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We have considered a hot strange star matter, just after the collapse of a supernova, as 
a composition of strange, up and down quarks to calculate the bulk properties of this system 
at finite temperature with the density dependent bag constant. To parameterize the density 
dependent bag constant, we use our results for the lowest order constrained variational (LOCV) 
calculations of asymmetric nuclear matter. Our calculations for the structure properties of the 
strange star at different temperatures indicate that its maximum mass decreases by increasing 
the temperature. We have also compared our results with those of a fixed value of the bag 
constant. It can be seen that the density dependent bag constant leads to higher values of the 
maximum mass and radius for the strange star.
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1. Introduction. Strange stars are those; which are built mainly from self 
bound quark matter. The surface density of strange star is equal to the density 
of strange quark matter at zero pressure (~10l5g/cmJ), which is fourteen orders 
of magnitude greater than the surface density of a normal neutron star. The 
central density of these stars is about five times greater than the surface density 
[1-3]. The existence of strange stars which are made of strange quark matter 
was first proposed by Itoh [4] even before the full developments of QCD. Later 
Bodmer [5] discussed the fate of an astronomical object collapsing to such a 
state of matter. In 1970s, after the formulation of QCD, the perturbative 
calculations of the equation of state of the strange quark matter was developed, 
but the region of validity of these calculations was restricted to very high 
densities [6]. The existence of strange stars was also discussed by Witten [7]. 
He conjectured that a first order QCD phase transition in the early universe 
could concentrate most of the quark excess in dense quark nuggets. He suggested 
that the true state of matter was strange quark matter. Based on theoretical 
works of Witten on cosmic separation of phases, the transition temperature is 
approximately 100 MeV, an acceptable QCD temperature [7]. Witten proposal 
was that the strange quark matter composed of light quarks is more stable than 
nuclei, therefore strange quark matter can be considered as the ground state 
of matter. The strange quark matter would be the bulk quark matter phase 
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consisting of almost equal numbers of up, down and strange quarks plus a small 
number of electrons to ensure the charge neutrality. A typical electron fraction 
is less than 10՜3 and it decreases from the surface to the center of strange star 
[1-3]. Strange quark matter would have a lower charge to baryon ratio 
compared to the nuclear matter and can show itself in the form of strange 
stars [7-10].

Just after the collapse of a supernova, a hot strange star may be formed. 
A strange star may be also formed from a neutron star and is denser than the 
neutron star. If sufficient additional matter is added to a strange star, it will 
collapse into a black hole. Neutron stars with masses of 1.5-1.8Af0 with rapid 
spins are theoretically the best candidates for conversion to the strange stars. An 
extrapolation based on this indicates that up to two quark-novae occur in the 
observable universe each day. Besides, recent Chandra observations indicate that 
objects RX J185635-3754 and 3C58 may be bare strange stars [11].

In this article, we consider a hot strange star born just after the collapse 
of a supernova. Here we ignore the effects of the presence of electrons, and 
consider a strange star purely made up of the quark matter consisting of the 
up, down and strange quarks. The energy of quark matter is calculated at finite 
temperature, and then its equation of state is derived. Finally using the equation 
of state of quark matter, the structure of strange star at diffrent temperatures 
is computed by integrating the Tolman-Oppenheimer-Volkoff (TOV) equations.

2. Calculation of Quark Matter Equation of State.

2.1. Density Dependent Bag Constant. Different models have been 
used for deriving the equation of state of quark matter. Therefore there is a 
great variety of the equations of state for this system. The model which we 
use is the MIT bag model which was developed to take into account the non 
perturbative effcts of quark confinement by introducing the bag constant. In 
this model, the energy per volume for the quark matter is equal to the kinetic 
energy of the free quarks plus a bag constant <3 [12]. The bag constant ® 
can be interpreted as the difference between the energy densities of the 
noninteracting quarks and the interacting ones. Dynamically it acts as a 
pressure that keeps the quark gas in constant density and potential. This 
constant is shown to have different values which are 55 and 90 MeV/fm3 in 
the initial MIT bag model. Since the density of strange quark matter increases 
from surface to the core of the strange star, it is more appropriate to use a 
density dependent bag constant rather than a fixed bag constant.

