УДК 537.311

АТОМАРНО-ТОНКИЕ СЛОИ МоS₂, ВЫРАЩЕННЫЕ МЕТОДОМ ИМПУЛЬСНО-ЛАЗЕРНОГО ОСАЖДЕНИЯ

С.Г. ПЕТРОСЯН^{1,2*}, А.М. ХАЧАТРЯН¹

¹Институт радиофизики и электроники НАН Армении, Аштарак, Армения ²Российско–Армянский университет, Ереван, Армения

*e-mail: stepan.petrosyan@rau.am

(Поступила в редакцию 4 мая 2021 г.)

В работе приведены результаты по синтезу и исследованию свойств монослойных и многослойных пленок MoS_2 , полученных с помощью импульснолазерного осажденияна на стеклянных подложках. Для характеристики структурных, морфологических, оптических и электрических свойств пленок были использованы атомно-силовая микроскопия (AFM), рентгеновская дифрактометрия, спектроскопия комбинационного рассеяния, оптическое поглощение, фотолюминесценция и холловские измерения. Обнаруженные экспериментальные особенности ультратонких пленок MoS_2 свидетельствуют об эволюции всех свойств такого квзидвумерного материала с ростом числа атомных слоев. В пределе толщин в один-два монослоя материал становится прямозонным, причем оптическое поглощение и фотолюминесценция при комнатной температуре обусловлены генерацией и рекомбинацией двумерных экситонов, имеющих энергию связи порядка 0.45 эВ. В зависимости от режимов осаждения слои могут содержат вакансии или избыток атомов серы, проводящие к проводимости *n*- или *p*-типов, соответственно.

1. Введение

В настоящее время двумерные (2D) материалы привлекают большой интерес благодаря их уникальным свойствам, вызванным особенностями структуры и действием квантово-механических ограничений [1,2]. В 2D материале, состоящем из кристаллического слоя толщиной в один-два атома, все атомы по сути дела находятся на поверхности, и поэтому имеются множество свободных или некомпенсированных связей. Эти обстоятельства обусловливают появление у таких материалов уникальных свойств, не характерных обычным трехмерным материалам [2]. В первую очередь это касается высокой чувствительности таких материалов к окружающей среде и внешним полям. Семейство 2D-материалов включает металлы, полуметаллы, полупроводники и изоляторы. Наиболее известный 2D-материал, графен, представляет собой монослойную пленку углерода, обладающую рекордной подвижностью носителей заряда [3]. Однако отсутствие запрещенной зоны при нормальных условиях во-многом ограничивает его применимость на практике. В отличие от графена, квазидвумерные дихалькогениды переходных металлов, такие как, например, MoS_2 , WS_2 , обладают конечной и оптимальной шириной запрещенной зоны для использования в новом семействе полупроводниковых приборов [4]. Каждый слой MoS_2 (WS_2) представляет собой сэндвич: слой атомов молибдена (вольфрама) в окружении слоев атомов серы. Благодаря простой возможности, а именно с помощью подбора числа атомных слоев в тонкой пленке управлять многими его свойствами (шириной запрещенной зоны, структурой энергетических зон, плотностью свободных носителей тока, типом проводимости, долей поверхностных атомов и т.д.), квазидвумерные слои дихалькогенидов переходных металлов, а также гомо- и гетеро-переходы на их основе могут стать перспективными материалами для создания прозрачных и гибких электронных устройств, оптической коммуникации в компьютерах нового поколения и других изделий наноэлектроники и оптоэлектроники [2,4,5].

В настоящее время активно развиваются различные методы получения 2Д материалов: механическое или химическое отшелушивание слоев из объемного кристалла, химическое осаждение из газовой фазы (CVD), импульсно-лазерное осаждение, сульфуризация тонких металлических пленок и т.д. [1]. Наиболее качественные 2Д слои с поперечными размерами доходящими до сантиметров, получаются методом CVD [6]. Однако эта технология требует высокие температуры роста (~1000°С) и поэтому поиск альтернативных технологий, позволяющих выращивать слои 2Д материалов на разных подложках является важной задачей. В качестве одной из таких технологий выступает метод импульснолазерного осаждения (ИЛО) [7,8].

В данной работе приводятся результаты по росту и исследованию свойств монослойных и многослойных пленок MoS₂, осажденных методом ИЛО на стеклянных подложках. Обнаруженные особенности тонких пленок MoS₂ свидетельствуют об эволюции всех структурных, электрических и оптических свойств таких материалов с ростом числа атомных слоев.

2. Экспериментальная часть

Как уже говорилось в данной работе мы будем применять метод ИЛО для выращивания сверхтонких слоев MoS_2 на стеклянных подложках. Этот метод уже давно нами применяется для создания тонких пленок, гетеропереходов и фоточувствительных приборов в ИК области [9]. С помощью подбора числа и мощности лазерных импульсов можно в данном методе легко и достаточно точно управлять числом атомных слоев в растущей пленке.

