2} \\ &= \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}}\left(\frac{1}{S_{p}^{p}}\right)^{\frac{1}{p-2}} - \left(\frac{1}{p-1}\right)^{1+\frac{1}{p-2}}\left(\frac{1}{S_{p}^{p}}\right)^{\frac{1}{p-2}} - C|h|_{2} \\ &= \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}}\left(\frac{1}{S_{p}^{p}}\right)^{\frac{1}{p-2}}\left(1-\frac{1}{p-1}\right) - C|h|_{2} \\ &= \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}}\left(\frac{1}{S_{p}^{p}}\right)^{\frac{1}{p-2}}\frac{p-2}{p-1} - C|h|_{2} =: \alpha_{1} - C|h|_{2}, \end{split}$$

and if we take $|h|_2 \leq \frac{\alpha_1}{2C}$, then

$$\phi(a_1) \ge \alpha_1 - C \frac{\alpha_1}{2C} = \alpha_1 - \frac{\alpha_1}{2} = \frac{\alpha_1}{2} > 0,$$

which means the function ϕ has two zeros t_1 , t_2 and $t_1 < a_1 < t_2$. Then $\phi(t) > 0$ for all $t \in (t_1, t_2)$, while $\phi(t) < 0$ for all $t \in [0, t_1) \cup (t_2, +\infty)$. Substituting t_1 into the function ϕ , we get that

$$C|h|_2 = t_1 - S_p^p t_1^{p-1} = t_1 \left(1 - S_p^p t_1^{p-2}\right).$$

Since $t_1 < a_1$, we have

$$C|h|_{2} \ge t_{1} \left(1 - S_{p}^{p} a_{1}^{p-2}\right) = t_{1} \left(1 - \frac{1}{p-1}\right) = t_{1} \frac{p-2}{p-1},$$

$$42$$

i.e., $t_1 \leq \frac{p-1}{p-2}C|h|_2$. If we take

$$|h|_2 < \frac{p-1}{p-1} \frac{a_3}{C},$$

then

$$t_1 < \frac{p-1}{p-2} \frac{p-2}{p-1} \frac{a_3}{C} = a_3.$$

In summary, for

$$|h|_2 < \min\left\{\frac{p-2}{p-1}\frac{a_3}{C}, \frac{\alpha_1}{2C}\right\},\$$

we get $\phi \leq 0$ implies $t < a_3$ or $t > a_1$. If (2.1) hold and $||u||_{H^s} > a_1$, we get

$$|u|_{p}^{p} = ||u||_{H^{s}}^{2} - \int_{\Omega} hu \mathrm{d}x \ge a_{1}^{2} - |h|_{2}|u|_{2} \ge a_{1}^{2} - a|h|_{2}|u|_{p},$$

where $a = |\Omega|^{\frac{p-2}{2p}}$. Namely

(2.2)
$$|u|_p^p + a|h|_2|u|_p - a_1^2 \ge 0.$$

Regarding $|u|_p$ as a variable, we get a function $\gamma: [0, +\infty) \to \mathbb{R}$, defined by

$$\gamma(t) = t^p + a|h|_2 t - a_1^2.$$

Since $\gamma'(t) = pt^{p-1} + a|h|_2 > 0$, for all t > 0, γ is strictly increasing. Therefore, if

$$|h|_2 < \frac{a_1^2}{2aa_2}$$

then

$$\gamma (a_2) = a_2^p + a|h|_2 a_2 - a_1^2 = \frac{1}{2}a_1^2 + a|h|_2 a_2 - a_1^2$$
$$= a|h|_2 a_2 - \frac{1}{2}a_1^2 < a\frac{a_1^2}{2aa_2}a_2 - \frac{1}{2}a_1^2 = 0.$$

We see that $\gamma(t) < 0$ for $t \in [0, a_2]$. By (2.2) we derive that $|u|_p \ge a_2$.

Summing up, if we choose

$$\epsilon_1 = \min\left\{\frac{p-2}{p-1}\frac{a_3}{C}, \frac{\alpha_1}{2C}, \frac{a_1^2}{2aa_2}\right\},\,$$

then Lemma 2.2 holds.

