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The absolute tensorial equations describing the dynamics of a superfluid in General 
relativity have been brought into the same form as the corresponding classical equations written 
in 3-vector forms. The expressions of the various forces acting on an element of superfluid are 
explicitly displayed. In the Newtonian limit, these equations give the classical equations of 
motion of a superfluid in Galilean space-time.
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1. Introduction. The covariant equation describing the dynamics of 
superfluids in the presence of vortices may be written in the following form JI]

^^hui^S'J (1)

where V denotes the operator of covariant derivation, u' (i= 1, 2, 3, 4) the 
4-velocity ( U/U՛ =-c2 ) of the element of superfluid and h the specific enthalpy, 
i.e. enthalpy per particle. The antisymmetric tensor Sü embodies the properties 
of the system of vortices and is defined by

Sa=-wev(L), (2a)

e'j(L)=-u'(L)wj(L)+uj (£>'(£), (2b)
where u'(L) and w'(L) are respectively the 4-velocity of the vortex and the 
unit spacelike vector defining the direction of the vortex. The scalar w

w2 = Wyw'J , W/J = 2v(, huJ} (3)

is proportional to the proper density of vortices. The permutation symbol n 
is given by

Let us note that Eqs.(l) and (2) may also be derived from the Klein-Gordon 
equation describing the wave function of the superfluid condensate [2].

Substitution of (2) in (1) yields the following form for the dynamical 
equation of rotating superfluids
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Vr hus] = | w T)^ u' (l) wJ (Z). (5)

As it is well known, a difficulty inherent to the theory of general relativity 
is the lack of a unique mathematical representation of the physically measurable 
quantities in terms of the corresponding absolute tensorial quantities; accord­
ingly the physical interpretation of Eq.(5) is not immediate, it necessitates the 
specification of the relations connecting these two sets of quantities.

In recent notes [3,4] the physical interpretation of the covariant London 
equation was developed by applying Cattaneo's projection method [5]. This 
method has a purely tensorial character and absolute tensorial equations are 
transformed into a form similar to that of classical physics with added terms 
representing the influence of the gravitational field. This result is attained by 
the introduction, by means of projection operators suitably defined, of various 
"standard" quantities relative to the chosen system of reference S, quantities 
which transform according to the classical tensorial law on changes of coor­
dinates internal to the system of reference S, and by adopting an operator of 
transverse derivation, partial or covariant, with respect to the x4 -lines.

The purpose of this note is to present an alternate formulation of the basic 
dynamical equations of superfluidity in curved space-time adopting Cattaneo's 
method. From the natural projections of the absolute tensor Eq.(l) we shall 
derive a set of two standard relative equations: (i) the standard equation of 
motion with respect to the chosen system of reference S, associated to the 
physically admissible coordinates |x'|, displaying explicitly the various forces 

acting on the superfluid, (ii) the standard equation describing the standard 3- 
velocity field with the various physical sources which make the curl of the 
standard velocity different from zero.

We shall regard this note as a continuation of our previous paper [3] 
(henceforth referred as paper I), .we thus avoid spending space in recalling the 
definitions and properties of: (i) a system of reference S and the natural 
projections of a tensor relative to S, (ii) the transverse partial and covariant 
derivation operators, (iii) the standard relative quantities which, for the problem 
under consideration, permit the introduction of the familiar language of physics. 
We shall suppose that the reader has paper I. at hand; references of the form 
[1-2.3] are to be understood as equation (2.3) of paper I.

