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1. Introduction

Let {X(t), t ∈ U} be a centered real-valued stationary process with spectral
density f(λ), λ ∈ Λ, and covariance function r(t), t ∈ U. We consider simultaneously
the

continuous-time (c.t.) case, where U = R := (−∞,∞), and the discrete-time
(d.t.) case, where U = Z := {0,±1,±2, . . .}. The domain Λ of the frequency variable
λ is Λ = R in the c.t. case, and Λ := [−π.π] in the d.t. case.

We want to make statistical inferences (parametric and nonparametric estimation)
about the spectrum of X(t). In the classical setting, the inferences are based on an
observed finite realization XT of the process X(t): XT := {X(t), t ∈ DT }, where
DT := [0, T ] in the c.t. case and DT := {1, . . . , T} in the d.t. case.

A sufficiently developed inferential theory is now available for stationary models
based on the standard (non-tapered) dataXT . We cite merely the following references
Avram et al. [3], Casas and Gao [8], Dahlhaus [12], Dahlhaus and Wefelmeyer [14],
Dzhaparidze [15], Dzhaparidze and Yaglom [16], Fox and Taqqu [17], Gao [18],
Gao et al. [19], Ginovyan [20, 21, 24, 25], Giraitis et al. [37], Giraitis and Surgailis
[38], Guyon [40], Has’minskii and Ibragimov [41], Heyde and Dai [42], Ibragimov
[43, 44], Ibragimov and Khas’minskii [45], Leonenko and Sakhno [47], Taniguchi

12



STATISTICAL ESTIMATION FOR STATIONARY MODELS ...

[49], Taniguchi and Kakizawa [50], Tsai and Chan [52], Walker [53], Whittle [54],
where can also be found additional references.

In the statistical analysis of stationary processes, however, the data are frequently
tapered before calculating the statistic of interest, and the statistical inference
procedure, instead of the original data XT , is based on the tapered data: Xh

T :=

{hT (t)X(t), t ∈ DT }}, where hT (t) := h(t/T ) with h(t), t ∈ R being a taper
function.

The use of data tapers in nonparametric time series was suggested by Tukey
[51]. The benefits of tapering the data have been widely reported in the literature
(see, e.g., Brillinger [6], Dahlhaus [10, 11], Dahlhaus and Künsch [13], Guyon [40],
and references therein). For example, data-tapers are introduced to reduce the so-
called ’leakage effects’, that is, to obtain better estimation of the spectrum of the
model in the case where it contains high peaks. Other application of data-tapers is
in situations in which some of the data values are missing. Also, the use of tapers
leads to bias reduction, which is especially important when dealing with spatial
data. In this case, the tapers can be used to fight the so-called ’edge effects’.

In this paper, we survey some recent results on parametric and nonparametric
statistical estimation about the spectrum of stationary models with tapered data,
as well as, a question concerning robustness of inferences, carried out on a linear
stationary process contaminated by a small trend. We also discuss some questions
concerning tapered Toeplitz matrices and operators, central limit theorems for
tapered Toeplitz type quadratic functionals, and tapered Fejér-type kernels and
singular integrals. These are the main tools for obtaining the corresponding results,
and also are of interest in themselves. The processes considered will be discrete-time
and continuous-time Gaussian, linear or Lévy-driven linear processes with memory.

The rest of the paper is structured as follows. In Section 2 we specify the model of
interest - a stationary process, recall some key notions and results from the theory
of stationary processes, and introduce the data tapers and tapered periodogram.
In Section 3 we discuss the nonparametric estimation problem. We analyze the
asymptotic properties, involving asymptotic unbiasedness, bias rate convergence,
consistency, a central limit theorem and asymptotic normality of the empirical
spectral functionals. In Section 4 we discuss the parametric estimation problem. We
present sufficient conditions for consistency and asymptotic normality of minimum
contrast estimator based on the Whittle contrast functional for stationary linear
models with tapered data. A question concerning robustness of inferences, carried
out on a linear stationary process contaminated by a small trend is discussed in
Section 5. In Section 6 we briefly discuss the methods and tools, used to prove the
results stated in Sections 3–5.
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2. Preliminaries

In this section we specify the model of interest - a stationary process, recall some
key notions and results from the theory of stationary processes, and introduce the
data tapers and tapered periodogram.

2.1. The model. Second-order (wide-sense) stationary process. Let {X(u), u ∈ U}
be a centered real-valued second-order (wide-sense) stationary process defined on
a probability space (Ω,F , P ) with covariance function r(t), that is, E[X(u)] = 0,
r(u) = E[X(t + u)X(t)], u, t ∈ U, where E[·] stands for the expectation operator
with respect to measure P . We consider simultaneously the c.t. case, where U =

R := (−∞,∞), and the d.t. case, where U = Z := {0,±1,±2, . . .}. We assume
that X(u) is a non-degenerate process, that is, Var[X(u)] = E|X(u)|2 = r(0) > 0.
(Without loss of generality, we assume that r(0) = 1). In the c.t. case the process
X(u) is also assumed mean-square continuous, that is, E[X(t) − X(s)]2 → 0 as
t→ s.

By the Herglotz theorem in the d.t. case, and the Bochner-Khintchine theorem
in the c.t. case (see, e.g., Cramér and Leadbetter [9]), there is a finite measure µ
on (Λ,B(Λ)), where Λ = R in the c.t. case, and Λ = [−π.π] in the d.t. case, and
B(Λ) is the Borel σ-algebra on Λ, such that for any u ∈ U the covariance function
r(u) admits the following spectral representation:

(2.1) r(u) =

∫
Λ

exp{iλu}dµ(λ), u ∈ U.

The measure µ in (2.1) is called the spectral measure of the process X(u). The
function F (λ) := µ[−π, λ] in the d.t. case and F (λ) := µ[−∞, λ] in the c.t. case,
is called the spectral function of the process X(t). If F (λ) is absolutely continuous
(with respect to Lebesgue measure), then the function f(λ) := dF (λ)/dλ is called
the spectral density of the process X(t). Notice that if the spectral density f(λ)

exists, then f(λ) ≥ 0, f(λ) ∈ L1(Λ), and (2.1) becomes

(2.2) r(u) =

∫
Λ

exp{iλu}f(λ)dλ, u ∈ U.

Thus, the covariance function r(u) and the spectral function F (λ) (resp. the spectral
density f(λ)) are equivalent specifications of the second order properties for a
stationary process X(u).
Linear processes. Existence of spectral density functions.We consider here stationary
processes possessing spectral densities. For the following results we refer to Ibragimov
and Linnik [46].

(a) The spectral function F (λ) of a d.t. stationary process {X(u), u ∈ Z} is
absolutely continuous (with respect to the Lebesgue measure) if and only
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if it can be represented as an infinite moving average:

(2.3) X(u) =

∞∑
k=−∞

a(u− k)ξ(k),

∞∑
k=−∞

|a(k)|2 <∞,

where {ξ(k), k ∈ Z} ∼ WN(0,1) is a standard white-noise, that is, a
sequence of orthonormal random variables.

(b) The covariance function r(u) and the spectral density f(λ) of X(u) are
given by formulas:

(2.4) r(u) =

∞∑
k=−∞

a(u+ k)a(k), f(λ) =
1

2π

∣∣∣∣∣
∞∑

k=−∞

a(k)e−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

Similar results hold for c.t. processes. Indeed, the following holds.

(a) The spectral function F (λ) of a c.t. stationary process {X(u), u ∈ R} is
absolutely continuous (with respect to Lebesgue measure) if and only if it
can be represented as an infinite continuous moving average:

(2.5) X(u) =

∫
R
a(u− t)dξ(t), ,

∫
R
|a(t)|2dt <∞,

where {ξ(t), t ∈ R} is a process with orthogonal increments and E|d ξ(t)|2 =

dt.
(b) The covariance function r(u) and the spectral density f(λ) of X(u) are

given by formulas:

(2.6) r(u) =

∫
R
a(u+ x)a(x)dx, f(λ) =

1

2π

∣∣∣∣∫
R
e−iλta(t)dt

∣∣∣∣2 , λ ∈ R.

