АСТРОФИЗИКА

TOM 52

АВГУСТ, 2009

выпуск 3

УСТОЙЧИВОСТЬ СТРАННЫХ КАРЛИКОВ II. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

Ю.Л.ВАРТАНЯН, Г.С.АДЖЯН, А.К.ГРИГОРЯН, Т.Р.САРКИСЯН Поступила 12 декабря 2008 Принята к печати 29 апреля 2009

Для исследования устойчивости странных карликов для кварковых сердцевин с $M_{0 \text{ cov}} / M_{\odot} = 10^{-4}$, $5 \cdot 10^{-4}$, 10^{-3} , $5 \cdot 10^{-3}$, 10^{-2} , $1.31 \cdot 10^{-4}$, $1.6 \cdot 10^{-2}$, $1.7 \cdot 10^{-2}$, $2 \cdot 10^{-2}$, в каждом отдельном случае были вычислены серии странных карликов для конфигураций, у которых ρ_{w} меняется от значений в белых карликах до $\rho_{dep} = 4.3 \cdot 10^{11}$ г/см³, при которой в коре рождаются свободные нейтроны. Для серий с $M_{0 \text{ cov}} / M_{\odot} < 0.0131$ потеря устойчивости происходит при $\rho_{w} < \rho_{dep}$. Для серий с $M_{0 \text{ cov}} / M_{\odot} < 0.0131$ равенство $\rho_{w} = \rho_{dep}$ имеет место прежде чем масса странного карлика достигает своего максимального значения. Хотя для таких конфигураций квадаат частоты радиальных пульсаций основной моды $\omega_0^3 > 0$, однако они неустойчивы относительно перехода в состояние странных звезд. При таком переходе выделится энергия порядка энергии при взрыве сверхновых. Показано, что гравитационное красное смещение белых и карликах карликах существенно различимы в объсли мальх и предельных (больших) масс.

Ключевые слова: странные звезды:странные карлики:устойчивость

1. Введение. В [1] показано, что исследование устойчивости странных карликов удобно проводить применением статического критерия устойчивости [2]. С этой целью в данной работе исследуются серии странных карликов со следующими фиксированными значениями массы покоя кварковой сердцевины $M_{0\,cove}/M_{\odot} = 10^{-4}$, $5 \cdot 10^{-4}$, 10^{-3} , $5 \cdot 10^{-3}$, 10^{-2} , $1.31 \cdot 10^{-2}$, $1.6 \cdot 10^{-2}$, $1.7 \cdot 10^{-2}$, $2 \cdot 10^{-2}$. Для сравнения с тем же уравнением состояния [3,4] были вычислены также массы и радиусы обычных белых карликов (*wa*). Часть результатов вычислений приведена на рис.1-4 и в табл.1 и 2. Число рассмотренных нами серий и конфигураций в отдельных сериях гораздо больше включенных в эти таблицы.

2. Результаты вычислений. В табл.1 для фиксированных кварковых сердцевин приведены массы покоя и радиусы, значения плотности энергии ρ_c , давления P_c в центре и давления P_c на поверхности кварковой сердцевины для каждой серии конфигураций, имеющих $R = R_{max}$. $M = M_{max}$ и $\rho_{tr} = \rho_{drip}$. Для кварковых сердцевин с $M_{0\,core}/M_{\odot} = 0.017, 0.02$, условие $\rho_{tr} = \rho_{drip}$ имеет место прежде, чем радиус и масса странного карлика достигнут максимального значения, поэтому для них в табл.1 приведены лишь данные для постепних двух столбцов. Значения ρ_c показывают

Ю.Л.ВАРТАНЯН И ДР.

