TOM 54

АВГУСТ, 2011

выпуск з

РАДИОИЗЛУЧЕНИЕ ЗВЕЗД ПРОЕЦИРУЮЩИХСЯ НА СКОПЛЕНИЕ ГАЛАКТИК А3487

Н.М.ЛИПОВКА, А.А.ЛИПОВКА

Поступила 16 марта 2011 Принята к печати 25 мая 2011

Выполнены оптические отождествления радиоисточников с яркими звездами, расположенными в направлении на скопление A3487 (RA(J) = $11^{\rm b}31^{\rm m}58^{\rm s}$, DEC(J) = $-31^{\rm c}11^{\rm s}34^{\rm m}.8$) с точностью, обусловленной радиорефракцией в межзвездной среде в исследуемом направлении неба. На площадке размером 1 кв. град. отождествилось 60% сильных радиоисточников с P > 0.004 Ян со звездами ярче $10^{\rm m}$.

Ключевые слова: звезды:радиоисточники:оптические отождествления

1. Введение. Радиоастрономические наблюдения в настоящее время дают наибольшую часть информации об астрофизических характеристиках объектов как в позиционных измерениях, так и в спектроскопических исследованиях. Для получения максимального количества данных об объекте, необходимо правильно отождествить оптический радиоисточник, что вплоть до настоящего времени является трудно выполнимой задачей, имеющей высокую степень актуальности.

Несовершенство привязки радионеба к оптическому привело в настоящее время к тому, что большая часть радиоисточников попадает в оптическом изображении в пустое поле (Empty Field), и такое положение не может являться удовлетворительным.

Считается, что радиоволны в космическом пространстве проходят без препятствий, поскольку плотность межзвездной среды очень мала. Однако, выполняя оптические отождествления для обзора неба на частоте 1400 МГц [1] (NVSS обзор) и Паломарского обзора неба [2] (DSS обзор), оцифрованного Ирвином [3], нам удалось обнаружить, что большая часть неба неточно привязана к оптическому небу, и что в межзвездной среде существует радиорефракция, которую нужно учитывать при выполнении оптических отождествлений. Оказалось, что при правильной привязке и учете радиорефракции (учитывая, что межзвездная среда имеет неоднородную плотность), более 60% радиоисточников может быть отождествлено с оптическими объектами.

2.1. Оптические отождествления. Как показали наши исследования

[4-9], привязка радиоизлучения неба не всегда оказывается соответствующей действительности из-за малого количества опорных объектов и радиорефракции в МЗС. В исследуемом нами обзоре неба [1] плотность опорных объектов невелика (приблизительно один опорный объект на 70 кв. град.) и они расположены крайне неравномерно. Более того, в качестве опорных в радиодиапазоне часто используются радиоисточники, оптическое отождествление которых вызывает сомнение.

В связи с вышеизложенным, мы предлагаем производить привязку радионеба непосредственно к оптической астрометрической системе координат, соблюдая следующие правила:

- 1. Привязка радионеба должна производиться непосредственно к оптическому небу с использованием координат Фундаментальных каталогов звезд [10] UCAC, http://ad.usno.navy.mil/ucac/.
- 2. Оптические отождествления должны выполняться на площадке, размер которой не превышает расстояния между лепестками интерферометра.
- 3. Должна соблюдаться морфологическая принадлежность радиоисточников: галактики, квазары, туманности, звезды близкие и звезды далекие.
- 4. Следует учитывать соответствие характеристик исследуемых объектов в оптическом и радиодиапазонах, свойственных данному типу объектов.
- 5. Должен выполняться принцип конфигурационного совпадения радиооптика более чем трех объектов на плошадке, размер которой определен в пункте 2.
- 6. При выполнении оптических отождествлений следует учитывать наличие радиорефракции, обнаруженной нами в межзвездной среде (МЗС) [4-9].