The function a(·) in representations (2.3) and (2.5) plays the role of a time-
invariant filter, and the linear processes defined by (2.3) and (2.5) can be viewed
as the output of a linear filter a(·) applied to the process ξ(t), called the innovation
or driving process of X(t).

Processes of the form (2.3) and (2.5) appear in many fields of science (economics,
finance, physics, etc.), and cover large classes of popular models in time series
modeling. For instance, the classical autoregressive moving average models and
their continuous counterparts the c.t. autoregressive moving average models are of
the form (2.3) and (2.5), respectively, and play a central role in the representations
of stationary time series (see, e.g., Brockwell and Davis [7]).

Lévy-driven linear process. We first recall that a Lévy process, {ξ(t), t ∈ R} is
a process with independent and stationary increments, continuous in probability,
with sample-paths which are right-continuous with left limits (càdlàg) and ξ(0) =

ξ(0−) = 0. The Wiener process {B(t), t ≥ 0} and the centered Poisson process
{N(t) − EN(t), t ≥ 0} are typical examples of centered Lévy processes. A Lévy-
driven linear process {X(t), t ∈ R} is a real-valued c.t. stationary process defined by
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(2.5), where ξ(t) is a Lévy process satisfying the conditions: Eξ(t) = 0, Eξ2(1) = 1

and Eξ4(1) < ∞. In the case where ξ(t) = B(t), X(t) is a Gaussian process (see
Bai et al. [4]):

Dependence (memory) structure of the model. In the frequency domain setting,
the statistical and spectral analysis of stationary processes requires two types of
conditions on the spectral density f(λ). The first type controls the singularities of
f(λ), and involves the dependence (or memory) structure of the process, while the
second type – controls the smoothness of f(λ). The memory structure of a stationary
process is essentially a measure of the dependence between all the variables in
the process, considering the effect of all correlations simultaneously. Traditionally
memory structure has been defined in the time domain in terms of decay rates of
the autocorrelations, or in the frequency domain in terms of rates of explosion of
low frequency spectra (see, e.g., Beran et al. [5], Giraitis et al. [37], Guégan [39]). It
is convenient to characterize the memory structure in terms of the spectral density
function. We will distinguish the following types of stationary models:

(a) short memory (or short-range dependent),
(b) long memory (or long-range dependent),
(c) intermediate memory (or anti-persistent).
Short-memory models. Much of statistical inference is concerned with short-

memory stationary models, where the spectral density f(λ) of the model is bounded
away from zero and infinity, that is, there are constants C1 and C2 such that
0 < C1 ≤ f(λ) ≤ C2 <∞.

A typical d.t. short memory model example is the stationary Autoregressive
Moving Average (ARMA)(p, q) process X(t) defined to be a stationary solution of
the difference equation:

ψp(B)X(t) = θq(B)ε(t), t ∈ Z,

where ψp and θq are polynomials of degrees p and q, respectively, B is the backshift
operator defined by BX(t) = X(t − 1), and {ε(t), t ∈ Z} is a d.t. white noise,
that is, a sequence of zero-mean, uncorrelated random variables with variance σ2.
The spectral density f(λ) of (ARMA)(p, q) process is a rational function (see, e.g.,
Brockwell and Davis [7], Section 3.1):

(2.7) f(λ) =
σ2

2π
· |θq(e

−iλ)|2

|ψp(e−iλ)|2
.

A typical c.t. short-memory model example is the stationary c.t. ARMA(p, q)

processes, denoted by CARMA(p, q). The spectral density function f(λ) of a
16
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CARMA(p, q) process X(t) is given by the following formula (see, e.g., Tsai and
Chan [52]):

(2.8) f(λ) =
σ2

2π
· |βq(iλ)|2

|αp(iλ)|2
,

where αp(z) and βq(z) are polynomials of degrees p and q, respectively.
Discrete-time long-memory and anti-persistent models. Data in many fields of

science (economics, finance, hydrology, etc.), however, is well modeled by stationary
processes whose spectral densities are unbounded or vanishing at some fixed points
(see, e.g., Beran et al. [5], Guégan [39], and references therein). A long-memory
model is defined to be a stationary process with unbounded spectral density, and an
anti-persistent model – a stationary process with vanishing (at some fixed points)
spectral density.

In the discrete context, a basic model that displays long-memory or is anti-
persistent is the Autoregressive Fractionally Integrated Moving Average (ARFIMA)
(p, d, q)) process X(t) defined to be a stationary solution of the difference equation:

ψp(B)(1−B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backshift operator, ε(t) is a d.t. white noise, and ψp and θq are
polynomials of degrees p and q, respectively. The spectral density fX(λ) of X(t) is
given by

(2.9) fX(λ) = |1− e−iλ|−2df(λ) = (2 sin(λ/2))−2df(λ), d < 1/2,

where f(λ) is the spectral density of an ARMA(p, q) process, given by (2.7). Observe
that for 0 < d < 1/2 the model X(t) specified by the spectral density (2.9) displays
long-memory, for d < 0 – intermediate-memory, and for d = 0 – short-memory. For
d ≥ 1/2 the function fX(λ) in (2.9) is not integrable, and thus it cannot represent
a spectral density of a stationary process.
Continuous-time long-memory and anti-persistent models. In the continuous context,
a basic process which has commonly been used to model long-range dependence is
the fractional Brownian motion (fBm) {BH(t), t ∈ R} with Hurst index H, 0 <

H < 1, defined to be a centered Gaussian H-self-similar process having stationary
increments. The fBm BH can be regarded as a Gaussian process having a ’spectral
density’:

(2.10) f(λ) = c|λ|−(2H+1), c > 0, 0 < H < 1, λ ∈ R.

The form (2.10) can be understood in a generalized sense (see, e.g., Yaglom [55]),
since the fBm BH is a nonstationary process.

A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion
(fRBm), introduced in Anh et al. [1], and defined as a c.t. Gaussian process X(t)
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with spectral density

(2.11) f(λ) = c |λ|−2α(1 + λ2)−β , λ ∈ R, 0 < c <∞, 0 < α < 1, β > 0.

The exponent α determines the long-range dependence, while the exponent β
indicates the second-order intermittency of the process (see, e.g., Anh et al. [2]
and Gao et al. [19]).

Notice that the processX(t), specified by the spectral density (2.11), is stationary
if 0 < α < 1/2 and is non-stationary with stationary increments if 1/2 ≤ α < 1.

Comparing (2.10) and (2.11), we observe that the spectral density of fBm is the
limiting case as β → 0 that of fRBm with Hurst index H = α− 1/2.

Another important c.t. long-memory model is the CARFIMA(p,H, q) process.
The spectral density f(λ) of a CARFIMA(p,H, q) process is given by formula (see,
e.g., Tsai and Chan [52]):

(2.12) f(λ) =
σ2

2π
Γ(2H + 1) sin(πH)|λ|1−2H |βq(iλ)|2

|αp(iλ)|2
,

where αp(z) and βq(z) are polynomials of degrees p and q, respectively. Notice that
for H = 1/2, the spectral density given by (2.12) becomes that of the short-memory
CARMA(p, q) process, given by (2.8).

2.2. Data tapers and tapered periodogram. Our inference procedures will be
based on the tapered data Xh

T :

(2.13) Xh
T :=

{
{hT (t)X(t), t = 1, . . . , T} in the d.t. case,
{hT (t)X(t), 0 ≤ t ≤ T} in the c.t. case,

where

(2.14) hT (t) := h(t/T )

with h(t), t ∈ R being a taper function.
Throughout the paper, we will assume that the taper function h(·) satisfies the

following assumption.

