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Abstract. Value distribution, particularly the numbers of a-points, weren’t studied for
meromorphic functions in a given domain which are solutions of some complex differential
equations. In fact we have here a “virgin land". A new program of investigations of similar
solutions in a given domain was initiated quite recently. In this program some geometric
methods were offered to study some standard problems as well as some new type problems
related to Gamma-lines and Blaschke characteristic for a-points of the solutions of different
equations. In this paper we apply these methods to get bounds for length of Gamma-lines
and Blaschke characteristic for a-points for solutions of equations w′′ = gwµ considered in
a given domain.
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1. Introduction

There is a huge number of investigations in complex differential equations (CDE)

when the solutions are meromorphic in the complex plane or in the unit disk. The

main attention was paid to the value distribution type phenomena of the solutions,

particularly to the zeros (more generally to the a-points) of these solutions. Meantime

we have very few studies of meromorphic solutions in a given domain, particularly

zeros of similar solutions weren’t touched at all. In fact our present situation with

the solutions in a given domain is similar to that in the beginning of 20th century

when studies of the growth of solutions in the complex plane were started.

Recently a new program of investigations of CDE-s with solutions in a given

domain was initiated in [4], where different characteristics of solutions were studied

for different CDE-s. In this paper we consider two characteristics for the solutions

in a given domain of equations w′′ = gwµ, where µ is a positive integer number.

1The work is supported by the NSF of China (11701111), the NSF of Guangdong Province
(2016A030310257).
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2. On a-points of solutions of w′′ = gwµ

Denote D1 = {z : |z| < 1}. Let w(z) be a meromorphic function in D1.

Denote a-points of w by zi(a) ∈ D1. The Blaschke sum of zeros of w, i.e.
∑
i(1 −

|zi(0)|), was widely used in the study of meromorphic functions in D1, particularly

in CDE-s with solutions in the unit disk. For a given analytic function in D1,

Pommerenke considered in [10] (1982) the equation w′′ = gw (one dimensional

complex Schrödinger equation) with solutions w in D1 and proved for the zeros

zi(0) of w: assumption
∫ ∫

D1
|g(z)|1/2dσ <∞ implies

∑
i(1− |zi(0)|) <∞. A new

stage of studies of this equation related to interrelations of g and Blaschke sum for

D1 was started recently by Heittokangas [6] (2005); for further developments see

his survey in the book [8].

As we mentioned above our aim is to study CDE-s with solutions in domains D.

Assume that D is a simply connected domain with smooth boundary ∂D of finite

length l(D) and area S(D).

We study the following more general equation

(Sµ) w′′ = gwµ,

where µ is a positive integer number and g(z) is a regular function in D̄ = D∪∂D.

As a characteristic of a-points we consider the following Blaschke sum of a-

points for a given domain D (considered first in [2, Chapter 1]) which we define

as N (D, a,w) :=
∑
i Dist(zi(a), ∂D), where Dist(x, y) stands obviously for the

distance between x and y. Notice that in the case when D is the disk D1 we have

Dist(zi(0), ∂D) = 1 − |zi(0)|; respectively the Blaschke sum for D becomes usual

Blaschke sum for D1.

For a regular function w in D̄ we denoteM(w) := maxz∈∂D |w(z)| 2 andm(w′) :=

minz∈D̄ |w′(z)|.

Theorem 2.1. For an arbitrary regular in D̄ solution w(z) of equation (Sµ) and

any complex value a 6= 0 we have

(2.1) N (D, a,w) ≤ K11M
µ(w) +K12m(w′) +K13,

where K11, K12, K13 are independent of w.

Some comments. Notice that if we know the magnitude w′(z0) at any point

z0 ∈ D̄ we can substitute m(w′) in (2.1) by |w′(z0)|. The coefficients depend on the

2Here we may remember that in numerous studies concerning regular functions w in the
disks D(r) := {z : |z| < r} (instead of the domains D) the magnitude M(w) plays a role of
a characteristic. The same is true also for entire functions; in this case we deal usually with
lnM(w) := lnmaxz∈∂D(r) |w(z)|.