In the sequel, we always assume $|h|_2 < \epsilon_1$. Now define

$$\mathcal{N}_{h} := \{ u \in H^{s}(\Omega) : J'(u) u = 0, ||u||_{H^{s}} > a_{1} \}$$
$$= \left\{ u \in H^{s}(\Omega) : ||u||_{H^{s}}^{2} = |u|_{p}^{p} + \int_{\Omega} hudx, ||u||_{H^{s}} > a_{1} \right\}$$

and $m_h = \inf_{u \in \mathcal{N}_h} J(u)$. Notice that \mathcal{N}_h is a subset of Nehari mainfold and for $u \in \mathcal{N}_h$, we have

$$J(u) = \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H^s}^2 - \left(1 - \frac{1}{p}\right) \int_{\Omega} hu \mathrm{d}x.$$

Now, we prove that \mathcal{N}_h is not empty.

Lemma 2.3. There exists $\epsilon_2 \in (0, \epsilon_1]$ such that for every $h \in L^2(\Omega)$ with $|h|_2 \leq \epsilon_2$, there results $\mathcal{N}_h \neq 0$.

Proof. Consider function

$$t \mapsto J'(tu) tu = t^2 ||u||_{H^s}^2 - t^p \int_{\Omega} |u|^p dx - t \int_{\Omega} hu dx$$
$$= t \left[t ||u||^2 - t^{p-1} |u|_p^p - \int_{\Omega} hu dx \right],$$

where $u \in H^s(\Omega) \setminus \{0\}, t \in (0, +\infty)$. Since t > 0, we only consider the following function

$$\gamma(t) = t ||u||_{H^s}^2 - t^{p-1} |u|_p^p - \int_{\Omega} h u \mathrm{d}x,$$

since $p \in (2, 2_s^*)$, the function γ has a global maximum. Solving

$$\gamma'(t) = \|u\|_{H^s}^2 - (p-1)t^{p-2}|u|_p^p = 0,$$

we have the function γ has a global maximum at

$$t' = \left(\frac{\|u\|_{H^s}^2}{(p-1)|u|_p^p}\right)^{\frac{1}{p-2}},$$

and

$$\begin{split} \gamma\left(t'\right) = & \frac{\|u\|_{H^s}^{\frac{2(p-1)}{p-2}}}{|u|_p^{\frac{p}{p-2}}} \frac{1}{(p-1)^{\frac{1}{p-2}}} - \int_{\Omega} hu dx =: \frac{\|u\|_{H^s}^{\frac{2(p-1)}{p-2}}}{|u|_p^{\frac{p}{p-2}}} \alpha - \int_{\Omega} hu dx \\ \geqslant & \frac{\|u\|_{H^s}^{\frac{2(p-1)}{p-2}}}{\|u\|_p^{\frac{p}{p-2}} S_p^{\frac{p}{p-2}}} \alpha - \int_{\Omega} hu dx \geqslant \|u\|_{H^s} \frac{1}{S_p^{\frac{p}{p-2}}} \alpha - C|h|_2 \|u\| \\ = & \|u\|_{H^s} \left(\frac{\alpha}{S_p^{\frac{p}{p-2}}} - C|h|_2\right). \end{split}$$

Thus, if

$$|h|_2 \leqslant \frac{\alpha}{2CS_p^{\frac{p}{p-2}}},$$

there results $\gamma(t') > 0$. Moreover, $\gamma(t)$ is strictly increasing in (0, t'), strictly decreasing in $(t', +\infty)$ and $\lim_{t \to +\infty} \gamma(t) = -\infty$. Then the function γ has at least one zero $t_1 \in (t', +\infty)$. Then there exists $v = t_1 u$ satisfies (2.1). Next, we verify that v satisfies $||v||_{H^s} > a_1$, we get $v \in \mathcal{N}_h$. Since

$$\begin{aligned} \|v\|_{H^{s}} &= \|t_{1}u\|_{H^{s}} = t_{1}\|u\|_{H^{s}} > t'\|u\|_{H^{s}} = \left(\frac{\|u\|_{H^{s}}^{2}}{(p-1)|u|_{p}^{p}}\right)^{\frac{1}{p-2}} \\ &= \|u\|_{H^{s}}^{\frac{p}{p-2}} \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}} \left(\frac{1}{|u|_{p}^{p}}\right)^{\frac{1}{p-2}} \\ &\ge (|u|_{p})^{\frac{p}{p-2}} \left(\frac{1}{S_{p}}\right) \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}} \left(\frac{1}{|u|_{p}}\right)^{\frac{p}{p-2}} \\ &= \left(\frac{1}{p-1}\right)^{\frac{1}{p-2}} \left(\frac{1}{S_{p}}\right)^{\frac{p}{p-2}} = a_{1}, \\ &\qquad 44 \end{aligned}$$

the proof is completed with $\epsilon_2 = \min\left\{\epsilon_1, \frac{\alpha}{2CS_p^{\frac{p}{p-2}}}\right\}$.