Assumption 2.1. The taper h : R → R is a continuous nonnegative function of
bounded variation and of bounded support [0, 1], such that Hk 6= 0, where

(2.15) Hk :=

∫ 1

0

hk(t)dt, k ∈ N := {1, 2, . . .}.

Note. The case h(t) = I[0,1](t), where I[0,1](·) denotes the indicator of the segment
[0, 1], will be referred to as the non-tapered case.

Remark 2.1. For the d.t. case, an example of a taper function h(t) satisfying
Assumption 2.1 is the Tukey-Hanning taper function h(t) = 0.5(1 − cos(πt)) for
t ∈ [0, 1]. For the c.t. case, a simple example of a taper function h(t) satisfying
Assumption 2.1 is the function h(t) = 1− t for t ∈ [0, 1].
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Denote by Hk,T (λ) the tapered Dirichlet type kernel, defined by

(2.16) Hk,T (λ) :=


∑T
t=1 h

k
T (t)e−iλt in the d.t. case,∫ T

0
hkT (t)e−iλtdt in the c.t. case.

Define the finite Fourier transform of the tapered data (2.13):

(2.17) dhT (λ) :=


∑T
t=1 hT (t)X(t)e−iλt in the d.t. case,∫ T

0
hT (t)X(t)e−iλtdt in the c.t. case.

and the tapered periodogram IhT (λ) of the process X(t):

IhT (λ) :=
1

CT
dhT (λ)dhT (−λ) =(2.18)

=


1
CT

∣∣∣∑T
t=1 hT (t)X(t)e−iλt

∣∣∣2 in the d.t. case,

1
CT

∣∣∣∫ T0 hT (t)X(t)e−iλtdt
∣∣∣2 in the c.t. case.

where

(2.19) CT := 2πH2,T (0) 6= 0.

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .

3. Nonparametric estimation problem

Suppose we observe a finite realization XT := {X(u), 0 ≤ u ≤ T (or u = 1, . . . , T

in the d.t. case)} of a centered stationary process X(u) with an unknown spectral
density function f(λ), λ ∈ Λ. We assume that f(λ) belongs to a given (infinite-
dimensional) class F ⊂ Lp := Lp(Λ) (p ≥ 1) of spectral densities possessing some
specified smoothness properties. The problem is to estimate the value J(f) of a given
functional J(·) at an unknown ’point’ f ∈ F on the basis of an observation XT ,

and investigate the asymptotic (as T →∞) properties of the suggested estimators,
depending on the dependence structure of the model X(u) and the smoothness
structure of the ’parametric’ set F ⊂ Lp(Λ) (p ≥ 1).

Linear and non-linear functionals of the periodogram play a key role in the
parametric estimation of the spectrum of stationary processes, when using the
minimum contrast estimation method with various contrast functionals (see, e.g.,
Dzhaparidze [15], Guyon [40], Leonenko and Sakhno [47], Taniguchi and Kakizawa
[50], and references therein). In this section, we review the asymptotic properties,
involving asymptotic unbiasedness, bias rate convergence, consistency, a central
limit theorem and asymptotic normality of the empirical spectral functionals based
on the tapered data. Some of these properties were discussed and proved in Ginovyan
and Sahakyan [34, 35]. For non-tapered case, these properties were established in
the papers Ginovyan [22, 25]. The results stated in this section are used to prove
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consistency and asymptotic normality of the minimum contrast estimator based on
the Whittle contrast functional for stationary linear models with tapered data (see
Section 4). Here we follow the papers Ginovyan [23, 25, 26], and Ginovyan and
Sahakyan [34, 35].

3.1. Estimation of linear spectral functionals. We are interested in the nonpa-
rametric estimation problem, based on the tapered data (2.13), of the following
linear spectral functional:

(3.1) J = J(f, g) :=

∫
Λ

f(λ)g(λ)dλ,

where g(λ) ∈ Lq(Λ), 1/p+ 1/q = 1.
As an estimator JhT for functional J(f), given by (3.1), based on the tapered

data (2.13), we consider the averaged tapered periodogram (or a simple ’plug-in’
statistic), defined by

JhT = J(IhT ) :=

∫
Λ

IhT (λ)g(λ)dλ,(3.2)

where IhT (λ) is the tapered periodogram of the process X(t) given by (2.18). Denote

(3.3) QhT :=


∑T
t=1

∑T
s=1 ĝ(t− s)hT (t)hT (s)X(t)X(s) in the d.t. case,∫ T

0

∫ T
0
ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds in the c.t. case,

where ĝ(t) is the Fourier transform of function g(λ):

(3.4) ĝ(t) :=

∫
Λ

eiλtg(λ)dλ, t ∈ Λ.

In view of (2.18) and (3.2) – (3.4) we have

JhT = C−1
T QhT ,(3.5)

where CT is as in (2.19). We will refer to g(λ) and to its Fourier transform ĝ(t) as
a generating function and generating kernel for the functional JhT , respectively.

Thus, to study the asymptotic properties of the estimator JhT , we have to study
the asymptotic distribution (as T → ∞) of the tapered Toeplitz type quadratic
functional QhT given by (3.3) (for details see Section 6.2).

3.2. Asymptotic unbiasedness. We begin with the following assumption.

Assumption 3.1. The function

Ψ(u) =

∫
Λ

f(v)g(u+ v) dv(3.6)

belongs to L1(Λ) ∩ L2(Λ) and is continuous at u = 0.
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Theorem 3.1. Let the functionals J := J(f, g) and JhT := J(IhT , g) be defined
by (3.1) and (3.2), respectively. Then under Assumptions 2.1 and 3.1 the statistic
JhT is an asymptotically unbiased estimator for J(f), that is, the following relation
holds:

lim
T→∞

[E(JhT )− J ] = 0.(3.7)

Remark 3.1. Using Hölder inequality, it can easily be shown that if f ∈ L1(Λ) ∩
Lp1(Λ) and g ∈ L1(Λ) ∩ Lp2(Λ) with 1 ≤ p1, p2 ≤ ∞, 1/p1 + 1/p2 ≤ 1, then the
relation (3.7) is satisfied.

Under additional smoothness conditions on functions f(λ) and g(λ) we can
estimate the rate of convergence in (3.7). To state the corresponding result, we
first introduce some notation and assumptions.

Given numbers p ≥ 1, 0 < α < 1, r ∈ N0 := N ∪ {0}, where N is the set of
natural numbers, we set β = α+ r and denote by Hp(β) the Lp-Hölder class, that
is, the class of those functions ψ(λ) ∈ Lp(Λ), which have r-th derivatives in Lp(Λ)

and with some positive constant C satisfy

||ψ(r)(·+ h)− ψ(r)(·)||p ≤ C|h|α.

Assumption 3.2. We say that a pair of integrable functions (f(λ), g(λ)), λ ∈ Λ,
satisfies condition (H), and write (f, g) ∈ (H), if f ∈ Hp(β1) for β1 > 0, p > 1 and
g ∈ Hq(β2) for β2 > 0, q > 1 with 1/p+ 1/q = 1, and one of the conditions a) – d)
is satisfied:
a) β1 > 1/p, β2 > 1/q,
b) β1 ≤ 1/p, β2 ≤ 1/q and β1 + β2 > 1/2,
c) β1 > 1/p, 1/q − 1/2 < β2 ≤ 1/q,
d) β2 > 1/q, 1/p− 1/2 < β1 ≤ 1/p.

Remark 3.2. In Ginovian [22] it was proved that if (f, g) ∈ (H), then there exist
numbers p1 (p1 > p) and q1 (q1 > q), such that Hp(β1) ⊂ Lp1 , Hq(β2) ⊂ Lq1 and
1/p1 + 1/q1 ≤ 1/2.

Assumption 3.3. The spectral density f and the generating function g are such
that f, g ∈ L1(Λ) ∩ L2(Λ) and g is of bounded variation.