4
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equation, the value a and the domain D. They are determined in the simple terms:

K11 =
3π + 3µ

4|a|
M(g)l(D)S(D), K12 =

π + µ

2|a|
S(D),

and

K13 =
1

4

∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ +
π + 2

8
l(D).

Thus, K11, K12, K13 are finite when the last double integral is finite so that (2.1)

yields, in this case, simply determined bounds for N (D, a,w).

Finally, we notice that in the case when g(z) is a polynomial of degree n the

upper bounds of the double integral can be easily given by n and S(D).

3. Gamma-lines of solutions of w′′ = gwµ

Gamma-lines, motivation of their studies and the preceding results. Let

w(z) := u + iv := Rew + i Imw be a meromorphic function in D. Consider level

sets of u−A, −∞ < A < +∞, that is solutions u(x, y) = A (or Rew(z) = A). (By

the definition, level sets of real functions u(x, y) are solutions of u(x, y) = 0). In

turn level sets are particular cases of Gamma-lines of w which are those curves in

D whose w-images belong to a given curve. For instance, when Γ is the real axis,

Gamma-lines become level sets of function u(x, y), i.e. solutions of u(x, y) = 0,

One can notice a striking similarity between the a-points (which are the solutions

w(z) = a) and the level sets (which are solutions of u(x, y) = A). On the other hand,

level sets of u − A admit a lot of interpretations (streaming line, potential line,

isobar, isoterm) in different applied fields of engineering, physics, environmental

and other problems. Due to the above arguments (similarity with a-points and

applicability), it is pertinent to study largely level sets for different classes of

meromorphic functions particularly for the solutions w of different classes of complex

differential equations.

We denote the length of Gamma-lines of w lying in D by L(D,Γ, w). These

lengths were widely studied in [2] for large classes of smooth Jordan curves Γ

(bounded or unbounded) in the complex plane. The only restriction for Γ is that

ν(Γ) = Varz∈ΓαΓ(z) < ∞, where Var means variation, αΓ(z) is the angle between

the tangent to Γ at z ∈ Γ and the real axis.

As to Gamma-lines for solutions of equation, they were considered first recently

in [1] for solutions in D of equation w′′ = gw, where estimates of L(D,Γ, w) were

given in terms of Ahlfors-Shimizu classical characteristic.
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In this section, we give upper bounds of L(D,Γ, w) for solution w of (Sµ). The

bounds will be given in terms of M(w), which in application mean often some

important physical concepts.

Theorem 3.1. Let w(z) be a regular function in D̄ which is a solution of equation

(Sµ) and Γ a smooth Jordan curve with ν(Γ) < ∞ which does not pass through

zero. Then

(3.1) L(D,Γ, w) ≤ K21M
µ(w) +K22m(w′) +K23,

where K21, K22, K23 are independent of w.

The coefficients depend on the equation, the curve Γ and the domain D. They

are determined in the simple terms:

K21 = K(Γ)
3π + 3µ

|aΓ|
M(g)l(D)S(D), K22 = K(Γ)

2π + 2µ

|aΓ|
S(D),

where K(Γ) = 3(ν(Γ) + 1), aΓ is the closest to the zero point belonging to Γ 3 and

K23 = K(Γ)

∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ +K(Γ)
π + 2

2
l(D).

Theorem 3.2. Assuming in Theorem 3.1 that Γ is a straight line which does not

pass through zero, we have

(3.2) L(D,Γ, w) ≤ K31M
µ(w) +K32m(w′) +K33,

where K31, K32, K33 are independent of w.

Assuming that a is the closet to zero point on Γ we have

K31 =
3π + 3µ

2|a|
M(g)l(D)S(D), K32 =

π + µ

|a|
S(D),

and

K33 =
1

2

∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ +
π + 2

4
l(D).

4. Proofs

Proof of Theorem 3.1. We need the following “basic identity for Gamma-lines”

(see [2, item 1.1.3, identity (1.1.6)]). We state it as

Lemma 4.1. For any regular function w in D we have
∞∫

0

L(D,Γ(R), w)dR =

∫∫
D

|w′| dσ,

where Γ(R) is the circumference {w : |w| = R}.