We now show that m_h are uniformly bounded from above and below by three Lemmas below.

Lemma 2.4. Let $\epsilon_3 = \min\{1, \epsilon_2\}$. Then there exists C > 0 such that for every $|h|_2 < \epsilon_3$, there results $m_h \leq C$.

Proof. Denote u_0 and m_0 as the solution and the level of the solution of equation (1.2), that is, $u_0 \in \mathcal{N}$, $I(u_0) = \min_{u \in \mathcal{N}} I(u) = m_0$. Due to Lemma 2.3, letting $|h|_2 < \epsilon_3$, there exists $t_h > 0$ such that $t_h u_0 \in \mathcal{N}_h$. Then

(2.3)
$$\|t_h u_0\|_{H^s}^2 = \int_{\Omega} |t_h u_0|^p \mathrm{d}x + \int_{\Omega} h u \mathrm{d}x.$$

Noticing $u_0 \in \mathcal{N}$, i.e., $||u_0||_{H^s}^2 = |u_0|_p^p$, (2.3) is equivalent to

$$(t_h^2 - t_h^p) \|u_0\|_{H^s}^2 = t_h \int_{\Omega} h u_0 \mathrm{d}x,$$

namely,

$$(t_h - t_h^{p-1}) \|u_0\|_{H^s}^2 = \int_{\Omega} h u_0 \mathrm{d}x,$$

which implies that

$$(t_h - t_h^{p-1}) \|u_0\|_{H^s}^2 \ge -C_1 \|h\|_2 \|u_0\|_{H^s},$$

that is

(2.4)
$$t_h - t_h^{p-1} \ge -\frac{C_1 |h|_2}{\|u_0\|_{H^s}} \ge -\frac{C_1}{\|u_0\|_{H^s}}$$

Consider function $\phi: t \mapsto t - t^{p-1}$. Since $\lim_{t \to +\infty} \phi(t) = -\infty$, there exists $C_2 > 0$ there $t_h \leq C_2$, and then

$$\begin{split} m_h &\leqslant J\left(t_h u_0\right) = \left(\frac{1}{2} - \frac{1}{p}\right) \|t_h u_0\|_{H^s}^2 - \left(1 - \frac{1}{p}\right) \int_{\Omega} h u dx \\ &\leqslant \left(\frac{1}{2} - \frac{1}{p}\right) C_2^2 \|u_0\|_{H^s}^2 + \left(1 - \frac{1}{p}\right) C_2 C_1 \|h\|_2 \|u_0\|_{H^s} \\ &\leqslant \left(\frac{1}{2} - \frac{1}{p}\right) C_2^2 \|u_0\|_{H^s}^2 + \left(1 - \frac{1}{p}\right) C_2 C_1 \|u_0\|_{H^s} =: C. \end{split}$$

To prove that m_h are uniform bound from below, we need a related Lemma.

Lemma 2.5. For h that satisfies the condition in Lemma 2.4, there exists a normal number C_3 and a minimizing sequence $\{u_k\}_k$ for m_h such that $||u_k||_{H^s} \leq C_3$, and $|u_k|_p \leq S_p C_3$ for all k.

Z. GUO, Y. DENG

Proof. Let $\{v_k\}_k$ be a minimizing sequence for m_h , i.e., $v_k \in \mathcal{N}_h$ and $J(v_k) \to m_h$ since $m_h \leq C$, there exists k' such that for every $k \geq k', J(v_k) \leq 2C$. Then

$$2C \ge J(v_k) = \left(\frac{1}{2} - \frac{1}{p}\right) \|v_k\|_{H^s}^2 - \left(1 - \frac{1}{p}\right) \int_{\Omega} hv_k dx$$
$$\ge \left(\frac{1}{2} - \frac{1}{p}\right) \|v_k\|_{H^s}^2 - \left(1 - \frac{1}{p}\right) C_1 \|h\|_2 \|v_k\|_{H^s} =: a \|v_k\|_{H^s}^2 - b \|v_k\|_{H^s}.$$

We get

$$\frac{b+\sqrt{b^2+8ac}}{2a} =: C_3,$$

and $|v_k|_p \leq S_p ||v_k||_{H^s} = S_p C_3$, where $u_k = v_{k'+k}$.