2. Standard relative dynamical equations for superfluids. Let 
K4 be the domain of space-time occupied by the superfluid, (xz), /=1, 2, 
3, 4 with x4 = ct a physically admissible coordinate system and

ds2 = gijdx'dxJ < 0, g^dx^dx^ > o) (a, p = 1,2,3) (6)

the metric form of signature +2 with the corresponding condition of the 
physical admissibility of the coordinates. With respect to the physical system 
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of reference S associated to the coordinates (x') (S being formed by the oo3 
ideal particles having the x4 -lines as world lines with unit tangent vectors y 
(y4 =1/7՜^44 . Ya=°) the 4-vector w'(£) defining the direction of the 

vortices satisfies the condition
y/w/(l) = Y4w4(Z) = 0 or w4(Z) = 0, (7)

i.e. the tensorial index i of w, is purely spatial.
Proceeding exactly as in paper I, we first express ut and Sff in Eq.(5) in 

terms of the corresponding natural projections Pe(ui) = -y^j uJ, Pz(ui) = 

= (gij+7iyj)uJ - lij uJ » belonging respectively to the subspaces of the tangent 

space Tx at the event x, 0X and Ex respectively parallel and orthogonal to 
y , and of the projections P^Sy), P^Sy) and belonging respectively 
to the subspaces s®E, E®0, 0®E of TX®TX. With reference to (1-2.3, 
2.5, 2.6) Eq.(5) may be written in the form

V|//։“yj+Vl' h՝J] =Slj-Slyj+yiSj , (8)

where
Uj =PL(uJ)=rvj, tj = Pe(«y) = crYy, (r = (l-v2/c2)’1/2)> (9)

vy being the standard relative 3-velocity as defined by (1-2.11) with v2 = ya₽vav₽ 
its spatial form (1-2.14).

Using the expressions of the natural projections P^ and P&+ P6r of the 
alternated derivatives V / huJ} (respectively V(/ At7]) as given by (1-3.5) the 
corresponding projections of Eq.(8) may be exhibited in the form:

Projection EE: {fothu)y + cATQ/y = Sy , (10a)

Projection E0 + 0E: yy (a4 hu,+ 3, cT A- cT A^4(y,/y4)- S/log^- #44 ]}֊ 

-y/{34 hiij+dj crh-crA^4(yy/y4)- aylog7֊g44]}= -St y; + y, Sj , (10b) 

where 34 = y434 and d, =dt -(yi/yifen are respectively, in Cattaneo's termi­
nology, the longitudinal and partial transverse derivatives. Qy = P^ Qy = 
= Y4^/(yj/Y4)՜ 3;(y//y4)) is the space vortex tensor characterizing the system 
of reference S [5], [1-3.4]. We recall that in Eqs.(10a,b) the latin indices are 
purely spatial (i.e. the components Tut vanish whenever a covariant index takes 
the value 4).

On multiplying Eq. (10b) by Yy we obtain
a4(AiZa)+aaCrA-crA|34(Ya/y4)-aalog77^7]=-5a • <11)

Expressing ua in terms of the covariant components va = y^F3 = y^ dx^/dT 
of the standard relative 3-velocity v , dT = -yldx‘ jc being the interval of 
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standard time relative to the system of reference S [5], [1-2.10, 2.14] and 
defining the standard relative specific enthalpy in the following manner

A=Ar (12)
(the above definition is similar to that of the standard relative mass as 
introduced by Cattaneo [5], [1-2.15]; this is not surprising since h plays the 
role of an effective mass), Eqs.(10a) and (11) may be written

(nth + ch Qap = 5ap , (13)

d4(hua) = -chda\og/^ -chd4(ya/y4)-cda h-Sa . (14)
With reference to Eqs.(2) 5O(= -y£yJ S„), in terms of the standard relative 
3-velocity u₽(£) and direction w7(£) of the vortex, is given by:

[r(£)=(l֊ff։(zy?)^] (14,)

where n/y/= Ti/y/mym.
Eq. (13) may be exhibited in yet a second form which is more convenient for 

physical interpretation. To this end, multiplying Eq.(13) by /1 we introduce 
the dual vectors of the skew-symmetric tensors (ro

(ro/i7)a = |na₽a(mZi7)po ,

so that Eq.(13) reads

(roth u)“ = -2h co“ + — 1 + -^v 
2cl c >

/y and Sy [1-3.10, 3.12]

(15a)

va(£)r(Z), 05b)

r(£)w“(£) (16)

I C ~ ~ i
where co“ =-T1a₽0Op։j is the angular velocity of the system of reference S 

[5], [1-3.14]. Eqs.(14) and (16) provide a description of the dynamics of 
vortices and of the velocity field of the superfluid in terms of standard quantities 
relative to the system of reference S associated to the physically admissible 
coordinates {a/}.