Таблица 1

ПЛОТНОСТЬ ЭНЕРГИИ ρ_c , ДАВЛЕНИЕ P_c В ЦЕНТРЕ И ДАВЛЕНИЕ P_{μ} НА ПОВЕРХНОСТИ КВАРКОВЫХ СЕРДЦЕВИН ДЛЯ КОНФИГУРАЦИЙ С МАКСИМАЛЬНЫМ РАДИУСОМ, МАКСИМАЛЬНОЙ МАССОЙ И ПРЕДЕЛЬНОЙ ПЕРЕХОДНОЙ ПЛОТНОСТЬЮ КОРЫ ($\rho_{dr} = \rho_{drip}$), $\rho_0 = 4.735 \cdot 10^{14} \text{ г/сm}^3 -$ ПЛОТНОСТЬ ЭНЕРГИИ ПРИ $n = n_{drip}$

M _{0 core} M ₀	R _{mar}	Максимальный радиус			Максимальная масса			ρ _μ = ρ _{μiρ} Ρ _μ =0.4875KэB/φμ	
		P_{e} , $(\rho_{e}-\rho_{0})$,		P	P _e ,	(ρ _c -ρ ₀),	Per	Ρ,	$(\rho_e - \rho_0)$
1.		МэВ/фм	10 ¹² r/cm	КэВ/фм³	МэВ/фм ³	10"T/car	КэВ/фм	МэВ/фм	10 ¹² r/cm ³
0.0001	0.46	0.0422062	0.249028	0.0000011	0.0422067	0.24903	0.000536	0.04269	0.25193
0.0005	0.79	0.1236803	0.732710	0.0000350	0.1236819	0.73272	0.001571	0.12417	0.73562
0.001	1.00	0.1967128	1.166260	0.0001830	0.1967150	1.16628	0.003376	0.19720	1.16917
0.005	1.71	0.5810921	3.447670	0.0134060	0.5811296	3.44790	0.050226	0.58158	3.45054
0.01	2.15	0.9310209	5.524050	0.0987260	0.9311655	5.524910	0.240113	0.93142	5.52642
0.0131	2.26	1.1205226	6.648280	0.2215760	1.1207974	6.649910	0.487523	1.12079	6.64991
0.016	2.52	1.2857209	7.628200	0.4180870				1.28579	7.62863
0.017	2.57							1.340711	7.95437
0.02	2.71				-			1.500250	8.90057

насколько мало изменяется плотность кваркового вещества. Так, при увеличении $M_{0\,corr}/M_{\odot}$ от 10^{-4} до 0.02 плотность энергии в центре кварковой сердцевины увеличивается менее чем на два процента. Из табл.1 видно, что у поверхности кварковой сердцевины имеет место скачок плотности энергии более чем на три порядка.

В табл.2 для каждой серии, в зависимости от переходной плотности ρ_{tr} , приведены значения массы и радиуса sd. В случае wd приведена зависимость массы и радиуса от центральной плотности ρ_c . Для каждой серии расчеты продолжены до значений $\rho_{tr} = \rho_{drip}$. Жирным шрифтом выделены данные для конфигураций, которые соответствуют $R = R_{mex}$, $M = M_{mex}$ и $\rho_{tr} = \rho_{drip}$.

Таблица 2

ЗАВИСИМОСТЬ МАССЫ И РАДИУСА СТРАННЫХ КАРЛИКОВ ОТ ПЕРЕХОДНОЙ ПЛОТНОСТИ КОРЫ р. ДЛЯ РАЗЛИЧНЫХ КВАРКОВЫХ СЕРДЦЕВИН

	WD		$M_{0 \text{corr}} = 0.0001 M_{\odot}$			
ρ _c , r/cm ³	M/M _o	R, KM	ρ, Γ/см3	M/M _e	R, 104	
1	2	3	4	5	6	
1.12E+02	0.0007	18589	1.868E+07	0.0001	56	
1.35E+03	0.0089	21557	1.887E+07	0.0001	140	
1.94E+03	0.0170	22391	1.905E+07	0.0021	14122	
1.95E+03	0.0172	22408	1.913E+07	0.0192	22535	