The following theorem controls the bias E(JhT )−J and provides sufficient conditions
assuring the proper rate of convergence of bias to zero, necessary for asymptotic
normality of the estimator JhT . Specifically, we have the following result.

Theorem 3.2. Let the functionals J := J(f, g) and JhT := J(IhT , g) be defined by
(3.1) and (3.2), respectively. Then under Assumptions 2.1 and 3.2 (or 3.3), the
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following asymptotic relation holds:

T 1/2
[
E(JhT )− J

]
→ 0 as T →∞.(3.8)

Remark 3.3. We call an estimator JhT of J asymptotically unbiased of the order
of T β , β > 0 if limT→∞ T β [E(JhT ) − J ] = 0. Thus, Theorem 3.2 states that the
statistic JhT is an asymptotically unbiased estimator for J of the order of T 1/2.

3.3. Consistency. Recall that an estimator JhT of J is said to be (a) consistent if
JhT → J in probability as T →∞, (b) mean square consistent if E(JhT − J)2 → 0 as
T →∞, (c)

√
T -consistent in the mean square sense if E

(
[
√
T (JhT − J)]2

)
= O(1)

as T →∞,
To state the corresponding results we first introduce the following assumption.

Assumption 3.4. The filter a(·) and the generating kernel ĝ(·) are such that

a(·) ∈ Lp(Λ) ∩ L2(Λ), ĝ(·) ∈ Lq(Λ) with 1 ≤ p, q ≤ 2, 2/p+ 1/q ≥ 5/2.

We begin with a result on the asymptotic behavior of the variance Var(JhT ) =

E(JhT − E(JhT ))2. The proof of the next theorem can be found in Ginovyan and
Sahakyan [34].

Theorem 3.3. Let the functionals J := J(f, g) and JhT := J(IhT , g) be defined by
(3.1) and (3.2), respectively. Then under Assumptions 2.1 and 3.4 the following
asymptotic relation holds:

lim
T→∞

TVar(JhT ) = σ2
h(J),(3.9)

where

(3.10) σ2
h(J) := 4πe(h)

∫
Λ

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
Λ

f(λ)g(λ)dλ

]2

.

Here κ4 is the fourth cumulant of ξ(1), and

(3.11) e(h) :=
H4

H2
2

=

∫ 1

0

h4(t)dt

(∫ 1

0

h2(t)dt

)−2

.

From Theorems 3.1–3.3 we infer the following result.

Theorem 3.4. The following assertions hold.

(a) Under Assumptions 2.1, 3.1 and 3.4 the statistic JhT is a mean square
consistent estimator for J .

(b) Under Assumptions 2.1, 3.2 (or 3.3) and 3.4 the statistic JhT is a
√
T -

consistent in the mean square sense estimator for J .
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3.4. Asymptotic normality. The next result contains sufficient conditions for
functional JhT to obey the central limit theorem (CLT), and was proved in Ginovyan
and Sahakyan [34].

Theorem 3.5 (CLT). Let J := J(f, g) and JhT := J(IhT , g) be defined by (3.1) and
(3.2), respectively. Then under Assumptions 2.1 and 3.4 the functional JhT obeys
the central limit theorem. More precisely, we have

T 1/2
[
JhT − E(JhT )

] d→ η as T →∞,(3.12)

where the symbol d→ stands for convergence in distribution, and η is a normally
distributed random variable with mean zero and variance σ2

h(J) given by (3.10) and
(3.11).

Taking into account the equality

T 1/2
[
JhT − J

]
= T 1/2

[
E(JhT )− J

]
+ T 1/2

[
JhT − E(JhT )

]
,(3.13)

as an immediate consequence of Theorems 3.2 and 3.5, we obtain the next result
that contains sufficient conditions for a simple ’plug-in’ statistic J(IhT ) to be an
asymptotically normal estimator for a linear spectral functional J .

Theorem 3.6. Let the functionals J := J(f, g) and JhT := J(IhT , g) be defined by
(3.1) and (3.2), respectively. Then under Assumptions 2.1, 3.2 (or 3.3) and 3.4 the
statistic JhT is an asymptotically normal estimator for functional J . More precisely,
we have

T 1/2
[
JhT − J

] d→ η as T →∞,(3.14)

where η is as in Theorem 3.5, that is, η is a normally distributed random variable
with mean zero and variance σ2

h(J) given by (3.10) and (3.11).

Remark 3.4. Notice that if the underlying process X(u) is Gaussian, then in
formula (3.10) we have only the first term. Using the results from Ginovyan [22]
and Ginovyan and Sahakyan [29, 30], it can be shown that in this case Theorem
3.6 is true under Assumptions 2.1 and 3.4.

4. Parametric estimation problem

We assume here that the spectral density f(λ) belongs to a given parametric
family of spectral densities F := {f(λ, θ) : θ ∈ Θ}, where θ := (θ1, . . . , θp) is an
unknown parameter and Θ is a subset in the Euclidean space Rp. The problem of
interest is to estimate the unknown parameter θ on the basis of the tapered data
(2.13), and investigate the asymptotic (as T → ∞) properties of the suggested
estimators, depending on the dependence (memory) structure of the model X(t)

and the smoothness of its spectral density f .
23



M. S. GINOVYAN, A. A. SAHAKYAN

There are different methods of estimation: maximum likelihood, Whittle, minimum
contrast, etc. Here we focus on the Whittle method.

4.1. The Whittle estimation procedure. The Whittle estimation procedure,
originally devised for d.t. short memory stationary processes, is based on the smoothed
periodogram analysis on a frequency domain, involving approximation of the likelihood
function and asymptotic properties of empirical spectral functionals (see Whittle
[54]). The Whittle estimation method since its discovery has played a major role in
the asymptotic theory of parametric estimation in the frequency domain, and was
the focus of interest of many statisticians. Their aim was to weaken the conditions
needed to guarantee the validity of the Whittle approximation for d.t. short memory
models, to find analogues for long and intermediate memory models, to find conditions
under which theWhittle estimator is asymptotically equivalent to the exact maximum
likelihood estimator, and to extend the procedure to the c.t. models and random
fields.

For the d.t. case, it was shown that for Gaussian and linear stationary models the
Whittle approach leads to consistent and asymptotically normal estimators under
short, intermediate and long memory assumptions. Moreover, it was shown that
in the Gaussian case the Whittle estimator is also asymptotically efficient in the
sense of Fisher (see, e. g., Dahlhaus [12], Dzhaparidze [15], Fox and Taqqu [17],
Giraitis and Surgailis [38], Guyon [40], Taniguchi and Kakizawa [50], Walker [53],
and references therein).

For c.t. models, the Whittle estimation procedure has been considered, for example,
in Avram et al. [3], Casas and Gao [8], Dzhaparidze and Yaglom [16], Gao [18], Gao
et al. [19], Leonenko and Sakhno [47], Tsai and Chan [52], where can also be found
additional references. In this case, it was proved that the Whittle estimator is
consistent and asymptotically normal.

The Whittle estimation procedure based on the d.t. tapered data has been
studied in Dahlhaus [10], Dahlhaus and Künsch [13], Guyon [40], Ludeña and
Lavielle [48]. In the case where the underlying model is a Lévy-driven c.t. linear
process with possibly unbounded or vanishing spectral density function, consistency
and asymptotic normality of the Whittle estimator was established in Ginovyan [27].