The preparation work has been completed. Now we prove the boundness from below.

Lemma 2.6. There exists $\epsilon_4 \in (0, \epsilon_3]$ such that if $|h|_2 < \epsilon_4$, then $m_h \ge \frac{1}{2}m_0 > 0$.

Proof. We consider $\{u_k\}_k$ obtained in Lemma 2.5. Let t_k be such that $t_k u_k \in \mathcal{N}$, which is equivalent to

$$||t_k u_k||_{H^s}^2 = \int_{\Omega} |t_k u_k|^p \mathrm{d}x,$$

namely,

$$t_k^2 ||u_k||_{H^s}^2 = t_k^p \int_{\Omega} |u_k|^p \mathrm{d}x,$$

i.e. ,

$$t_k = \left(\frac{\|u_k\|_{H^s}^2}{\|u_k\|_p^p}\right)^{\frac{1}{p-2}}$$

Since $u_k \in \mathcal{N}_h$, we have

$$||u_k||_{H^s}^2 = |u_k|_p^p + \int_{\Omega} hu_k \mathrm{d}x.$$

Then

$$t_{k} = \left(\frac{|u_{k}|_{p}^{p} + \int_{\Omega} hu_{k} \mathrm{d}x}{|u_{k}|_{p}^{p}}\right)^{\frac{1}{p-2}} = \left(1 + \frac{\int_{\Omega} hu_{k} \mathrm{d}x}{|u_{k}|_{p}^{p}}\right)^{\frac{1}{p-2}},$$

and

$$m_{0} \leq I\left(t_{k}u_{k}\right) = \left(\frac{1}{2} - \frac{1}{p}\right) t_{k}^{2} \|u_{k}\|_{H^{s}}^{2}$$

$$(2.5) \qquad = \left(\frac{1}{2} - \frac{1}{p}\right) t_{k}^{2} \|u_{k}\|_{H^{s}}^{2} - \left(1 - \frac{1}{p}\right) t_{k}^{2} \int_{\Omega} hu_{k} dx + \left(1 - \frac{1}{p}\right) t_{k}^{2} \int_{\Omega} hu_{k} dx$$

$$= t_{k}^{2} J\left(u_{k}\right) + \left(1 - \frac{1}{p}\right) t_{k}^{2} \int_{\Omega} hu_{k} dx.$$

By Lemma 2.2 and Lemma 2.5, we have

$$t_k = \left(1 + \frac{\int_{\Omega} h u_k \mathrm{d}x}{|u_k|_p^p}\right)^{\frac{1}{p-2}} \leqslant \left(1 + \frac{C_1 |h|_2 ||u_k||_{H^s}}{|u_k|_p^p}\right)^{\frac{1}{p-2}} \leqslant \left(1 + \frac{C_1 C_3 |h|_2}{a_2^p}\right)^{\frac{1}{p-2}}.$$
46

If

$$h|_2 \leqslant \frac{a_2^p}{C_1 C_3} \left[\left(\frac{3}{4}\right)^{\frac{p-2}{2}} - 1 \right],$$

then

$$t_k \leqslant \left(\frac{C_1 C_3}{a_2^p} \frac{a_2^p}{C_1 C_3} \left[\left(\frac{3}{4}\right)^{\frac{p-2}{p}} - 1 \right] \right)^{\frac{1}{p-2}} = \left(\frac{3}{4}\right)^{\frac{1}{2}}.$$

Now we consider (2.5)

$$\left| (1 - \frac{1}{p}) t_k^2 \int_{\Omega} h u_k \mathrm{d}x \right| \leq \left(1 - \frac{1}{p} \right) t_k^2 |h|_2 C_1 ||u_k||_{H^s} \leq \frac{3}{4} |h|_2 \left(1 - \frac{1}{p} C_1 C_3 \right).$$

If we take

$$|h|_2 < \frac{4m_0}{9\left(1 - \frac{1}{p}\right)C_1C_3},$$

then

$$\left| (1 - \frac{1}{p}) t_k^2 \int_{\Omega} h u_k \mathrm{d}x \right| \leqslant \frac{m_0}{3}.$$