Таблица 2 (продолжение)

1	2	3	4	5	6	
3.27E+03	0.0274	23141	1.919E+07	0.0282	23051	
2.74E+04	0.0513	17900	1.937E+07	0.0370	21171	
9.13E+04	0.1024	14362	2.110E+07	0.1218	13718	
3.36E+05	0.2004	11816	2.973E+07	0 3430	9663	
1.06E+06	0.3259	9905	4.155E+07	0 5104	7973	
1.90E+06	0.4184	8882	6.833E+07	0.6697	6511	
4.51E+06	0.5561	7607	1.325E+08	0.8110	5071	
1.07E+07	0.6664	6550	1.800E+08	0.8689	4526	
3.79E+07	0.8174	5009	3.100E+08	0.9396	3833	
8.96E+07	0.9110	4110	7.300E+08	1 0092	2983	
3.03E+08	1.0050	3114	1.800E+09	1 0188	2352	
1.01E+09	1.0193	2328	1.900E+09	1.0192	2296	
1.56E+09	1.0082	2157	2,200E+09	1 0158	2222	
9.85E+09	0.9070	1320	2.600E+10	0.8694	1067	
6.00E+10	0.8115	795	1 600E+11	0.7566	620	
4.300E+11	0.6762	484	4.300E+11	0.6875	497	
Ma	= 0.0005	Ma	M	= 0.001 M		
1.921E+08	0.0005	13	76315+09	0.0010	55	
2 236E+08	0.0005	144	7 0805+08	0.0010	406	
2 2695+08	0.0003	12659	9.046EL08	0.0015	10247	
2 275E+08	0.0112	21203	8.040E+08	0.0013	10/16	
2 2805-08	0.0133	21323	8.033ET08	0.0061	22044	
2 2012-08	0.0273	20726	0.0/4ET00	0.0201	10965	
2.2712.08	0.0502	16166	0.103E+08	0.0505	16005	
2.3232100	0.0005	10100	8.1072-08	0.0016	10203	
2.4402108	0.1050	0252	8 080ET08	0.1465	10111	
3 3805-08	0.5070	7046	0.782EL08	0.3033	9572	
3 9075-08	0.5117	7169	1.427E+00	0.7020	6140	
7 2825-08	0.0075	1696	2 215 00	0.7020	4291	
1 2235-00	0.0540	4000	2.2150-09	0.0600	4501	
26365-09	1 0110	2702	5 203E+00	1 0107	2222	
A 241E+09	1.0176	2/32	7.097E1.00	1.0107	2/4/	
4.2416709	1.0170	2307	7.00712-09	1.0151	2413	
4.3375709	1.0177	2505	0.0926-00	1.0159	2510	
4.0/JETU9	1.0133	1090	9.0020709	1.0070	2203	
3.720ET10	0.8709	1089	0./10ETIU	0.0372	911 612	
2.3/85+11	0.7509	606	2.940E+11	0.7500	612	
4.300E+11 0.708		520	4.3002+11	0.7250	530	
$M_{0 com} = 0.005 M_{\odot}$						
2.096E+10	0.0050	75	8.718E+10	0.0100	32	
2.270E+10	0.0051	1053	1.086E+11	0.0105	2270	
2.280E+10	0.0053	3230	1.089E+11	0.0146	8115	
2.288E+10	0.0182	16064	1.090E+11	0.0241	11780	
2.289E+10	0.0248	16542	1.092E+11	0.0482	13059	
2.291E+10	0.0313	16321	1.093E+11	0.0561	13019	
2.301E+10	0.0610	14712	1.099E+11	0.1170	12043	
2.331E+10	0.1464	12235	1.115E+11	0.2526	10105	
2.454E+10	0.3648	9151	1.133E+11	0.3640	8901	
2.607E+10	0.5308	7628	1.164E+11	0.4989	7690	
2.854E+10	0.6912	6087	1.209E+11	0.6213	6597	