To explain the idea behind theWhittle estimation procedure, assume for simplicity
that the underlying processX(t) is a d.t. Gaussian process, and we want to estimate
the parameter θ based on the sample XT := {X(t), t = 1, . . . , T}. A natural
approach is to find the maximum likelihood estimator (MLE) θ̂T,MLE of θ, that
is, to maximize the likelihood function, or to minimize the −1/T×log-likelihood
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function LT (θ), which in this case takes the form:

LT (θ) :=
1

2
ln 2π +

1

2T
ln detBT (fθ) +

1

2T
X ′T [BT (fθ)]

−1XT ,

where BT (fθ) is the Toeplitz matrix generated by fθ. Unfortunately, the above
function is difficult to handle, and no explicit expression for the estimator θ̂T,MLE

is known (even in the case of simple models). An approach, suggested by P. Whittle,
called the Whittle estimation procedure, is to approximate the term ln detBT (fθ)

by T
2

∫ π
−π ln fθ(λ)dλ and the inverse matrix [BT (fθ)]

−1 by the Toeplitz matrix
BT (1/fθ). This leads to the following approximation of the log-likelihood function
LT (θ), introduced by Whittle [54], and called Whittle functional:

LT,W (θ) =
1

4π

∫ π

−π

[
ln fθ(λ) +

IT (λ)

fθ(λ)

]
dλ,

where IT (λ) is the ordinary periodogram of the process X(t).
Now minimizing the Whittle functional LT,W (θ) with respect to θ, we get the

Whittle estimator θ̂T for θ. It can be shown that if

T 1/2(LT (θ)− LT,W (θ)→ 0 as n→∞ in probability,

then the MLE θ̂T,MLE and the Whittle estimator θ̂T are asymptotically equivalent
in the sense that θ̂T also is consistent, asymptotically normal and asymptotically
Fisher-efficient (see, e.g., Dzhaparidze and Yaglom [16]).

In the continuous context, the Whittle procedure of estimation of a spectral
parameter θ based on the sample XT := {X(t), 0 ≤ t ≤ T} is to choose the
estimator θ̂T to minimize the weighted Whittle functional:

(4.1) UT (θ) :=
1

4π

∫
R

[
ln f(λ, θ) +

IT (λ)

f(λ, θ)

]
· w(λ) dλ,

where IT (λ) is the continuous periodogram of X(t), and w(λ) is a weight function
(w(−λ) = w(λ), w(λ) ≥ 0, w(λ) ∈ L1(R)) for which the integral in (4.1) is well
defined. An example of common used weight function is w(λ) = 1/(1 + λ2).

The Whittle procedure of estimation of a spectral parameter θ based on the
tapered sample (2.13) is to choose the estimator θ̂T,h to minimize the weighted
tapered Whittle functional:

(4.2) UhT (θ) :=
1

4π

∫
Λ

[
log f(λ, θ) +

IhT (λ)

f(λ, θ)

]
· w(λ) dλ,

where IhT (λ) is the tapered periodogram of X(t), given by (2.18), and w(λ) is a
weight function for which the integral in (4.2) is well defined. Thus, the Whittle
estimator θ̂T,h of θ based on the tapered sample (2.13) is defined by

(4.3) θ̂T,h := Arg min
θ∈Θ

UhT (θ).
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4.2. Asymptotic properties of theWhittle estimator. To state results involving
properties of theWhittle estimator, we first introduce the following set of assumptions.

Assumption 4.1. The true value θ0 of the parameter θ belongs to a compact set
Θ, which is contained in an open set S in the p-dimensional Euclidean space Rp,
and f(λ, θ1) 6= f(λ, θ2) whenever θ1 6= θ2 almost everywhere in Λ with respect to
the Lebesgue measure.

Assumption 4.2. The functions f(λ, θ), f−1(λ, θ) and ∂
∂θk

f−1(λ, θ), k = 1, . . . , p,
are continuous in (λ, θ).

Assumption 4.3. The functions f := f(λ, θ) and g := w(λ) ∂
∂θk

f−1(λ, θ) satisfy
Assumptions 3.3 or 3.4 for all k = 1, . . . , p and θ ∈ Θ.

Assumption 4.4. The functions a := a(λ, θ) and b := ĝ, where g is as in Assumption
4.3, satisfy Assumption 3.1.

Assumption 4.5. The functions ∂2

∂θk∂θj
f−1(λ, θ) and ∂3

∂θk∂θj∂θj
f−1(λ, θ), k, j, l =

1, . . . , p, are continuous in (λ, θ) for λ ∈ Λ, θ ∈ Nδ(θ0), where Nδ(θ0) := {θ :

|θ − θ0| < δ} is some neighborhood of θ0.

Assumption 4.6. The matrices

W (θ) := ‖wij(θ)‖, A(θ) := ‖aij(θ)‖, B(θ) := ‖bij(θ)‖, i, j = 1, . . . , p(4.4)

are positive definite, where

wij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w(λ)dλ,(4.5)

aij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w2(λ)dλ,(4.6)

bij(θ) =
κ4

16π2

∫
Λ

∂

∂θi
ln f(λ, θ)w(λ)dλ

∫
R

∂

∂θj
ln f(λ, θ)w(λ)dλ,(4.7)

and κ4 is the fourth cumulant of ξ(1).

The next theorem contains sufficient conditions for Whittle estimator to be
consistent (see Ginovyan [27]).

Theorem 4.1. Let θ̂T,h be the Whittle estimator defined by (4.3) and let θ0 be the
true value of parameter θ. Then, under Assumptions 4.1–4.4 and 2.1, the statistic
θ̂T,h is a consistent estimator for θ, that is, θ̂T,h → θ0 in probability as T →∞.

Having established the consistency of the Whittle estimator θ̂T,h, we can go on to
obtain the limiting distribution of T 1/2

(
θ̂T,h − θ0

)
in the usual way by applying the

Taylor’s formula, the mean value theorem, and Slutsky’s arguments. Specifically we
have the following result, showing that under the above assumptions, the Whittle
estimator θ̂T,h is asymptotically normal (see Ginovyan [27]).
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Theorem 4.2. Suppose that Assumptions 4.1–4.6 and 2.1 are satisfied. Then the
Whittle estimator θ̂T,h of an unknown spectral parameter θ based on the tapered
data (2.13) is asymptotically normal. More precisely, we have

T 1/2
(
θ̂T,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T →∞,(4.8)

where Np(·, ·) denotes the p-dimensional normal law, d→ stands for convergence in
distribution,

Γ(θ0) = W−1(θ0) (A(θ0) +B(θ0))W−1(θ0),(4.9)

where the matrices W , A and B are defined in (4.4)-(4.7), and the tapering factor
e(h) is given by formula (3.11).

Remark 4.1. In the d.t. case as a weight function we take w(λ) ≡ 1, and the
matrices A(θ0) andW (θ0) coincide (see (4.4) – (4.6)). So, in this case, formula (4.9)
becomes Γ(θ0) = W−1(θ0) (W (θ0) +B(θ0))W−1(θ0). If, in addition, the underlying
process is Gaussian (κ4 = 0, and hence B(θ0) = 0), and the taper h is chosen so
that the tapering factor e(h) is equal to one, then we have Γ(θ0) = W−1(θ0), that
is, the Whittle estimator θ̂T,h is Fisher-efficient.

5. Robustness to small trends of estimation

In time series analysis, much of statistical inferences about unknown spectral
parameters or spectral functionals are concerned with the stationary models, in
which case it is assumed that the models are centered, or have constant means. In
this section, we are concerned with the robustness of inferences, carried out on a
stationary models, possibly exhibiting long memory, contaminated by a small trend.
Specifically, let {X(t), t ∈ U} be a centered stationary process possessing a spectral
density fX(λ), λ ∈ Λ. Assuming that either fX is known with the exception of a
vector parameter θ ∈ Θ ⊂ Rp, or fX is completely unknown and belongs to a given
class F , we want to make inferences about θ or the value J(fX) of a given functional
J(·) at an unknown point fX ∈ F in the case where the actual observed data are
in the contaminated form:

(5.1) Y (t) = X(t) +M(t), t ∈ DT ,

where M(t) is a deterministic trend, and DT = [0, T ] in the c.t. case and DT =

{1, . . . , T} in the d.t. case.
The process X(t) is what we believe is being observed but in reality the data are

in the contaminated form Y (t). In this case standard inferences can be carried on
the basis of the stationary model X(t), and we are interested in question whether
the conclusions are robust against this kind of departure from the stationarity.
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In the non-tapered case, this problem for d.t. models was considered in Heyde
and Dai [42] (see also Taniguchi and Kakizawa [50], Theorems 6.4.1 and 6.4.2). For
c.t. models it was studied in Ginovyan and Sahakyan [33].