According to the analysis of the experimental data obtained at CERN, the 
quark-hadron transition takes place at about seven times the normal nuclear 
matter energy density (156 MeV/fm3) [13,14]. Recently, a density dependent 
form has been also considered for ® [15-18]. The density dependence of <3 
is highly model dependent. In this article, the density dependence of <3 will 
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be parameterized, and we make the asymptotic value of <B approach a finite 
value <B,_ [181,

«(/։) = + (C8b - . (1)

The parameter <Sq = (n = 0) has constant value which is assumed to be 
(Bq = 400 MeV/fm3 in this work, and y is the numerical parameter which is 
usually equal to n0 => 0.17 fm՜3, the normal nuclear matter density. <B„ depends 
only on the free parameter (Bq . We know that the value of the bag constant 
(B should be compatible with experimental data. The experimental results at 
CERN-SPS confirms a proton fraction x^ = 0.4 (data is from experiment on 
accelerated Pb nuclei) [13,18]. Therefore, in order to evaluate (B„, we use the 
equation of state of the asymmetric nuclear matter. The calculations regarding 
this can be found in the next section.

2.2. Computation of (Bm using the asymmetric nuclear matter 
calculations. V/e use the equation of state of the asymmetric nuclear matter 
to calculate . For calculating the equation of state of asymmetric nuclear 
matter, we employ the lowest order constrained variational many-body method 
based on the cluster expansion of the energy as follows [19-27].

The asymmetric nuclear matter is defined as a system consisting of Z 
protons (pt) and N neutrons (nt) with the total number density n = n +nnl and 
proton fraction r = n /«, where n and /», are the number densities of protons 
and neutrons, respectively. For this system we consider a trial wave function 
as follows,

W = F<|), (2)

where | is the slater determinant of the single-particle wave functions and F 
is the >4-body correlation operator (A = Z+N) which is taken to be

F = S[]/(ÿ) 

l>J (3)

and 5 is a symmetrizing operator. For the asymmetric nuclear matter, the 
energy per nucleon up to the two-body term in the cluster expansion is

A (v|v)
The one-body energy, Et, is

= E\ + E2. (4)

2 s2 P2 

/-I *, z m
(5)

where labels 1 and 2 are used for proton and neutron respectively, and is 
the momentum of particle i. The two-body energy, £,, is

£2 = 27E(ÿ1v(l2)|ÿ->'‘)>
(6)
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where
v{12) = -^֊[/(12),[v?2>/(12)]]+/(12)K(12)/(12). (7)

im
In the above equation, /(12) and K(12) are the two-body correlation and 
nucleon-nucleon potential, respectively. In our calculations, we use UVU + TNI 
nucleon-nucleon potential [28]. Now, we minimize the two-body energy with 
respect to the variations in the correlation functions subject to the normalization 
constraint. From the minimization of the two-body energy, we obtain a set 
of differential equations. We can calculate the correlation functions by numeri­
cally solving these differential equations. Using these correlation functions, the 
two-body energy is obtained and then we can compute the energy of asymmet­
ric nuclear matter. The procedure of these calculations has been fully discussed 
in reference [20].

As it was mentioned in the previous section, the experimental results at 
CERN-SPS confirms a proton fraction *,, = 0.4 [13,18], therefore to compute 
®«,. we proceed in the following manner

- Firstly, we use our results of the previous section for the asymmetric nuclear 
matter characterized by a proton fraction x/w=0.4. By assuming that the hadron­
quark transition takes place at the energy density equal to 1100MeV/fm3 [13,18], 
we find that the baryonic density of the nuclear matter is nB=0.98 fm՜3 (transition 
density). At densities lower than this value the energy density of the quark matter 
is higher than that of the nuclear matter. With increasing the baryonic density 
these two energy densities become equal at the transition density and above this 
value the nuclear matter energy density remains always higher.

- Secondly, we determine <B„ = 8.99 MeV/fm3 by putting the energy 
density of the quark matter and that of the nuclear matter equal to each other.

2.3. Calculations for the energy of quark matter at finite tem­
perature. To calculate the energy of quark matter, we need to know the 
density of quarks in terms of the baryonic density. We do this by considering 
two conditions of beta equilibrium and charge neutrality. This leads to the 
following relations

Prf = P« - Pe . (8)

Pl = P« - Pe » (9)

(10)

2/3 nu-1/3 ns-1/3 nd-ne = 0 , (11)

where p, and n, are the chemical potential and the number density of particle 
/, respectively. As mentioned, we consider the system as pure quark matter 
(/re = 0) [8,29-31]. Thus according to relation (11), we have
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nu = \/2(ns +nd). (12)

The chemical potential, p/։ at any adopted values of the temperature T and 
the number density n, is determined by applying the following constraint, 

n‘=^Zf^hk՝T^k2dk՝ (13)

where

expjp((/n/2c4+»2Z:2c2)l/2 -p^j + 1 (14)

is the Fermi-Dirac distribution function [32]. In the above equation, p = \/kBT 
and g is the degeneracy number of the system.