Таблица 2 (окончание)

1	2	3	4	5	6	
2014E+10	0.9347	3696	1.280E+11	0.7318	5480	
5.914E+10	1 0002	2489	1.490E+11	0.8794	4068	
6 530E+10	1.0011	2381	2.198E+11	0.9804	2607	
6 586E+10	1.0012	2365	2.341E+11	0.9822	2430	
6 677E+10	1.0011	2340	2.351E+11	0.9822	2420	
6.913E+10	0.9995	2281	2.369E+11	0.9822	2401	
1.990E+11	0.8696	1196	2.622E+11	0.9703	2188	
3.539E+11	0.8213	910	2.946E+11	0.9467	1997	
4.300E+11	0.8049	843	4.300E+11	0.8921	1508	
Moa	ww = 0.0131	Mo	$M_{0 \text{ corr}} = 0.016 M_{\odot}$			
1.9895E+11	0.0131	92	1.9895E+11	0.01601	17	
2.1981E+11	0.0140	2566	2.9460E+11	0.01603	46	
2.2051E+11	0.0199	7847	3.3438E+11	0.01605	98	
2.2081E+11	0.0308	10695	3.5393E+11	0.01608	200	
2.2143E+11	0.0653	12012	3.7349E+11	0.01957	4857	
2.2169E+11	0.0804	11946	3.7386E+11	0.02204	6363	
2.2346E+11	0.1707	10843	3.7461E+11	0.03335	9498	
2.3058E+11	0.4086	8334	3.7572E+11	0.06292	11193	
2.3775E+11	0.5530	7127	3.7647E+11	0.08455	11293	
2.7470E+11	0.8182	4544	3.7721E+11	0.10569	11182	
2.9460E+11	0.8778	3971	3.8102E+11	0.20028	10199	
3.2247E+11	0.9296	3440	3.9305E+11	0.40408	8231	
3.5393E+11	0.9578	3047	4.0343E+11	0.52003	7281	
4.1260E+11	0.9692	2564	4.1260E+11	0.58669	6679	
4.2658E+11	0.9700	2471	4.2483E+11	0.65704	5976	
4.300E+11	0.9701	2451	4.300E+11	0.68324	5716	
4.3001E+11	0.9700	2449	4.3099E+11	0.68443	5705	
6.5933E+11	0.9592	2210	4.3902E+11	0.69294	5622	
Mo	core = 0.017 A		$M_{0 \text{ corr}} = 0.02 M_{\odot}$			
1.28E+11	0.01701	10	2.20E+11	0.0200110	11	
2.38E+11	0.01702	18	3.15E+11	0.0200204	15	
3.15E+11	0.01703	33	3.93E+11	0.0200301	21	
3.54E+11	0.01704	49	4.13E+11	0.0200328	23	
3.73E+11	0.01705	64	4.30E+11	0.0200358	24	
3.93E+11	0.01706	89	4.34E+11	0.0200359	25	
4.03E+11	0.01707	110		ACCESSION OF A		
4.13E+11	0.01708	144	1 2 3 4	713.7 H		
4.24E+11	0.01711	232		12.22	The state of the	
4.29E+11	0.01713	315	DOM: N			
4.30E+11	0.01714	339			11 TO 1 TO 1	
4.47E+11	0.01719	484				

Известно (это следует также из табл.2 и рис.1), что для wd с увеличением центральной плотности ρ_c масса растет и при $\rho_c = 1.01 \cdot 10^9 \, \text{г/см}^3$ достигает максимума $M_{max} = 1.02 \, M_{\odot}$ – точки потери устойчивости. Для wd при малых массах ($M/M_{\odot} \le 0.032$) радиус $R(\rho_c)$ также растет, после чего до потери устойчивости радиус уменьшается. Из этих данных следует, что

зависимости $M(\rho_c)$ и $R(\rho_c)$ для wd имеют плавный вид.