The results stated below show that if the trendM(t) is ’small’, then the asymptotic
properties of estimators of the parameter θ and the functional J(f), stated in
Sections 3 and 4 for a stationary model X(t), remain valid for the contaminated
model Y (t), that is, both the parametric and nonparametric estimating procedures
are robust against replacing the stationary model X(t) by the non-stationary Y (t).
To this end, similar to the non-tapered case, we first establish an asymptotic relation
between stationary and contaminated tapered periodograms. For simplicity, the
results that follow we prove in the c.t. case, the proofs in the d.t. case are similar.

5.1. A relation between stationary and contaminated tapered periodo-
grams. The next result shows that a small trend of the form |M(t)| ≤ C|t|−β ,
β > 1/4, does not effect the asymptotic properties of the empirical spectral linear
functionals of a tapered periodogram. Note that this result is of general nature, and
do not require from the model X(t) to be linear.

Theorem 5.1. Let {X(t), t ∈ U} be a stationary mean zero process, {M(t), t ∈ U}
be a deterministic trend, Y (t) = X(t) + M(t), and let IhTX(λ) and IhTY (λ) be the
tapered periodograms of X(t) and Y (t), respectively. Let g(λ), λ ∈ Λ be an even
integrable function. If the trend M(t) and the Fourier transform a(t) := ĝ(t) of
g(λ) are such that M(t) is locally integrable on R and

(5.2) |M(t)| ≤ C|t|−β , |a(t)| ≤ C|t|−γ , t ∈ Λ, 2β + γ > 3/2,

with some constants C > 0, γ > 0 and β > 1/4, then

T 1/2

∫
Λ

g(λ)
[
IhTY (λ)− IhTX(λ)

]
dλ

P→ 0 as T →∞,(5.3)

where P→ stands for convergence in probability, provided that one of the following
conditions holds:

(i) the process X(t) has short or intermediate memory, that is, the covariance
function r(t) := rX(t) of X(t) satisfies r ∈ L1(Λ), and β + γ > 1,

(ii) the process X(t) has long memory with covariance function r(t) satisfying

(5.4) |r(t)| ≤ C|t|−α, t ∈ Λ, α+ γ ≥ 3/2

with some constants C > 0, 0 < α ≤ 1, and α+ 2β > 1 if β < 1 < γ.
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Proof. In view of (2.18) and (5.1) we can write

IhT,X(λ)− IhT,Y (λ) =

=
1

CT

∣∣∣∣∣
∫ T

0

e−iλthT (t)X(t) dt

∣∣∣∣∣
2

−

∣∣∣∣∣
∫ T

0

e−iλthT (t)Y (t) dt

∣∣∣∣∣
2


=
1

CT

∣∣∣∣∣
∫ T

0

e−iλthT (t)[Y (t) +M(t)] dt

∣∣∣∣∣
2

−

∣∣∣∣∣
∫ T

0

e−iλthT (t)Y (t) dt

∣∣∣∣∣
2


=
1

CT

∫ T

0

∫ T

0

eiλ(t−s)hT (t)hT (s) [Y (t)M(s) + Y (s)M(t) +M(t)M(s)] dtds

and ∫ +∞

−∞
g(λ, θ)

[
IhT,X(λ)− IhT,Y (λ)

]
dλ

=
1

H2T

∫ T

0

∫ T

0

[Y (t)M(s) + Y (s)M(t) +M(t)M(s)]hT (t)hT (s)a(t− s) dtds

≤ C

T

∫ T

0

∫ T

0

|Y (t)M(s) + Y (s)M(t) +M(t)M(s)| |a(t− s)| dtds,(5.5)

since the function h is bounded on R by Assumption 2.1.
Thus, to complete the proof it is enough to observe that under the conditions of

the theorem we have (see Ginovyan and Sahakyan [33], relations (6.11) and (6.12)):

T−1/2

∫ T

0

∫ T

0

M(t)|M(s)a(t− s)| dtds→ 0 as T →∞

and

T−1/2

∫ T

0

∫ T

0

|Y (t)M(s)a(t− s)| dtds P→ 0 as T →∞. �

Remark 5.1. It is easy to check that the statement of Theorem 5.1 holds, in
particular, if the parameters α, β and γ satisfy the following conditions:

in the case (i): β > 1/2, γ ≥ 1/2,
in the case (ii): α ≥ 3/4, β > 3/8, γ ≥ 3/4.

Remark 5.2. In the non-tapered d.t. case, Theorem 5.1 (with additional conditions
γ = 1 in the case (i), and γ > 1, α < 1/2 in the case (ii)), was proved by Heyde
and Dai [42] (see also Taniguchi and Kakizawa [50], Theorems 6.4.1 and 6.4.2).

5.2. Robustness to small trends of nonparametric estimation. The next
result shows that a small trend of the form |M(t)| ≤ C|t|−β does not effect the
asymptotic properties of the estimator of a linear spectral functional J(f), that is,
the nonparametric estimation procedure is robust to the presence of a small trend
in the model.
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Theorem 5.2. Suppose that the assumptions of Theorems 3.6 and 5.1 are fulfilled.
Then the statistic J(IhTY ) is consistent and asymptotically normal estimator for
functional J(f) with asymptotic variance σ2

h(J) given by (3.10) and (3.11), that is,
the asymptotic relation (3.14) is satisfied with IhTX(λ) replaced by the contaminated
periodogram IhTY (λ):

T 1/2
[
J(IhTY )− J(f)

] d→ η as T →∞,(5.6)

where η is N(0, σ2
h(J)) with σ2

h(J) given by (3.10) and (3.11).

Proof of Theorem 5.2. In view of (3.1) and (3.2) we can write

T 1/2
[
J(IhTY )− J(f)

]
= T 1/2

[∫
R
IhTY (λ)g(λ)dλ−

∫
R
f(λ)g(λ)dλ

]
= T 1/2

[∫
R
IhTY (λ)g(λ)dλ−

∫
R
IhTX(λ)g(λ)dλ

]
+T 1/2

[∫
R
IhTX(λ)g(λ)dλ−

∫
R
f(λ)g(λ)dλ

]
= T 1/2

∫
R
g(λ)

[
IhTY (λ)− IhTX(λ)

]
dλ+ T 1/2

[
J(IhTX)− J(f)

]
.(5.7)

By Theorem 5.1, the first term on the right-hand side of (5.7) goes to zero in
probability as T → ∞, while by Theorem 3.6, the second term on the right-hand
side of (5.7) goes in distribution to η, and the result follows. �

5.3. Robustness to small trends of parametric estimation. The next result
shows that a small trend of the form |M(t)| ≤ C|t|−β , β > 1/4, does not effect the
asymptotic properties of the Whittle estimator of an unknown spectral parameter θ,
that is, the Whittle parametric estimation procedure based on the tapered sample
(2.13) is robust to the presence of a small trend in the model.

Theorem 5.3. Suppose that the assumptions of Theorem 5.1 with g = f−1(λ, θ) ·
w(λ) are satisfied. Then under the conditions of Theorems 4.2 the Whittle estimator
θ̂TY,h, constructed on the basis of the contaminated tapered periodogram IhT,Y (λ), is
consistent and asymptotically normal estimator for an unknown spectral parameter
θ, that is, the asymptotic relation (4.8) is satisfied with IhTX(λ) replaced by the
contaminated periodogram IhTY (λ):

T 1/2
(
θ̂TY,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T →∞,(5.8)

where the matrix Γ(θ0) is defined in (4.9).