3If we have more than one similar point we take arbitrary of them.
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For a given a ∈ C, a 6= 0, we denote D(|a|/2, 3|a|/4) := {z : |a|/2 < |w(z)| <
3|a|/4}. This set consists of some connected components which are simply connected

or multiply connected components. Dividing multiply connected components into

some simply connected ones we can consider D(|a|/2, 3|a|/4) as a union of simply

connected domains Dλ(|a|/2, 3|a|/4), where λ is a counting index of these domains.

Applying Lemma 4.1 in each Dλ(|a|/2, 3|a|/4) and then summing up for all indexes

λ we obtain ∫ 3|a|/4

|a|/2
L(D,Γ(R), w)dR =

∫∫
D(|a|/2,3|a|/4)

|w′| dσ.

Due to the mean value theorem we conclude that there is R∗ ∈ (|a|/2, 3|a|/4) such

that

(4.1) L(D,Γ(R∗), w) =
4

|a|

∫∫
D(|a|/2,3|a|/4)

|w′| dσ.

Denote D(|w| > c) = {z : |w(z)| > c > 0}. The set D(|w| > c) may consists

of one or more domains Dη(|w| > c); clearly they can be as simply connected as

well as multiply connected. By ∂Dη(|w| > c) we denote the union of all boundary

components of Dη(|w| > c). Notice that the boundary ∂Dη(|w| > R∗) should have a

(non empty) common part ∂Dη(|w| > R∗)∩∂D with ∂D. (Indeed, assume contrary,

that ∂Dη(|w| > R∗) lies fully inside D. Then w should have a pole inside D which

contradicts our assumption that w is regular in D̄). Observing that the different

common parts (taken for different η) do not overlap we obtain

(4.2)
∑
η

l (∂Dη(|w| > R∗)) ≤ L(D,Γ(R∗), w) + l(∂D).

We need also the following “principle of logarithmic derivatives”, which was established

recently [3] by making use of Gamma-lines technic.

Lemma 4.2. Let d be a bounded domain with piecewise smooth boundary (d can

be also multiply connected); we assume that the intersection of d with any straight

line consists of finite number of intervals. Then for any meromorphic function f in

the closure of d and any integer k ≥ 1 we have

(4.3)
∫∫
d

∣∣∣∣f ′(z)f(z)

∣∣∣∣ dσ ≤ ∫∫
d

∣∣∣∣f (k+1)(z)

f (k)(z)

∣∣∣∣ dσ +
kπ

2
l(∂d).

Comment 1. In [3] we assumed that the intersection of d with any straight line

consists of finite number of intervals. This restriction on “intersection” was putted

just for simplicity of the proof. To avoid this it is enough to consider a domain d∗

(“very close” to d) which satisfies this restriction. Then we can apply (4.3) to d∗

and make limit transfer to d. We will come to the above wording of Lemma 4.1.
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Assume now that f is our regular function w in D̄ and d is one of the domains

Dη(|w| > R∗). Notice that the part of the boundary ∂Dη(|w| > R∗) lying in D

consists of piecewise analytic curves with a finite number of possible turning points

where w′ = 0. This implies that the boundary of each ∂Dη(|w| > R∗) is piecewise

smooth so that we can apply (4.3). Applying it for the derivative w′ in a given

domain Dη(|w| > R∗) with k ≥ 2 we have

(4.4)∫∫
Dη(|w|>R∗)

∣∣∣∣w′′(z)w′(z)

∣∣∣∣ dσ ≤ ∫∫
Dη(|w|>R∗)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ +
π

2
(k − 1)l (∂Dη(|w| > R∗)) .

Further, we need the following “tangent variation principle” (see [2, item 1.2.2

inequalities 1.2.8 and 1.2.9]).