Иная ситуация для sd. Здесь при увеличении ρ_{tr} до значений, близких к предельному в случае белых карликов, масса и радиус sd определяются в основном кварковой сердцевиной - кривые $M(\rho_{tr})$ и $R(\rho_{tr})$ горизонтальны (рис.1). Так, для конфигурации $M_{0\,core}/M_{\odot} = 0.005$ при $\rho_{tr} = 7.5 \cdot 10^8$ г/см³ масса коры $M - M_{core} = 3 \cdot 10^{-9} M_{\odot} << M_{core}$. И далее в весьма узком интервале

Рис.1. Зависимость массы M (сплошные кривые) и радиуса R (пунктирные кривые) странных карликов от плотности энергии коры ρ_{\star} над кварковой сердцевиной. У кривых указаны соответствующие значения массы покоя (M_{0} and $/M_{\odot}$) фиксированных кварковых сердцевин.

изменения ρ_{tr} масса круго растет, достигает максимума $M_{max}/M_{\odot} = 1.001$ при $\rho_{tr} = 6.6 \cdot 10^{10}$ г/см³, где происходит потеря устойчивости. Аналогичный вид имеет также зависимость радиуса от ρ_{tr} . Кривая $R(\rho_{tr})$, которая достигает максимума, как в случае белых карликов, при малых массах имеет иглообразный вид и при фиксированной кварковой сердцевине достигает максимума раньше чем кривая $M(\rho_{tr})$. При увеличении массы кварковой сердцевины в два раза ($M_{0 cove}/M_{\odot} = 0.01$), как видно из табл.2 и рис.1, горизонтальные участки зависимости $M(\rho_{tr})$ и $R(\rho_{tr})$ достигают значения $\rho_{tr} = 10^{11}$ г/см³, что на два порядка болыпе предельного значения центральной плотности устойчивых белых карликов.

Для объяснения такого вида $M(\rho_t)$ в случае маломассивной коры $M-M_{core} \ll M_{core}$ проинтегрируем уравнение равновесия в ньютоновском приближении для коры

$$P_{tr} = \int_{R_{core}}^{R} (GM/r^2) \rho \, dr = (GM_{core}/4\pi R_{core}^4) \beta^4 \Delta M ,$$

$$\beta^4 = \left\langle (R_{core}/r)^4 \right\rangle, \quad \Delta M = M - M_{core} .$$
(1)

 $(I_{core} < R)$ коры $\beta^4 << 1$. В первом случае из (1) следует, что давление в коре пропорционально массе коры $P_{tr} \sim \Delta M$, а в случае протяженной коры ($R_{core}/R << 1$) рост давления в коре резко - ((R_{core}/R)⁴ << 1 раза) замедляется. Так как с ростом плотности давление монотонно растет (см. рис.1, [1]), то в коре таким же будет поведение плотности, т.е. в тонкой коре плотность быстро растет, после чего ее рост резко замедляется. Когда масса коры становится сравнима и болыше массы кварковой сердцевины, в игру вступает гравитационное поле коры (самогравитация коры), ситуация становится похожа на ситуацию в белых карликах - при определенном значении $\rho_{tr} M(\rho_{tr})$ достигает максимального значения, происходит потеря устойчивости.