Proof of Theorem 5.3. By Taylor’s formula for ∂
∂θU

h
TX

(
θ̂TX,h

)
, where UhTX(·) is

the tapered Whittle functional defined by (4.2) and θ̂TX,h is the Whittle estimator
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constructed on the basis of observation XT = {X(t), 0 ≤ t ≤ T}, for |θ̂∗T − θ0| <
|θ̂TX,h − θ0| and for sufficiently large T , we can write

T 1/2
[
θ̂TX,h − θ0

]
= −T 1/2

[
∂2

∂θ∂θ′
UhTX(θ∗T )

]−1 [
∂

∂θ
UhTX(θ0)

]
+ oP (1).(5.9)

Next, by Theorem 5.1, we have

UhTY (θT ) = UhTX(θT ) + oP (1).(5.10)

Again using Taylor’s formula for ∂
∂θU

h
TY

(
θ̂TY,h

)
, where now UhTY (·) and θ̂TY,h are

respectively the Whittle functional and the Whittle estimator, constructed on the
basis of the contaminated observation YT = {Y (t), 0 ≤ t ≤ T}, and taking into
account the relations (5.9) and (5.10), we can infer that

T 1/2
[
θ̂TY,h − θ0

]
= T 1/2

[
θ̂TX,h − θ0

]
+ oP (1),

showing that the estimator θ̂TY,h possesses the same asymptotic properties as θ̂TX,h.
Hence the result follows from Theorems 4.2. �

Remark 5.3. In the non-tapered case, Theorems 5.1 – 5.3 were proved in Ginovyan
and Sahakyan [33].

6. Methods and tools

In this section we briefly discuss the methods and tools, used to prove the results
stated in Sections 3–5.

6.1. Approximation of traces of products of Toeplitz matrices and operators.
The trace approximation problem for truncated Toeplitz operators and matrices has
been discussed in detail in the survey paper Ginovyan et al. [36] in the non-tapered
case. Here we present some important results in the tapered case, which were used
to prove the results stated in Sections 3–5.

Let ψ(λ) be an integrable real symmetric function defined on [−π, π], and let
h(t), t ∈ [0, 1] be a taper function. For T = 1, 2, . . ., the (T × T )-truncated tapered
Toeplitz matrix generated by ψ and h, denoted by BhT (ψ), is defined by the following
equation:

(6.1) BhT (ψ) := ‖ψ̂(t− s)hT (t)hT (s)‖t,s=1,2...,T ,

where ψ̂(t) (t ∈ Z) are the Fourier coefficients of ψ.
Given a real number T > 0 and an integrable real symmetric function ψ(λ)

defined on R, the T -truncated tapered Toeplitz operator (also called tapered Wiener-
Hopf operator) generated by ψ and a taper function h, denoted byWh

T (ψ) is defined
as follows:

(6.2) [Wh
T (ψ)u](t) =

∫ T

0

ψ̂(t− s)u(s)hT (s)ds, u(s) ∈ L2([0, T ];hT ),
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where ψ̂(·) is the Fourier transform of ψ(·), and L2([0, T ];hT ) denotes the weighted
L2-space with respect to the measure hT (t)dt.

Let h be a taper function satisfying Assumption 2.1, and let AhT (ψ) be either the
T×T tapered Toeplitz matrix BhT (ψ), or the T -truncated tapered Toeplitz operator
Wh
T (ψ) generated by a function ψ (see (6.1) and (6.2)).
Observe that, in view of (2.15), (2.19), (6.1) and (6.2), we have

(6.3)
1

T
tr
[
AhT (ψ)

]
=

1

T
· ψ̂(0) ·

∫ T

0

h2
T (t)dt = 2πH2

∫
Λ

ψ(λ)dλ.

What happens to the relation (6.3) when AhT (ψ) is replaced by a product of Toeplitz
matrices (or operators)? Observe that the product of Toeplitz matrices (resp. operators)
is not a Toeplitz matrix (resp. operator).

The idea is to approximate the trace of the product of Toeplitz matrices (resp.
operators) by the trace of a Toeplitz matrix (resp. operator) generated by the
product of the generating functions. More precisely, let {ψ1, ψ2, . . . , ψm} be a collection
of integrable real symmetric functions defined on Λ. Let AhT (ψi) be either the
T×T tapered Toeplitz matrix BhT (ψi), or the T -truncated tapered Toeplitz operator
Wh
T (ψi) generated by a function ψi and a taper function h. Define

SA,H,h(T ) :=
1

T
tr

[
m∏
i=1

AhT (ψi)

]
, MΛ,H,h := (2π)m−1Hm

∫
Λ

[
m∏
i=1

ψi(λ)

]
dλ,

where Hm is as in (2.15), and let

∆(T ) := ∆A,Λ,H,h(T ) = |SA,H,h(T )−MΛ,H,h|.(6.4)

Proposition 6.1. Let ∆(T ) be as in (6.4). Each of the following conditions is
sufficient for

(6.5) ∆(T ) = o(1) as T →∞.

(C1) ψi ∈ L1(Λ) ∩ Lpi(Λ), pi > 1, i = 1, 2, . . . ,m, with 1/p1 + · · ·+ 1/pm ≤ 1.
(C2) The function ϕ(u) defined by

(6.6) ϕ(u) : =

∫
Λ

ψ1(λ)ψ2(λ− u1)ψ3(λ− u2) · · ·ψm(λ− um−1) dλ,

where u = (u1, u2, . . . , um−1) ∈ Λm−1, belongs to Lm−2(Λm−1) and is
continuous at 0 = (0, 0, . . . , 0) ∈ Λm−1.

Remark 6.1. In the non-tapered case, Proposition 6.1 was proved in Ginovyan et
al. [36], while in the tapered case, it was proved in Ginovyan [28]. Proposition 6.1
was used to prove Theorems 3.5, 3.6, and 4.2. More results concerning the trace
approximation problem for truncated Toeplitz operators and matrices can be found
in Ginovyan and Sahakyan [31, 32], and in Ginovyan et al. [36].
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6.2. Central limit theorems for tapered quadratic functionals. In this sub-
section we state central limit theorems for tapered quadratic functional QhT given
by (3.3), which were used to prove the results stated in Sections 3–5.

Let AhT (f) be either the T×T tapered Toeplitz matrix BhT (f), or the T -truncated
tapered Toeplitz operator Wh

T (f) generated by the spectral density f and taper h,
and let AhT (g) denote either the T ×T tapered Toeplitz matrix, or the T -truncated
tapered Toeplitz operator generated by the functions g and h (for definitions see
formulas (6.1) and (6.2)). Similar to the non-tapered case, we have the following
results (cf. Ginovyan et al. [36], Ibragimov [43]).

1. The quadratic functional QhT in (3.3) has the same distribution as the sum∑∞
j=1 λj,T ξ

2
j , where {ξj , j ≥ 1} are independent N(0, 1) Gaussian random

variables and {λj,T , j ≥ 1} are the eigenvalues of the operator AhT (f)AhT (g).
2. The characteristic function ϕ(t) of QhT is given by formula: ϕ(t) =

∏∞
j=1 |1−

2itλj,T |−1/2.

3. The k–th order cumulant χk(QhT ) of QhT is given by formula:

χk(QhT ) = 2k−1(k − 1)!

∞∑
j=1

λkj,T = 2k−1(k − 1)! tr [AhT (f)AhT (g)]k.(6.7)

Thus, to describe the asymptotic distribution of the quadratic functional QhT , we
have to control the traces and eigenvalues of the products of truncated tapered
Toeplitz operators and matrices.

CLT for Gaussian models. We assume that the model process X(t) is Gaussian,
and with no loss of generality, that g ≥ 0. We will use the following notation. By
Q̃hT we denote the standard normalized quadratic functional:

(6.8) Q̃hT = T−1/2
(
QhT − E[QhT ]

)
.