Then we can write $m_0 \leq t_k^2 J(u_k) + \frac{m_0}{3}$, i.e., $t_k^2 J(u_k) \geq \frac{2}{3}m_0$. Since

$$J(u_k) > 0, \ t_k^2 \leqslant \frac{4}{3},$$

we get that $\frac{2}{3}m_0 \leqslant t_k^2 J\left(u_k\right) \leqslant \frac{4}{3} J\left(u_k\right)$, i.e.,

(2.6)
$$\frac{1}{2}m_0 \leqslant J(u_k), as \ k \to \infty,$$

which implies that $\frac{1}{2}m_0 \leq m_h$. If we choose

$$\epsilon_4 = \min\left\{\epsilon_3, \frac{a_2^p}{C_1 C_3} \left[\left(\frac{4}{3}\right)^{\frac{p-2}{2}} - 1 \right], \frac{m_0}{a\left(1 - \frac{1}{p}\right)C_1 C_3} \right\},\$$

then Lemma 2.6 holds.

The next thing to prove is an important part of the theorem, namely the minimum of J on \mathcal{N}_h is attained.

Lemma 2.7. There exists $\epsilon_5 \in (0, \epsilon_4]$ such that for every $|h|_2 < \epsilon_5$, m_h is attained by some $u \in \mathcal{N}_h$.

Proof. We consider $\{u_k\}_k$ obtained in Lemma 2.5 and $|h|_2 < \epsilon_4$. Since Ω is bounded, there exists $u \in H^s(\Omega)$ such that $u_k \rightharpoonup u$ in $H^s(\Omega)$. By Lemma 2.1, we have $u_k \rightarrow u$ in $L^p(\Omega)$ and in $L^2(\Omega)$. Then we derive that

(2.7)
$$J(u) \leq \liminf_{k} J(u_k) = m_h,$$

and

(2.8)
$$\|u\|_{H^s}^2 \leqslant |u|_p^p + \int_{\Omega} h u \mathrm{d}x.$$

Z. GUO, Y. DENG

Consider the case of equal sign in (2.8). From the Lemma 2.1, we have if (2.7) hold, then either $||u||_{H^s} > a_1$ or $||u||_{H^s} < a_3$. If $||u||_{H^s} > a_1$, then $u \in \mathcal{N}_h$ and (2.7) implies that u is the minimum we are looking for. If $||u||_{H^s} < a_3$, then

$$|u|_p \leqslant S_p \|u\|_{H^s} \leqslant S_p a_3 < S_p \frac{a_2}{S_p} = a_2,$$

which is a controdiction with $|u|_p \ge a_2$ from Lemma 2.2. Next consider the case of strict inequality in (2.8), namly,

(2.9)
$$||u||_{H^s}^2 < |u|_p^p + \int_{\Omega} hu \mathrm{d}x.$$

If we can show that (2.9) dose not hold, then (2.8) only holds when the equal sign is taken. At this time, according to the previous proof, u is the minimum we are looking for, and the proof of Lemma 2.7 is completed. So we only need to show that (2.9) can not hold. By (2.9), there exists $t^* > 0$ such that $t^*u \in \mathcal{N}_h$ and $t^* > t'$ according to (2.8), we have

$$\begin{split} t' &\leqslant \left(\frac{|u|_p^p + \int_\Omega h u \mathrm{d}x}{(p-1) \, |u|_p^p}\right)^{\frac{1}{p-2}} = \left(\frac{1}{p-1} + \frac{\int_\Omega h u \mathrm{d}x}{(p-1) \, |u|_p^p}\right)^{\frac{1}{p-2}} \\ &\leqslant \left(\frac{1}{p-1} + \frac{|h|_2 C_1 ||u||_{H^s}}{(p-1) \, |u|_p^p}\right)^{\frac{1}{p-2}} \leqslant \left(\frac{1}{p-1} + \frac{|h|_2 C_1 C_3}{(p-1) \, a_2^p}\right)^{\frac{1}{p-2}} \end{split}$$

If we choose

$$\epsilon_5 = \min\left\{\frac{(p-2)(p-1)a_2^p}{2C_1C_3}, \epsilon_4\right\},\,$$

then $t' \leq 1$.