Для осаждения тонких пленок толщиной до десятки атомных монослоев, был использован работающий в режиме модуляции добротности неодимовый лазер со следующими параметрами: длина волны 1.064 мкм, длительность импульсов 30 нс, энергия в импульсе 0.35 Дж, частота повторения импульсов 0.1 Гц, диаметр луча 20 мм. Пленки были выращены путем испарения мишени, представляющей собой прессованную таблетку из порошков MoS₂ и S, взятых в таком весовом соотношении, чтобы в мишени атомное соотношение Mo: S составило 1:4. Известно, что такой состав мишени позволяет получить пленки с наиболее совершенной кристаллической структурой, характеризуемых дефицитом атомов молибдена (или избытком атомов серы), приводящих, как правило, к проводимости *p*-типа [8].

Для процесса роста мишень и подложка были расположены в ростовой камере на расстоянии 3-6 см друг от друга, причем вакуум в камере поддерживался на уровне не хуже 10^{-5} мм.рт.ст. Подложка была нагрета до 650-700 °C. Пленки, после прекращения роста, в течении 5 мин были подвергнуты кратковременному отжигу при температуре 700 °C, затем они охлаждались до комнатной температуры. В среднем для выращивания одного монослоя достаточно было 5 импульсов лазера. Для характеристики структурных, морфологических, оптических и электрических свойств пленок были использованы следующие методы: АFM, рентгеновская дифрактометрия, спектроскопия комбинационного рассеяния, оптическое поглощение, фотолюминесценция и холловские измерения.

3. Результаты измерений и их обсуждения

Топологические тонкости поверхности осажденных слоев были характеризованы атомно-силовым микроскопом (AFM) SolvernanoEducatorII (РФ) (рис.1a,b). Поверхности пленок были сплошные, со средней шероховатостью порядка 10 нм, определяющей в основном шероховатостью поверхности стекла.

На рис.2а представлены результаты измерений спектров рентгеновской дифракции полученных пленок, осажденных на стеклянных подложках. Толщина пленки в данном случае была 4.7 нм, что составляет около 7 атомных слоев.

Рис.1. AFM (a-2D, b-3D) картины поверхности пленки MoS₂, осажденной на стеклянной подложке.

Спектры были сняты с помощью дифрактометра PANalyticalB.V.(Holland), используя излучение $\lambda = 1.5406$ Å (K_{α} , Cu). Регистрированные в интервале углов дифракции 10–70° пики использовались для идентификации кристаллических плоскостей. Для сравнения на рис.2b приведен спектр дифракции для мишени, из которой были осаждены пленки. Виден четко выраженный дифракционный пик при $2\theta = 14^{\circ}$, характерный для кристаллографической плоскости (002) как объемного материала MoS₂, так и для пленок, состоящих из нескольких его атомных слоев [10], что свидетельствует об одном и том же фазовом составе мишени и выращенных пленок.

Спектроскопия комбинационного рассеяния также широко применяется для характеристики тонких пленок MoS₂ [11]. При этом четко выделяются два пика рассеяния в интервалах (375–380) см⁻¹ и (400–405) см⁻¹, которые соответствуют колебательным модам E_{2g}^1 и A_{1g} , соответственно. Известно, что мода E_{2g}^1 соответствует противофазным колебаниям атомов S по отношению к атомам Мо в плоскости монослоя, а A_{1g}-колебаниям атомов S вне плоскости монослоя опять в противоположных направлениях по отношению к атомам Мо [12]. Экспериментально установлено, что в зависимости от числа монослоев в пленке изменяется интенсивность межслойного взаимодействия в MoS₂, что в свою очередь сказывается на частоты указанных атомных колебаний [11]. Причем с уменьшением числа монослоев в материале для E_{2g}^1 моды наблюдается красный сдвиг, а для А₁₂-голубой сдвиг. В результате разность в пиках комбинационного рассеяния зависит от числа монослоев и она может послужить показателем перехода от многослойной пленки к монослойной. Если для пленки с толщиной более чем 10 атомных слоев эта разность составляет 25.4 см⁻¹, что практически совпадает со случаем объемного материала, то в случае монослойного материала она уменьшается до 20.1 см⁻¹ [7]

Такие же закономерности наблюдались и в наших экспериментах. На Рис.3 представлены спектры комбинационного рассеяния пленок MoS₂ разной

Рис.3. Спектры комбинационного рассеяния пленок MoS₂ разной толщины, выращенных на стеклянных подложках.