As it is previously mentioned, we consider the total energy of the quark 
matter as the sum of the kinetic energy of the free quarks and the bag constant 
<B. Therefore, the total energy per volume of the quark matter e,0/ can be 
obtained using the following relation,

e/o/= e«+e</+Ej + ® > (15)
where e, is the kinetic energy per volume of particle i,

e'=A J0°’k2c4+/’2 ^2c2f k> T)k2dk ■ (16)

After calculating the energy, we can determine the other thermodynamic 
properties of the system. The entropy of the quark matter Sm can be derived 
as follows

•5/0/ = Su+Sd+Ss, (17)

where 5, is the entropy of particle /,

T) = -±kB riffo, k, T)\n(f(nh k, T))+

n (18)
+ (1 - f{nh k, T)) ln(l - f(nh k, T))]k2dk .

The Helmholtz free energy per volume <F is given by
T = elol - TSlol. (19)

The entropy per particle of the quark matter as a function of the baryonic 
density for two cases of the constant and density dependent ® at different 
temperatures are plotted in Figs.l and 2. For a fixed temperature, we see that 
the entropy per particle decreases by increasing the baryonic density and for 
all relevant densities, it is seen that the entropy increases by increasing the 
temperature.

In Figs.3 and 4, the free energy per volume of the quark matter versus 
the baryonic density for two cases of the constant and density dependent <3 
are presented at diffrent temperatures. We can see that the free energy of the 
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quark matter has positive values for all densities and temperatures. For all 
densities, it is seen that the free energy decreases by increasing the temperature.
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Fig.I. The entropy per particle of the quark matter versus the baryonic density at different 
temperatures for <3 = 90 MeV/fmJ.
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Fig.2. As Fig. I but for the density dependent ®.

To obtain the structure of the strange star, the equation of state of the quark 
matter is needed. For deriving the equation of state, the following equation is 
used,

p(^T) = Xni^-<Fi> (20)

where P is the pressure. The pressure of the quark matter versus the baryonic 
density for two cases of the constant and density dependent <3 are plotted in 
Figs.5 and 6. It is seen that by increasing both density and temperature, the
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Fig.3. The free energy per volume of the quark matter versus the baryonic density at 
different temperatures for ® = 90 MeV/fm\
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Fig.4. As Fig.3 but for the density dependent <B.
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Fig.5. The pressure of the quark matter as a function of the baryonic density at different 
temperatures for ® = 90 MeV/fmJ.
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Fig.6. As Fig.5 but for the density dependent <3.

pressure increases. These figures show that for each temperature, the pressure 
becomes zero at a specific value of the density. We see that the density 
corresponding to zero pressure increases by decreasing the temperature.

3. Structure of strange star. Compact objects like white dwarfs, 
neutron stars and strange stars have limiting masses (maximum mass) and with 
a mass more than the limitting value the hydrostatic stability of the star is 
impossible. For obtaining the maximum mass of the strange star, we use the 
Tolman-Oppenheimer-Volkov equations [29],

dr
dP

(21)

^ = 47r/-2e(r). (22)

By using the equation of state found in the previous section, we integrate the 
TOV equations to calculate the structure of the strange star [29]. The results 
of this calculation are given in the following figures and tables.

Figs.7 and 8 show the gravitational mass versus the central energy density 
at dfferent values of temperature for two cases of the constant and density 
dependent <B. For each value of the temperature, these figures show that the 
gravitational mass increases rapidly by increasing the energy density and finally 
reaches to a limiting value at higher energy densities. It is seen that the limiting 
value of the gravitational mass increases by decreasing temperature. Comparing 
Figs.7 and 8, one concludes that at all temperatures, for the density dependent 
bag constant, the rate of increasing mass with increasing the central density, 
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at lower values of the central densities, is substantially higher than that of the 
case for fixed bag constant, especially at zero temperature. In Figs.9 and 10, 
we have plotted the radius of strange star versus the central energy density for 
both <2 = 90 MeV/fmJ and density dependent ® at different temperatures. 
From Figs.7-10, it can be seen that at each central density, both mass and 
the corresponding radius increase by decreasing the temperature. The gravita­
tional mass of strange star is also plotted as a function of the radius for the 
constant and density dependent ® in Figs.ll and 12. It is seen that for all 
temperatures, the gravitational mass of strange star increases by increasing the 
radius and it approaches a limiting value (maximum mass). Figs.ll and 12 
show that by decreasing the temperature, the limiting values of mass and the 
corresponding radius both increase.