For the function γ in Lemma 2.5, since $t^*u \in \mathcal{N}_h$, we have $\gamma(t^*) = 0$ and the inequality (2.9) is equivalent to $\gamma(1) < 0$. Since t' < 1 and $t' < t^*$, we see that $t^* < 1$. According to the definition of m_h , we derive that

$$m_{h} \leq J(t^{*}u) = (t^{*})^{2} \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H^{s}}^{2} - t^{*} \left(1 - \frac{1}{p}\right) \int_{\Omega} hudx$$
$$\leq (t^{*})^{2} \liminf_{k} \left(\frac{1}{2} - \frac{1}{p}\right) \|u_{k}\|_{H^{s}}^{2} - t^{*} \lim_{k} \left(1 - \frac{1}{p}\right) \int_{\Omega} hudx$$
$$\leq (t^{*}) \liminf_{k} \left[\left(\frac{1}{2} - \frac{1}{p}\right) \|u_{k}\|_{H^{s}}^{2} - \left(1 - \frac{1}{p}\right) \int_{\Omega} hudx \right]$$
$$= t^{*} \liminf_{k} J(u_{k}) = t^{*}m_{h} < m_{h}.$$

Observing the first and last two terms of the above inequality, we obtain that $m_h < m_h$, which is impossible, so the inequality (2.9) does not hold.

Now we prove that u is the critical point of the functional J.

Lemma 2.8. There exists $\epsilon_6 \in (0, \epsilon_5)$ such that if $|h|_2 < \epsilon_6$, then u satisfies J'(u) v = 0 for all $v \in H^s(\Omega)$.

Proof. Fix $v \in H^{s}(\Omega)$ and consider function $\phi : \mathbb{R} \times (0, +\infty) \to \mathbb{R}$ defined by

$$\phi(s,t) := t^2 ||u + sv||_{H^s}^2 - t^p |u + sv|^p - t \int_{\Omega} h(u + sv) \, \mathrm{d}x$$

Since $u \in \mathcal{N}_h$, we have $\phi(0,1) = 0$. So ϕ is a first-order continuous function and

$$\frac{\partial \phi}{\partial t}(0,1) = 2\|u\|_{H^s}^2 - p|u|_p^p - \int_{\Omega} hu dx = (2-p)\|u\|^2 + (p-1)\int_{\Omega} hu dx.$$

Letting $\frac{\partial \phi}{\partial t}(0,1) = 0$, then

$$||u||_{H^s}^2 = \frac{p-1}{p-2} \int_{\Omega} hu \mathrm{d}x \leqslant \frac{p-1}{p-2} |h|_2 C_1 ||u||_{H^s},$$

i.e.,

$$||u||_{H^s} \leq \frac{p-1}{p-2}|h|_2 C_1.$$

If we take

$$|h|_2 < \frac{p-2}{C_1\,(p-1)}a_1$$

then

$$||u||_{H^s} < \frac{p-1}{p-2} \frac{p-2}{C_1(p-1)} a_1 C_1 = a_1,$$

which contradicts $u \in \mathcal{N}_h$. So for such choices of h, there must be $\frac{\partial \phi}{\partial t}(0,1) \neq 0$. By the Implicit Function Theorem, there exist a number $\delta > 0$ and a C^1 function $t(s): (-\delta, \delta) \to \mathbb{R}$ such that $\phi(s, t(s)) = 0$ for every $s \in (-\delta, \delta)$ and t(0) = 1. Since $||u||_{H^s} > a_1$, we can also take δ small enough such that $t(s)(u+sv) > a_1$. We now study the behavior of the function $\gamma(s) = J(t(s)(u+sv))$. It can be obtained that γ is differentiable and has a local minimum at s = 0. Since $u \in \mathcal{N}_h$, we have

$$0 = \gamma'(0) = J'(u) [t'(0) u + t(0) v] = t'(0) J'(u) u + J'(u) v = J'(u) v,$$

which implies that when $\epsilon_6 < \min\left\{\epsilon_5, \frac{(p-2)a_1}{C_1(p-1)}\right\}$, the minimum u satisfies J'(u) v = 0 for all $v \in H^s(\Omega)$.

So far, we have found a solution to equation (1.2). Next, we show that equation (1.2) has other solution.

Lemma 2.9. For every $\epsilon > 0$, there exists $\delta > 0$ such that if $|h|_2 < \delta$, equation (1.2) admits a solution u_h satisfying $||u_h||_{H^s} < \epsilon$.