При использовании нашего метода привязки радионеба непосредственно к оптическому небу количество радиоисточников, отождествленных с оптическими небесными объектами, увеличилось в десятки раз. Так, например, в направлении на скопление A2956 [7] из 7 ярких звезд 6 звезд отождествились с сильными радиоисточниками. Так же правильная привязка области радиоизлучения, которая была отождествлена со скоплением галактик A1716 [8], обеспечила отождествление 90% радиоисточников с оптическими объектами.

2.2. Радиоизлучение неба в направлении на скопление галактик АЗ487. Оптические отождествления радиоисточников, выполненные на участке неба проецирующемся на скопление галактик АЗ487, также подтверждают правильность используемой привязки радионеба к оптическому. На рис.1 представлено оптическое изображение исследуемой области по данным [2]. В данной области выделено 12 звезд ярче 10^т (табл.1).

Убедительным аргументом правильности выполненного оптического отождествления оказалась комбинация яркой звезды N8 и тесной пары звезд N4 и N5 (рис.1, табл.1), которые отождествляются с сильным радиоисточником

N8 (табл.2). и двумя сильными, близко расположенными друг к другу радиоисточниками N4 и N5 (табл.2) после учета поправок ΔRA и ΔDEC за привязку радиоизлучающей области к оптическому участку неба. После совмещения этих трех радиоисточников с тремя звездами N4, N5, N8 (табл.1) оказалось, что еще 6 звезд отождествляются с радиоисточниками в ближайшей окрестности, что служит дополнительным подтверждением правильности выполненной нами привязки, поскольку количество сильных радиоисточников и ярких звезд в исследуемой области мало.

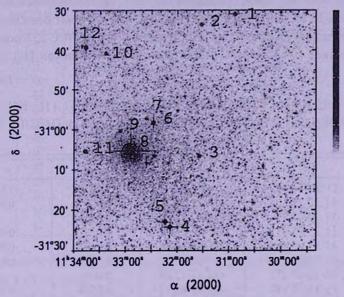


Рис.1. Область неба в направлении на скопление галактик A3487, Паломарский обзор [2].

Таблица 1

КАТАЛОГ ЯРКИХ ЗВЕЗД НА ИССЛЕДУЕМОЙ ПЛОЩАДКЕ (рис.1)

N	RA(J)	DEC(J)	ePos, mas	mag
01	11 ^h 30 ^m 53 ^s .329	-30°30'59".73	12	8°.715
02	11 31 31.666	-30 33 34.82	24	8.603
03	11 31 34.847	-31 06 35.00	11	8.246
04	11 32 08.72	-31 24 13.0	31	9.230
05	11 32 14.44	-31 22 58.5	14	8.647
06	11 32 27.724	-30 58 16.62	25	7.991
07	11 32 35.629	-30 57 13.21	28	9.509
08	11 32 54.12	-31 05 13.1	1307	5.580
09	11 33 06.419	-31 00 16.05	35	9.767
10	11 33 46.14	-30 39 14.6	12	7.949
11	11 33 47.24	-31 05 16.8	11	8.109
12	11 33 50.63	-30 38 47.7	34	10.778

В табл.1 приведены характеристики ярких звезд по данным [10], которые обозначены номерами N1-12 (нумерация по рис.1): столбец 1 порядковый номер объекта в соответствии с рис.1; 2 - прямое восхождение звезды по данным [10] на эпоху 2000г. (J); 3 - склонение звезды по данным [10] на эпоху 2000г. (J); 4 - оптический параллакс [10]; 5 - звездная величина [10].

В табл.2 приводится каталог радиоисточников, расположенных на плошадке неба размером $\delta RA \times \delta DEC = 5^m \times 60'$, которая отождествилась с плошалкой в оптике, представленной на рис.1. На исследуемой площадке насчитывается 15 сильных радиоисточников, 9 из которых отождествились с яркими звездами (после учета поправки ΔRA и ΔDEC). Координаты радиоисточников и плотность потоков взяты из каталогов [1,11].