Lemma 4.3. For any meromorphic function f(z) in D̄ and any smooth Jordan

curve Γ (bounded or unbounded) with ν(Γ) <∞ we have

(4.5) L(D,Γ, f) ≤ K(Γ)


∫∫
D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ dσ + l(∂D)

 ,

where K(Γ) = 3(ν(Γ) + 1).

Comment 2. In particular case when Γ is a straight line, the above formula can

be improved. Due to Theorem 1 in [5] we have in this case

(4.6) L(D,Γ, f) ≤ 1

2

∫∫
D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ dσ +
1

2
l(∂D).

Applying (4.4) to the regular function w in any of the domains Dη(|w| > R∗) and

combining with (4.4) we obtain: for any smooth Jordan curve Γ with ν(Γ) <∞,

L(Dη(|w| > R∗),Γ, w) ≤

K(Γ)


∫∫

Dη(|w|>R∗)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ +
π

2
(k − 1) l (∂Dη(|w| > R∗)) + l(D)

 .

Summing up this inequality by η we get the following formula for D(|w| > R∗):

L(D(|w| > R∗),Γ, w) ≤

K(Γ)


∫∫

D(|w|>R∗)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ +
π

2
(k − 1) l (∂D(|w| > R∗)) + l(D)

 ,

where

l (∂D(|w| > R∗)) =
∑
η

l (∂Dη(|w| > R∗)) .
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Applying (4.2) to the last inequality we obtain

(4.7) L(D(|w| > R∗),Γ, w) ≤ K(Γ)×
∫∫

D(|w|>R∗)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ +
π(k − 1)

2
L(D,Γ(R∗), w) +

(
π (k − 1)

2
+ 1

)
l(D)

 .

Comment 3. For a straight line Γ we can apply (4.6) instead of (4.5). Respectively

instead of (4.7) we get

L(D(|w| > R∗),Γ, w) ≤ 1

2

∫∫
D(|w|>R∗)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ+

(4.8)
π

4
(k − 1)L(D,Γ(R∗), w) +

1

2

(
π (k − 1)

2
+ 1

)
l(D).

Now we consider a curve Γ in Theorem 3.1 which does not pass through zero.

Assume aΓ is the point on Γ which is the closest to the point 0; if we have more

than one similar points we take arbitrary one of them. With this value aΓ we define

as above corresponding value R∗Γ ∈ (|aΓ|/2, 3|aΓ|/4) and notice that the curve Γ

(which we consider in w-plane) lies fully in the set D(|w| > R∗Γ). Respectively

Gamma-lines of this Γ lie fully in the set D (|w| > R∗Γ) so that we have L(D(|w| >
R∗Γ),Γ, w) = L(D,Γ, w) and (4.7) yields

(4.9) L(D,Γ, w) ≤ K(Γ)×
∫∫

D(|w|>R∗
Γ)

∣∣∣∣w(k+1)(z)

w(k)(z)

∣∣∣∣ dσ +
π

2
(k − 1)L(D,Γ(R∗Γ), w) +

(
π (k − 1)

2
+ 1

)
l(D)

 .

Now we apply the last inequality to our solution w(z) of equation (Sµ) for µ = 2,

we have for any z ∈ D̄∣∣∣∣w′′′(z)w′′(z)

∣∣∣∣ =

∣∣∣∣∣g′(z) (w(z))
µ

+ µg(z) (w(z))
µ−1

w′(z)

g(z) (w(z))
µ

∣∣∣∣∣ ≤
∣∣∣∣g′(z)g(z)

∣∣∣∣+ µ

∣∣∣∣w′(z)w(z)

∣∣∣∣ .
Thus, due to definition of R∗Γ, for any z ∈ D(|w| > R∗Γ) we have |w(z)| > |aΓ|/2,
consequently ∣∣∣∣w′′′(z)w′′(z)

∣∣∣∣ ≤ ∣∣∣∣g′(z)g(z)

∣∣∣∣+
2µ

|aΓ|
|w′(z)|

and taking into account that D(|w| > R∗Γ) ⊂ D we get∫∫
D(|w|>R∗

Γ)

∣∣∣∣w′′′(z)w′′(z)