Fig.7. The gravitational mass of the strange stay as a function of the central energy density 
at different temperatures for <B = 90 MeV/fmJ.

Central Energy Density (10Hgr/cm3)

Fig.8. As Fig.7 but for the density dependent ®.
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Fig. 10. As Fig.9 but for the density dependent <B.

Fig. 11. The gravitational mass of the strange star as a function of the radius at different 
temperatures for <B = 90 MeV/fmJ.
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Fig.12. As Fig.11 but for the density dependent ®.

In Tables I and 2, the maximum mass and the corresponding radius and 
central energy density of the strange star at different temperatures for two cases 
of the constant and density dependent ® are given. It is shown that by 
decreasing the temperature, the maximum mass of strange star increases. This 
behavior is also seen for the radius of strange star versus the temperature. 
Meanwhile, the central energy density decreases by decreasing the temperature.

Table I

MAXIMUM MASS Mntax IN SOLAR MASS UNIT MQ AND THE 
CORRESPONDING RADIUS R AND CENTRAL ENERGY DENSITY 
e։. OF THE STRANGE STAR AT DIFFERENT TEMPERATURES T

FOR <B = 90 MeV/fm3

T (MeV) R (km) ec (IO14 gr/cm3)

0 1.354 7.698 38.24
30 1.228 7.073 47.54
70 1.101 6.416 60.60
80 1.039 6.142 63.65

Table 2

AS TABLE 1 BUT FOR THE DENSITY DEPENDENT <B

T (MeV) R (km) ec (1 O'4 gr/cm3)

0 1.676 8.761 39.11
30 1.341 7.442 48.47
70 1.181 6.768 61.56
80 1.122 6.567 64.21
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By comparing Tables 1 and 2, we can see that for all temperatures, the 
maximum mass and the corresponding radius calculated with the constant <8 
are less than those calculated with the density dependent (B.

4. Summary and Conclusion. We have considered a pure quark matter 
for the strange star to calculate the structure properties of this object at finite 
temperature. For this purpose, some thermodynamic properties of the quark 
matter such as the entropy, free energy and the equation of state have been 
computed using the constant and density dependent bag constant <3. It was 
shown that the free energy of the quark matter decreases by increasing the 
temperature while the entropy of this system increases by increasing the 
temperature. It was indicated that by increasing the temperature, the equation 
of state of the quark matter becomes stiffer. We have calculated the gravitational 
mass of the strange star by numerically integrating the Tolman-Oppenheimer- 
Volkoff equations. Our results show that the gravitational mass of the strange 
star increases by increasing the central energy density. It was shown that this 
gravitational mass reaches a limiting value (maximum mass) at higher values 
of the central energy density. We have found that the maximum mass of the 
strange star decreases by increasing the temperature. It was also shown that the 
maximum mass and radius of the strange star in the case of density dependent 
(B are higher than those in the case of constant (B.
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ВЫЧИСЛЕНИЕ ИНТЕГРАЛЬНЫХ ПАРАМЕТРОВ 
СТРАННОЙ ЗВЕЗДЫ С ИСПОЛЬЗОВАНИЕМ 
ФОРМАЛИЗМА ПРОБЛЕМЫ МНОГИХ ТЕЛ

Г.Х.БОРДБАР1-, А.ПУСТФОРАШ1, АЗАМАНИ1

Мы рассмотрели сразу после коллапса сверхновой вещество горячей 
странной звезды, состоящее из странных, up and down кварков, и вычислили 
характеристики этой системы при конечной температуре с использованием 
зависящей от плотности постоянной кваркового мешка. Мы использовали 
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для параметризации зависящей от плотности постоянной кваркового мешка 
результаты, полученные нами при рассмотрении асимметричной ядерной 
материи в низшем порядке связанного вариационного метода. Наши 
вычисления структурных характеристик странной звезды при различных 
температурах показывают,что максимальная масса убывает с увеличением 
температуры. Мы сравнили также наши результаты с результатами, 
полученными в модели с неизменной постоянной кваркового мешка. 
Зависяшяя от плотности постоянная кваркового мешка приводит к большим 
значениям максимальной массы и радиуса странной звезды.

Ключевые слова: странная звезда:уравнение состояния .структура
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