Таблица 2

КАТАЛОГ РАДИОИСТОЧНИКОВ ПО ДАННЫМ [1,11], КОТОРЫЕ
БЫЛИ ОТОЖДЕСТВЛЕНЫ СО ЗВЕЗДАМИ (рис.1) ПОСЛЕ УЧЕТА
ПОПРАВОК ДРА И ДОЕС

N	RA(J)	DEC(J)	Р, Ян	α
01	1113154.999	-30°09'54".02	0.0394	1.1
02	11 32 27.805	-30 11 58.23	0.0260	0.5
03	11 32 47.471	-30 42 18.29	0.0153	
04	11 33 03.431	-31 02 45.61	0.0528	0.9
05	11 33 07.863	-31 01 34.36	0.2191	0.9
06	11 33 36.642	-30 36 35.9	0.0084	0.8
07	11 33 43.277	-30 37 12.64	0.0048	
08	11 33 53.147	-30 44 45.74	0.0519	0.4
09	11 34 07.946	-30 39 43.2	0.0129	0.6
10	11 34 25.832	-30 21 29.61	0.0047	
11	11 34 43.819	-30 44 15.18	0.0042	×1 - [
12	нет в каталоге		<0.002	-

Табл.2. Каталог радиоисточников по данным [1,11].

Столбец 1 - порядковый номер по рис.1; 2 - прямое восхождение на эпоху 2000.0 (J); 3- склонение радиоисточника на эпоху 2000.0 (J); 4- плотность потока в Ян по данным [1]; 5 - α - спектральный индекс радиоисточника ($P \sim v^{-\alpha}$).

Спектральный индекс радиоисточника определен в интервале частот 843 МГц - 1400 МГц.

В табл.3 приводятся исправленные координаты радиоисточников (табл.2) после привязки к звездам (табл.1).

Среднестатистическая поправка к координатам радиоисточников составила по прямому восхождению ΔRA (RA(опт) - RA(рад)) = -59 $^{\circ}$.9 ± 1 $^{\circ}$.8 и по

склонению ΔDEC (DEC(опт) - DEC(рад)) = -21'.03 \pm 11".4.

Столбец 1 - порядковый номер по рис.1 и табл.1 (каталог звезд); 2 - прямое восхождение на эпоху 2000.0 (J), исправленное за поправку Δ RA к прямому восхождению радиоисточника по табл.2; 3 - склонение радиоисточника на эпоху 2000.0 (J), исправленное за поправку Δ DEC к склонению радиоисточника по табл.2.

Таблица 3

КООРДИНАТЫ РАДИОИСТОЧНИКОВ ПО ТАБЛ.2, ИСПРАВЛЕННЫЕ ЗА ПОПРАВКИ ARA И ADEC

N	RA(J)	DEC(J)
01	11 ^h 30 ^m 55 ^t .039	-30°30'55".81
02	11 31 27.845	-30 33 0.03
03	не отождествился	
04	11 32 3.471	-31 23 47.41
05	11 32 7.903	-31 22 36.16
06	11 32 36.682	-30 57 37.69
07	11 32 43.317	-30 58 14.44
08	11 32 53.187	-31 5 47.53
09	11 33 7.986	-31 0 45.00
10	не отождествился	
11	11 33 43.859	-31 5 16.98
12	нет в каталоге	

Таким образом отождествилось 60% радиоисточников на площадке размером 1.08 кв. град.

Отождествления слабых радиоисточников в настоящей работе не рассматриваются, поскольку плотность далеких звезд слабее 19^{тм} в данном направлении очень велика, в то время как плотность слабых радиоисточников значительно меньше (на порядок). Из рис.1 видно, что в исследуемой области много газа, что отражается даже на оптическом изображении ярких звезд.

3. Заключение. Получено оптическое отождествление 9 ярких радиоисточников со звездами ярче 10[™], что составило 60% от общего количества радиоисточников на исследуемой площадке.