The left hand side of Eq.(14) is the time derivative of the relativistic 
standard 3-momentum of a "superfluid particle"; accordingly on the right hand 
side appears the sum of the various forces acting on that "particle". The first 
two terms represent the influence of the gravitational field, the third term 
represents the force arising from the inhomogeneities of the velocity and of 
pressure fields, finally the last term expresses the force exerted by the quantum 
vortices on the superfluid (this force with a minus sign coincides with the 
Magnus force acting on the vortices).
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As it is well known from Landau condition, in the absence of a gravitational 
field and of vortices, the curl of the momentum field must be equal to zero. 
In the case of a rotating superfluid the generation of vortices gives a nonzero 
contribution to the curl. Eq.(16) shows that the gravitational field gives the 
additional term -2Am“ and the inhomogeneous pressure field modifies the 
term representing the contribution of vortices into *5“. Finally let us note 
that Eqs.(14) and (16) are valid for relativistic velocity fields within the frame 
of General relativity theory.

It is not without interest to obtain the Newtonian limits of Eqs.(14) and 
(16) in the absence of vortices. The derivation of the corresponding Newtonian 
equations from the standard relative equations (14) and (16) shows that 
Cattaneo's approach provides a simple method for the investigation and inter­
pretation of physical phenomena in curved space-time.

To recover the Newtonian theory we have to make the following approximations: 
(i) static universe i.e. ga4 = 0 which implies da = da and the vanishing of the space 

vortex tensor Qap (or cua = 0), (ii) daIog7-g 44 = 3a 1 +~r « da(<p/c2), (iii)
\ c J 

ua=t>“=^—, u4 = 0 and r = (1 -ü2/c2)l/2 « 1.
a dt \ ' 1

Taking into account the above approximations Eq.(14) may be written in 
the form

d4va +cda + + câalogA = 0.
C 2> c . (17)

/ h \ 1Setting h = me2 1 + , where hK is the enthalpy per particle in the Newtonian

theory we get the well known equation of motion e.g. [6]

du v2 , n
a7+vl(₽+T+M = 0- (18)

In the limiting situation under consideration Eq.(16) reduces to the Landau 
condition roti? = 0 characterizing the superfluid velocity field.

3. Conclusion. Adopting Cattaneo's projection method we have presented 
an alternate formulation of the dynamical equations for superfluids valid in 
curved space-time. These equations display explicitly the various forces acting 
on a "superfluid particle" and have a form similar to the classical dynamical 
equations. In the Newtonian limit we recover the well known classical equations 
describing the motion of superfluid matter in Galilean space-time.
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ДИНАМИЧЕСКИЕ УРАВНЕНИЯ СВЕРХТЕКУЧЕЙ 
ЖИДКОСТИ В ИСКРИВЛЕННОМ ПРОСТРАНСТВЕ-

ВРЕМЕНИ И МЕТОД ПРОЕКТИРОВАНИЯ 
КАТТАНЕО

Р.КРИКОРЯН1, Д.М.СЕДРАКЯН-’

Тензорные уравнения, описывающие динамику сверхтекучей жидкости 
в Общей теории относительности, получены в том же виде, что и 
классические уравнения, написанные в 3-векторной форме. Приведены 
выражения для различных сил, действующих на элемент сверхтекучей 
жидкости. В ньютоновском пределе эти уравнения переходят в классические 
уравнения движения сверхтекучей жидкости в плоском пространстве- 
времени.

Ключевые слова: сверхтекучая жидкость:динамические уравнения - Общая 
теория относительности
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