При увеличении массы покоя кварковой сердцевины от 10^4 до $10^{-2} M_{\odot}$ предельная масса *sd* уменышается на два-три процента в то время, как ρ_{tr} , при которой происходит потеря устойчивости, увеличивается от $1.9 \cdot 10^9$ г/см³ для $M_{0 \text{ core}}/M_{\odot} = 10^{-4}$ до $2.3 \cdot 10^{11}$ г/см³ для $M_{0 \text{ core}}/M_{\odot} = 10^{-2}$. Значения R_{max} для тех же кварковых сердцевин уменьшаются от 23000 до 13058 км. Для массы покоя кварковой сердцевины $M_{0 \text{ core}}/M_{\odot} = 0.0131$ значение ρ_{tr} , при котором $M(\rho_{tr})$ имеет максимум, приравнивается ρ_{drip} . Для $M_{0 \text{ core}}/M_{\odot} = 0.016$ ρ_{tr} приравнивается ρ_{drip} , когда кривая $M(\rho_{tr})$ еще не достигла максимального значения, а кривая $R(\rho_{tr})$ только что (при плотности $\rho_{tr} = 3.8 \cdot 10^{11}$ г/см³) прошла через максимальную точку. Поэтому значение радиуса *sd* предельной конфигурации $R(\rho_{drip}) = 5720$ км, как следует из табл.2, более чем дважды превосходит значения радиусов предельных конфигураций предыдущих серий.

Две последние серии с $M_{0 core}/M_{\odot} = 0.017$ и 0.02 при $\rho_{tr} = \rho_{drip}$ имеют массу $M(\rho_{drip})$, которая незначительно превосходит массу кварковой сердцевины. Радиусы этих конфигураций намного меньше радиусов странных карликов. Так, по данным табл.2 в первом случае R=339 км, а во втором - 24.4 км. Согласно табл.3 работы [5] в точке минимума кривой $M(\rho_c, \rho_{tr} = \rho_{drip})$ для кварковой сердцевины имеем $M_{0 core}/M_{\odot} = 0.0169$. Так что две последние серии относятся к странным звездам малой массы с тонкой корой, для которых $dM/d\rho_c > 0$ (участок *ab* рис.1 [5]).

Опдельно рассмотрим конфигурации *sd* для различных кварковых сердцевин, когда $\rho_{tr} = \rho_{drip}$. Параметры таких моделей приведены в табл.1 и 2, значения их масс можно сравнить на рис.1, если восстановить вертикаль $\rho_{tr} = \rho_{drip}$. Все серии разобьем на две группы. К первой отнесем конфигурации с $M_{0\,corr}/M_{\odot} < 0.0131$, для которых масса *sd* оказывается меньше предельной

массы данной серии $M(\rho_{drlp}) < M_{max}$ - такие конфигурации неустойчивы. Они соответствуют участку *cd* кривой $M(\rho_c, \rho_{tr} = \rho_{drlp})$, рис.1 [5], на котором $(dM/d \rho_c) > 0$. Для таких неустойчивых конфигураций квадрат частоты основной моды радиальных пульсаций отрицателен (рис.2 [6]). Однако отсюда нельзя делать заключение, что такие кварковые сердцевины не могут образовать устойчивые странные карлики. Как следует из вышеприведенных результатов, в этом случае каждая кварковая сердцевина может образовать серию устойчивых странных карликов, для которых предельное значение ρ_{tr} , при котором происходит потеря устойчивости, меньше ρ_{drlp} .