Выполнив правильные оптические отождествления, мы получаем доступ к информации об излучении небесных объектов в широком диапазоне длин волн и, следовательно, можем определить физическое состояние и динамику развития звезд, туманностей, галактик, квазаров и других небесных объектов, а также окружающего их газа.

Знание радиорефракции в межзвездной и в межгалактической средах позволит определить характеристики межзвездной среды и получить независимый метод определения удаленности небесных объектов.

Авторы благодарят обсерваторию NRAO и ее штат, выполнивший обзор неба на волне 21 см, который помещен в Интернет для общего пользования. Авторы благодарят также штат Паломарской обсерватории за обзор неба, выполненый для двух эпох и помещенный в Интернет и Майка Ирвина (Irvin M., 1998, http://www.ast.cam.ac.uk/~mike/apmcat/)) за оцифровку Паломарского обзора.

Авторы обращаются со словами глубокой благодарности за постоянную поллержку, способствовавшую выполнению данной работы, к В.Г.Караевой, Е.В.Полякову, И.И.Канаеву, Н.Б.Быковской, М.С.Чубею, С.А.Толчельниковой и О.В.Кияевой.

Главная астрономическая обсерватория РАН, Санкт-Петербург, Россия, e-mail: nila_lip@mail.ru

RADIO EMISSION FROM STARS PROJECTED ON THE CLUSTER OF GALAXIES A3487

N.M.LIPOVKA, A.A.LIPOVKA

Optical identification of the radio sources with the bright stars located in the direction on the cluster of galaxies A3487 (RA(J) = $11^b31^m58^s$, DEC(J)=- $31^\circ11'34''.8$) is carryed out with the precision, allowed by the radio refraction in the interstellar medium in the direction of the sky under investigation. In the area of 1 sq. degree about 60% of the strong radio sources with P > 0.004 Jy were identified with the stars brighter than 10^m .

Key words: stars: radio sourses: optical identifications

ЛИТЕРАТУРА

- 1. POSS_1, DSS, http://cadcwww.dao.nrc.ca/cadcbin/getdss/
- 2. J.J. Condon, W.D. Cotton, E.W. Greisen et al., Astron. J., 115, 1693-1716, 1998 // The NRAO VLA Sky Survey. (http://www.cv.nrao.edu/NVSS/)
- 3. M.Irvin, 1998, (http://www.ast.cam.ac.uk/~mike/apmcat/)
- A.A.Lipovka, N.M.Lipovka, The end of the "Empty Field" epoch in optical identifications. "Moleçules in Space and Laboratory", the meeting held in Paris, France, May 14-18, 2007. Editors: J.L.Lemaire, F.Combes. Publisher:

- S.Diana, p.26.
- 5. А.А.Липовка, Н.М.Липовка, Всероссийская астрономическая конференция ВАК-2007, КАЗАНЬ,:Изд-во. Казанского государственного университета с.536.
- 6. А.А.Липовка, Н.М.Липовка, "Радиорефракция в межзвездной среде", с.33, Фундаментальные проблемы естествознания и техники, СПб, 2008.
- 7. А.А.Липовка, Н.М.Липовка, "Привязка радиоизлучения неба к оптическим объектам в окрестности скопления галактик А2956", с.400, Фундаментальные проблемы естествознания и техники, СПб, 2010.
- 8. А.А.Липовка, Н.МЛиповка, "К вопросу о привязке радионеба к оптическому небу", с.145, Астрономический календарь, 2010.
- 9. А.А.Липовка, Н.М.Липовка, "Метод привязки координат небесных радиоисточников к оптической астрометрической системе координат", Геодезия и картография, с.6, №12, 2010.
- 10. UCAC, http://ad.usno.navy.mil/ucac/
- 11. O.V. Verkhodanov et al., "The CATS database to operate with astrophysical catalogs". In "Astronomical Data Analysis Software and Systems VI". Editors: Gareth Hunt, H.E. Payne ASP Conference Series, 125, P.322-325, 1997.