толщины (1.2 нм, 4.7 нм, 7.8 нм), возбужденные лазером с длиной волны 532 нм, откуда видно, что разность в пиках E_{2g}^1 и A_{1g} уменьшается с уменьшением толщины пленки и для образца толщиной 1.2 нм (два атомных слоя) эта разность уменьшается до 21.5 см⁻¹, что соответствует результатам работы [7], где выведена эмпирическая формула зависимости разности в волновых числах пиков комбинационных сдвигов от толщины пленки:

$$\Delta k = 26.45 - \frac{15.42}{1 + 1.44n^{0.9}} \text{ cm}^{-1}.$$
 (1)

Согласно (1) при n = 2, $\Delta k = 22.6 \text{ см}^{-1}$, что на 3% больше, чем полученный нами сдвиг. По-видимому такая разница обусловлена влиянием подложки [13,14], так как пленки MoS₂ в работе [7] были выращены на кристаллических подложках сапфира, в то время как у нас были использованы некристаллические (стеклянные) подложки.

Изменение электронной структуры ультратонких слоев MoS₂ в зависимости от числа монослоев отражается и на их оптических свойствах. Хорошо известно [15], что при переходе от многослойного (объемного) полупроводника MoS₂ с непрямой запрещенной зоной (шириной 1.2 эВ) к атомарно тонким пленкам, материал становиться прямозонным, ширина запрещенной зоны увеличивается до 1.8–1.9 эВ, вследствие чего существенны изменения претерпевают спектры оптического поглощения и фотолюминесценции.

На рис. 4 представлены измеренные при комнатной температуре спектры поглощения пленок MoS₂, имеющих толщину 1.2 нм (2 монослоя), 4.7 нм (7 монослоев) и 7.8 нм (12 монослоев). Видно, что в области энергии фотонов меньше 1.7 эв поглощение меньше 15%, причем с уменьшением толщины пленок до 2 монослоев поглощение становиться меньше 5%. Для всех пленок наблюдается рост поглощения в области 1.8–2 эВ, причем выделяются два перехода, обычно обозначаемые как А и В [15,16]. Эти максимумы соответствуют прямым

Рис.4. Спектры поглощения пленок MoS₂ разной толщины.

экситонным переходам, между двумя спин-орибатально отщепленными максимумами валентной зоны и минимумом зоны проводимости в точке *К* зоны Бриллюэна [17,18].

Сравнение спектров показывает, что при уменьшении толщины слоев вплоть до атомных размеров характер энергетических зон в точке симметрии K(K') зоны Бриллюэна и оптических переходов между ними сохраняется. По мере увеличения числа атомных слоев и перехода к объемному MoS₂ наблюдается лишь длинноволновой сдвиг спектров и увеличение абсолютного значения поглощения света. Разность в энергиях указанных переходов составляет около 0.15–0.17 эВ, что соответствует теоретическому значению расщепления валентных зон в точке K зоны Бриллюэна [18,19]. Эти закономерности проявляются и в спектрах фотолюминесценции этих же образцов, представленных на рис.5.

Рис.5. Спектры фотолюминесценции тонких слоев MoS₂ снятых при комнатной температуре. Для возбуждения был использован лазер с длиной волны излучения 0.63 мкм.

В спектрах фотолюминисценции тоже выделяются два пика приблизительно при энергиях 1.87 эВ (А) и 2.02 эВ (В). Известно, что оптически генерированные электроны и дырки могут образовать стабильные экситонные состояния даже при комнатной температуре из-за сильного усиления кулоновского взаимодействия в атомарно-тонких двумерных материалах [16]. Пики A и В связаны с прямыми излучательными переходами в точке K(K') зоны Бриллюэна, а разность в энергиях пиков A и B составляет около 0.15 эВ и соответствует расщеплению валентной зоны из-за спин-орбитального взаимодействия в MoS₂. С другой стороны, если взять величину прямой щели в точке K зоны Бриллюэна, равной 2.31–2.33 эВ [17,19], то можно прийти к выводу о том, что экситоны типа A и B имеют энергию связи порядка 0.45–0.46 эВ. Также видно, что интенсивность фотолюминесценции резко возрастает по мере уменьшения толщины пленки и перехода к прямозонному полупроводнику в пределе монослойной пленки. Пленка толщины 7.8 нм является непрямозонной, ведет себя наподобие объемного материала и, соответственно, обладает очень малой вероятностью излучательной рекомбинации электронно-дырочных пар после фотовозбуждения. Полученные особенности фотолюминесценции тонких слоев находятся в соответствии со сообщениями других авторов [16,18].