∣∣∣∣ dσ ≤
∫∫

D(|w|>R∗
Γ)

{∣∣∣∣g′(z)g(z)

∣∣∣∣+
2µ

|aΓ|
|w′(z)|

}
dσ ≤

∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ +
2µ

|aΓ|

∫∫
D

|w′(z)| dσ.
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Due to (4.1) we also have

L(D,Γ(R∗Γ), w) ≤ 4

|aΓ|

∫∫
D

|w′| dσ

so that applying the last two inequalities to (4.9) applied for µ = 2 we obtain

L(D,Γ, w) ≤

(4.10) K(Γ)


∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ +
2π + 2µ

|aΓ|

∫∫
D

|w′(z)| dσ +
(π

2
+ 1
)
l(D)

 .

Since w and g are regular functions and µ is an integer we conclude that gwµ is a

regular function so that taking into account that w′′ = gwµ we have for an arbitrary

z0 ∈ D̄

w′(z)− w′(z0) =

z∫
z0

w′′(Z)dZ =

z∫
z0

g(Z) (w(Z))
µ
dZ.

Consequently we have |w′(z)| ≤M(g)Mµ(w)lD(z, z0) + |w′(z0)|, where lD(z, z0) is

the length of a curve, say γ, which lies in D̄ and connects z and z0. We always

can connect z with a point z∗ ∈ ∂D and z0 with a point z∗0 ∈ ∂D by some curves

with the lengths l(D)/2 and then can connect the points z∗ and z∗0 by a part

of the boundary ∂D of the length l(D)/2. Thus we always can take γ such that

lD(z, z0) ≤ 3l(D)/2. Also we can take z0 such that |w′(z0)| reaches its minimum in

D̄ (that is |w′(z0)| := m(w′) := minz∈D̄ |w′(z)|). With similar notations we obtain∫∫
D

|w′(z)|dσ ≤ 3

2
M(g)Mµ(w)l(D)S(D) +m(w′)S(D).

Consequently (4.10) implies

L(D,Γ, w) ≤ K(Γ)
3π + 3µ

|aΓ|
M(g)Mµ(w)l(D)S(D)+

K(Γ)
2π + 2µ

|aΓ|
m(w′)S(D) +K(Γ)

∫∫
D

∣∣∣∣g′(z)g(z)

∣∣∣∣ dσ+

(4.11) K(Γ)
π + 2

2
l(D) = K21M

µ(w) +K22m(w′) +K23,

with K21, K22, K23 given after Theorem 3.1. This completes the proof of Theorem

3.1.

Proof of Theorem 3.2. This theorem is a particular case of Theorem 3.1 where

we deal with a straight line Γ. Due to Comment 3, we see that the constant K(Γ)

in (4.7) is replaced by 1/2 for the straight line; respectively we should apply (4.8)

(instead of (4.7)) in the above proofs. Applying (4.8) we obtain (4.9), (4.10) and
10
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(4.11) with K(Γ) replaced by 1/2. Respectively we get the proof of Theorem 3.2

with the coefficients K31, K32 and K33 given after Theorem 3.2.

Proof of Theorem 2.1. The next inequality giving interrelations between Blaschke

characteristic and Gamma-lines was proved in [2, item 1.5], (see also [4, item 7.1])):

for any regular function w in D and any smooth Jordan curve Γ connecting a with

∞ we have N (D, a,w) ≤ L(D,Γ, w). Since any straight line passing through a

contain two parts connecting a with ∞ we have for any straight line Γ

N (D, a,w) ≤ 1

2
L(D,Γ, w).

Due to Theorem 3.2 we have upper bounds L(D,Γ, w) for any straight line Γ, which

does not pass through zero. Respectively, Theorem 3.2 and the previous inequality

give the following upper bounds for N (D, a,w):

N (D, a,w) ≤ 1

2
L(D,Γ, w) ≤ 1

2
[K31M

µ(w) +K32m(w′) +K33] .

Denoting K11 = 1
2K31, K12 = 1

2K32 and K13 = 1
2K33 we obtain Theorem 2.1.
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