Also, we set

(6.9) σ2
h := 16π3H4

∫
Λ

f2(λ)g2(λ) dλ,

where H4 is as in (2.15). The notation

(6.10) Q̃hT
d→ η ∼ N(0, σ2

h) as T →∞

will mean that the distribution of the random variable Q̃hT tends (as T → ∞) to
the centered normal distribution with variance σ2

h.
The following theorems were proved in Ginovyan and Sahakyan [35].

Theorem 6.1. Each of the following conditions is sufficient for the quadratic form
QhT to obey the CLT, that is, for Q̃hT

d→ η ∼ N(0, σ2
h) as T → ∞ with σ2

h is as in
(6.9).
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(T1) f · g ∈ L1(Λ) ∩ L2(Λ), the taper function h satisfies Assumption 2.1, and
for T →∞

(6.11) χ2(Q̃hT ) =
2

T
tr
[
AhT (f)AhT (g)

]2 −→ σ2
h.

(T2) The function

(6.12) ϕ(x1, x2, x3) =

∫
Λ

f(u)g(u− x1)f(u− x2)g(u− x3) du

belongs to L2(Λ3) and is continuous at (0, 0, 0), and the taper function h

satisfies Assumption 2.1.
(T3) f(λ) ∈ Lp(Λ) (p ≥ 1) and g(λ) ∈ Lq(Λ) (q ≥ 1) with 1/p+ 1/q ≤ 1/2, and

the taper function h satisfies Assumption 2.1.

To state the next theorem, we recall the class SV0(R) of slowly varying functions
at zero u(λ), λ ∈ R, satisfying the following conditions: for some a > 0, u(λ) is
bounded on [−a, a], limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(µ) for
0 < λ < µ < a.

Theorem 6.2. Assume that the functions f and g are integrable on R and bounded
outside any neighborhood of the origin, and satisfy for some a > 0

(6.13) f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ [−a, a],

for some α < 1, β < 1 with α+β ≤ 1/2, where L1(x) and L2(x) are slowly varying
functions at zero satisfying

Li ∈ SV0(R), λ−(α+β)Li(λ) ∈ L2[−a, a], i = 1, 2.(6.14)

Also, let the taper function h satisfy Assumption 2.1. Then Q̃hT
d→ η ∼ N(0, σ2

h) as
T →∞.

The condition α < 1, β < 1 in Theorem 6.2 ensure that the Fourier transforms
of f and g are well defined. For α > 0 the process X(t) may exhibit long-range
dependence. We also allow here α+β to assume the critical value 1/2. The assumptions
f · g ∈ L1(Λ), f, g ∈ L∞(Λ \ [−a, a]) and (6.14) imply that f · g ∈ L2(Λ), so that
the variance σ2

h in (6.9) is finite.
CLT for Lévy-driven stationary linear models.Now we assume that the underlying

model X(t) is a Lévy-driven stationary linear process defined by (2.5), where a(·) is
a filter from L2(R), and ξ(t) is a Lévy process satisfying the conditions: Eξ(t) = 0,
Eξ2(1) = 1 and Eξ4(1) <∞.

The central limit theorem that follows was proved in Ginovyan and Sahakyan
[34].
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Theorem 6.3. Assume that the filter a(·) and the generating kernel ĝ(·) are such
that

(6.15) a(·) ∈ Lp(R) ∩ L2(R), ĝ(·) ∈ Lq(R), 1 ≤ p, q ≤ 2, 2/p+ 1/q ≥ 5/2,

and the taper h satisfies Assumption 2.1. Then Q̃hT
d→ η ∼ N(0, σ2

L,h) as T → ∞,
where

(6.16) σ2
L,h = 16π3H4

∫
R
f2(λ)g2(λ)dλ+ κ44π2H4

[∫
R
f(λ)g(λ)dλ

]2

,

where H4 is as in (2.15).

Remark 6.2. Notice that if the underlying process X(t) is Gaussian, then in
formula (6.16) we have only the first term and so σ2

L,h = σ2
h (see (6.9)), because in

this case κ4 = 0. On the other hand, the condition (6.15) is more restrictive than
the conditions in Theorems 6.1 and 6.2. Thus, for Gaussian processes Theorems 6.1
and 6.2 improve Theorem 6.3. For non-tapered case Theorem 6.3 was proved in Bai
et al. [4].

6.3. Fejér-type kernels and singular integrals. We define Fejér-type tapered
kernels and singular integrals, and state some of their properties.

For a number k (k = 2, 3, . . .) and a taper function h satisfying Assumption 2.1
consider the following Fejér-type tapered kernel function:

(6.17) Fhk,T (u) :=
HT (u)

(2π)k−1Hk,T (0)
, u = (u1, . . . , uk−1) ∈ Rk−1,

where

(6.18) HT (u) := H1,T (u1) · · ·H1,T (uk−1)H1,T

− k−1∑
j=1

uj

,
and the function Hk,T (·) is defined by (2.16) with Hk,T (0) = T ·Hk 6= 0 (see (2.15)).

The next result shows that, similar to the classical Fejér kernel, the tapered kernel
Fhk,T (u) is an approximation identity (see Ginovyan and Sahakyan [34], Lemma 3.4).

Proposition 6.2. For any k = 2, 3, . . . and a taper function h satisfying Assumption
2.1 the kernel Fhk,T (u), u = (u1, . . . , uk−1) ∈ Rk−1, possesses the following properties:

a) supT>0

∫
Rk−1

∣∣∣Fhk,T (u)
∣∣∣ du = C1 <∞;

b)
∫
Rk−1 F

h
k,T (u) du = 1;

c) limT→∞
∫
Ecδ

∣∣∣Fhk,T (u)
∣∣∣ du = 0 for any δ > 0;

d) If k > 2 for any δ > 0 there exists a constantMδ > 0 such that
∥∥∥Fhk,T∥∥∥

Lpk (Ecδ)
≤

Mδ for T > 0, where pk = k−2
k−3 for k > 3, p3 =∞, Ecδ = Rk−1 \ Eδ, and

Eδ = {u = (u1, . . . , uk−1) ∈ Rk−1 : |ui| ≤ δ, i = 1, . . . , k − 1}.
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e) If the function Q ∈ L1(Rk−1)
⋂
Lk−2(Rk−1) and is continuous at v =

(v1, . . . , vk−1) (L0 is the space of measurable functions), then

(6.19) lim
T→∞

∫
Rk−1

Q(u + v)Fhk,T (u)du = Q(v).

Denote

(6.20) ∆h
2,T :=

∫
R2

f(λ)g(λ+ µ)Fh2,T (µ)dλdµ−
∫
R
f(λ)g(λ)dλ,

where Fh2,T (µ) is given by (6.17) and (6.18).
The next two propositions give information on the rate of convergence to zero

of ∆h
2,T as T →∞ (see Ginovyan and Sahakyan [34], Lemmas 4.1 and 4.2).

Proposition 6.3. Assume that Assumptions 2.1 and 3.3 are satisfied. Then the
following asymptotic relation holds:

(6.21) ∆h
2,T = o

(
T−1/2

)
as T →∞.

Proposition 6.4. Assume that Assumptions 2.1 and 3.2 are satisfied. Then the
following inequality holds:

(6.22) |∆h
2,T | ≤ Ch


T−(β1+β2), if β1 + β2 < 1

T−1 lnT, if β1 + β2 = 1

T−1, if β1 + β2 > 1,

T > 0,

where Ch is a constant depending on h.

Notice that for non-tapered case (h(t) = I[0,1](t)), Propositions 6.3 and 6.4 were
proved in Ginovyan and Sahakyan [30] (see also Ginovyan and Sahakyan [31, 32]).
In the d.t. tapered case, Proposition 6.3 under different conditions was proved in
Dahlhaus [10].
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