Для электрической характеристики полученных слоев MoS_2 были проведены холловские измерения при комнатной температуре с помощью установки EcopiaHMS-5000 (South Korea). Эти измерения показали, что несмотря на избыток серы в мишени (Mo:S = 4:1) образец с толщиной 4.7 нм по видимому содержал большое количество вакансии серы, которые играли роль доноров и приводили к проводимостью *n*-типа [7]. Образец с толщиной 7.8 нм по-видимому имел большой избыток атомов серы и проявлял проводимость *p*-типа. Причем объемная концентрация электронов была на уровне (2–10) 10^{20} см⁻³, а дырок – $(2-4) 10^{21}$ см⁻³. Соответственно подвижности были равны 38 см²/В·с для электронов, и 2.2 см²/В·с для дырок. Относительно высокие значения подвижности и большой квантовый выход ФЛ свидетельствуют о кристаллическом совершенстве полученных пленок.

4. Заключение

Таким образом методом ИЛО были синтезированы атомарно тонкие (монослойные, бислойные и многослойные) пленки MoS₂. Путем вариации числа импульсов можно получить сплошные, монослойные и многослойные, пленки с поперечными размерами до сантиметров, оптические и электронные свойства которых сильно зависит от числа атомных слоев. В пределе толщин в один-два монослоя материал становится прямозонным, причем оптическое поглощение и фотолюминесценция даже при комнатной температуре обусловлены генерацией и рекомбинацией двумерных экситонов с энергией связи порядка 0.45 эВ. В зависимости от режимов осаждения слои могут содержать вакансии или избыток атомов серы, приводящие к проводимости *n*- или *p*- типов, соответственно.

ЛИТЕРАТУРА

- 1. Л.А. Чернозатонский, А.А. Артюх. УФН, 188, 3 (2018).
- 2. X.C. Duan, C. Wang, A. Pan, R. Yu. Chem. Soc. Rev., 44, 8859 (2015).
- 3. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Science, 306, 666 (2004).
- 4. E. Singh, P. Singh, K.S. Kim, et.al. ACS Mater. Interfaces, 11, 11061 (2019).
- 5. A. Rai, H.C.P. Movva, A. Roy, et al. Crystals, 8, 316 (2018).
- 6. Y.-H. Lee, X.-Q. Zhang, et al. Advanced Materials, 24, 2320 (2012).
- 7. G. Siegel, V.P. VenkataSubbaiah, M.C. Prestgard, et al. APL Materials, 3, 056103 (2015).
- 8. R.S. Claudi, A.M. Diamond, S.-L. Hsu, et al. Appl. Phys.Lett., 106, 052101 (2015).
- 9. А. Маргарян, С. Петросян, Л. Матевосян, К. Авджян. Изв. НАН Армении, Физика, 51, 272 (2016).
- 10. S.S. Chou, M. De, J. Kim, et al. J. Am. Chem Soc., 135, 4584 (2013).
- 11. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, et al. Adv. Fanc. Mater., 22, 1385 (2012).
- 12. R. Ganatra, Q. Zhang. ACS Nano, 8, 4074 (2014).
- 13. Y. Sun, R. Wang, K. Liu. Appl. Phys. Rev., 4, 011301 (2017).
- 14. L. Yang, X. Cui, J. Zhang, et al. Scientific Reports, 4, 5649 (2014).
- 15. J. Kopaczek, S.J. Zalewski, M.P. Polak, et al. J. Appl. Phys., 125, 135701 (2019).
- 16. A. Splendiani, L. Sun, Y. Zhang, et.al. Nano Lett., 10, 1271 (2010).
- 17. G. Wang, I.C. Gerber, L. Bouet, et al. 2D materials, 2, 045005 (2015).
- 18. K.F. Mak, C. Lee, J. Hone, et al. Phys. Rev. Lett., 105, 136805 (2010).
- 19. E.S. Kadantsev, P. Hawrylak, Solid State Comm., 152, 909 (2012).

ATOMICALLY THIN LAYERS OF MoS₂ GROWN BY THE METHOD OF PULSED LASER DEPOSITION

S.G. PETROSYAN, A.M. KHACHATRYAN

This paper presents the results on the synthesis and study of the properties of monolayer and multilayer MoS_2 films obtained by pulsed laser deposition on glass substrates. Atomic force microscopy (AFM), X-ray diffractometry, Raman spectroscopy, optical absorption, photoluminescence and Hall measurements were used to characterize the structural, morphological, optical and electrical properties of the films. The observed experimental features of ultra-thin MoS_2 films indicate the evolution of all properties of such a quasi-two-dimensional material with an increase in the number of atomic layers. In the limit of one - two monolayer thicknesses, the material becomes direct-gap, and optical absorption and photoluminescence at room temperature are due to the generation and recombination of two-dimensional excitons with a binding energy of the order of 0.45 eV. Depending on the deposition regimes, the layers may contain vacancies or an excess of sulfur atoms, leading to the *n*- or *p*-type conductivity, respectively.