Proof. Recalling $I(u) = \frac{1}{2} ||u||_{H^s}^2 - \frac{1}{p} |u|_p^p$, since

$$S_{p} = \inf \{ C > 0 : |u|_{p} \leq C ||u||_{H^{s}}, \forall u \in H^{s}(\Omega) \},\$$

we have

The function

$$I(u) \ge \frac{1}{2} \|u\|_{H^s}^2 - \frac{S_p^p}{p} \|u\|_{H^s}^p.$$
$$\phi(t) := \frac{1}{2}t^2 - \frac{S_p^p}{p}t^p$$
$$49$$

is continuous, strictly increasing in a right neighborhood of 0, and $\phi(0) = 0$. There exists $\epsilon' \leq \epsilon$ such that for all $t \in (0, \epsilon')$, we have $\phi(t) > 0$. Then for any $\eta \in (0, \epsilon')$, we have $I(u) \geq \phi(\eta) > 0$ for $||u||_{H^s} = \eta$. We also have

$$J(u) = I(u) - \int_{\Omega} h u \mathrm{d}x \ge \phi(\eta) - |h|_2 C_1 \eta.$$

Choosing $\delta = \frac{\phi(\eta)}{2C_1\eta}$ and $|h|_2 < \delta$, we derive that $J(u) \ge \frac{\phi(\eta)}{2} > 0$ for $||u||_{H^s} = \eta$. Define

$$B_{\eta} = \left\{ u \in H^{s}\left(\Omega\right) : \|u\|_{H^{s}} \leqslant \eta \right\},\$$

and $n_{\eta} = \inf_{u \in B_{\eta}} J(u)$. Obviously, $-\infty < n_{\eta} \leq J(0) = 0$. Then we may proved that n_{η} is achieved by some $u_h \in B_{\eta}$. Since $J(u_h) = n_{\eta} \leq 0$, it can not be $\|u_h\|_{H^s} = \eta$, which means u_h lies in the interior of the ball B_{η} and u_h is a local minimum for J, moreover, u_h is a solution of equation (1.2). \Box *Proof of Theorem 1.1.* By Lemma 2.9, choosing $\epsilon = a_1$, we can fix $\delta > 0$ such that

for every $|h|_2 < \delta$ there exists a solution u_h of equation (1.2) with $||u_h||_{H^s} < a_1$.

If we take $|h|_2 < \varepsilon := \min \{\epsilon_6, \delta\}$, then, by Lemma 2.8, we obtain a different solution u to equation (1.2), satisfying $||u||_{H^s} > a_1$.

Список литературы

- M. Badiale and E. Serra, Semilinear elliptic equations for beginners, Universitext. Springer, London, (2011). Existence results via the variational approach.
- [2] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, "On some critical problems for the fractional Laplacian operator", J. Differential Equations, 252 (11), 6133 – 6162 (2012).
- [3] K. Bogdan, "The boundary Harnack principle for the fractional Laplacian", Studia Math., 123 (1), 43 – 80 (1997).
- [4] L. A. Caffarelli, J.-M. Roquejoffre and Y. Sire, "Variational problems with free boundaries for the fractional Laplacian", J. Eur. Math. Soc. (JEMS), 12 (5), 1151 – 1179 (2010).
- [5] E. Di Nezza, G. Palatucci and E. Valdinoci, "Hitchhiker's guide to the fractional Sobolev spaces", Bull. Sci. Math., 136 (5), 521 – 573 (2012).
- [6] X. Ros-Oton and J. Serra, "The Dirichlet problem for the fractional Laplacian: regularity up to the boundary", J. Math. Pures Appl., (9), 101(3), 275 – 302 (2014).
- [7] X. Ros-Oton and J. Serra, "The Pohozaev identity for the fractional Laplacian", Arch. Ration. Mech. Anal., 213 (2), 587 – 628 (2014).
- [8] R. Servadei and E. Valdinoci, "Mountain pass solutions for non-local elliptic operators", J. Math. Anal. Appl., 389 (2), 887 – 898 (2012).
- R. Servadei and E. Valdinoci, "Weak and viscosity solutions of the fractional Laplace equation", Publ. Mat., 58 (1), 133 – 154 (2014).
- [10] R. Servadei and E. Valdinoci, "The Brezis-Nirenberg result for the fractional Laplacian", Trans. Amer. Math. Soc., 367 (1), 67 – 102 (2015).
- [11] L. Silvestre, "Regularity of the obstacle problem for a fractional power of the Laplace operator", Comm. Pure Appl. Math., 60 (1), 67 – 112 (2007).

Поступила 07 августа 2020

После доработки 07 августа 2020 Принята к публикации 04 декабря 2020