Для второй группы $M_{0\,core}/M_{\odot} > 0.0131$ и ρ_{e} достигает своего максимального значения р_{drip} прежде, чем масса странного карлика достигает М_ точки потери устойчивости (M(p drip) < M max). Эти конфигурации расположены на участке bc кривой $M(\rho_c, \rho_r = \rho_{drig})$, рис.1 [5], для которых $dM/d\rho_c < 0$. Согласно рис.2 [6] для этих конфигураций квадрат частоты основной моды радиальных пульсаций больше нуля ($\omega_0^2 > 0$), откуда делается заключение, что они устойчивы. Однако так как для второй группы предельные конфигурации соответствуют условию $\rho_{dr} = \rho_{drlp}$, то все они, несмотря на наличие условия $\omega_0^2 > 0$, находятся на пределе устойчивости, т.е. аналогичны конфигурациям с $\omega_0^2 = 0$ первой группы. Так, если при фиксированной кварковой сердцевине чуть увеличить, например в результате аккрещии, массу коры, или произвести радиальные пульсации, то ρ_{tr} станет больше ρ_{drip} у поверхности кварковой сердцевины родятся нейтроны, которые перейдут в кварковое состояние сердцевины, увеличив его массу (полное чиско барионов). Так как в рассматриваемом случае вместе с условием $dM/d\rho_c < 0$ имеет место также $dM_{0\,corr}/d\rho_c > 0$, то кварковая сердцевина большей массы может в равновесии удерживать кору меньшей массы, чем начальная. Такая конфигурация станет неравновесной - она перейдет на ветвь странных звезд (сл) с тонкой ядерно-электронной корой в состояние с тем же числом барионов (область ab рис.1 [5]). Радиус таких конечных конфигураций R. порядка 10 км, т.е. такой, как у типичных нейтронных звезд. При таком переходе выделится энергия $\Delta W_G \sim GM^2/R_{\rm res}$, которая того же порядка, что при взрыве сверхновых. Таким образом, конфигурации этой группы нельзя считать устойчивыми. В этом случае для каждой фиксированной кварковой серпневины удаленность sd от критического состояния ("запас" устойчивости) тем больше, чем больше разность $\rho_{drip} - \rho_{tr} > 0$.

На рис.2 для различных серий странных карликов с фиксированной кварковой сердцевиной приведена зависимость массы от радиуса. Аналогичная кривая для обычных белых карликов весьма близка к кривой с малой сердцевиной ($M_{0\,cove}/M_{\odot} = 10^{-4}$) и поэтому не приведена. Рядом с кривыми указаны соответствующие им массы покоя кварковых сердцевин. До значения максимальных масс различных серий конфигурации устойчивы.

Для таких конфигураций с ростом массы растет также ρ_{tr} и соответствующее ему значение плотности ρ_{e} в центре кварковой сердцевины.

Рис.2. Зависимость массы от радиуса для различных серий странных карликов. У кривых указаны массы покоя фиксированных кварковых сердцевин в массах Солнца.

На рис.3 для белого карлика с $M/M_{\odot} = 0.032$ и странного карлика с $M_{0 \text{ соге}}/M_{\odot} = 10^{-3}$ и $M/M_{\odot} = 0.026$, для которых радиус имеет максимальное значение и в случае wd $R = R_{\text{max}} = 23140$ км, а в случае sd $R = R_{\text{max}} = 22040$ км, приведены изменения плотности $\rho(r)$ и накопленной массы M(r) по радиусу конфигурации. Из этого рисунка видно, что для

Рис.3. Зависимость плотности энергии $\rho(r)$ и накопленной массы M(r) от раднуса белого карлика с $M / M_{\odot} = 0.032$ (сплощные кривые) и странного карлика $M_{\odot} / M_{\odot} = 10^{-3}$ и $M / M_{\odot} = 0.026$ (пунктирные кривые), у которых раднус имеет максимальное значение.

sd плотность намного превосходит плотность белого карлика липь в центральной области, примыкающей к кварковой сердцевине.

На рис.4 для белых карликов и различных серий sd, в зависимости от массы конфигураций, приведены значения гравитационного красного смещения с поверхности Z_s в единицах скорости v км/с, эквивалентной доплеровскому смещению ($v = cZ_s$ при Z << 1, с -скорость света). Рядом с кривыми указаны соответствующие значения $M_{0\,cove}/M_{\odot}$. На рисунке удалена область, где кривые различных кварковых сердцевин весьма

• Рис.4. Зависимость гравитационного красного смещения Z, с поверхности странного карлика в единицах скорости.

близки. Различие красных смещений для различных M_{0core} существенны при малых массах, где радиусы различных серий достигают максимальных значений, а также у максимумов кривых $M(\rho_{er})$. Хотя у максимумов $M(\rho_{er})$ это различие меньше, чем при малых массах, однако наблюдать это различие при 100 км/с гораздо легче, чем при 1 км/с. Из рис.4 видно, что гравитационное красное смещение с поверхности странных карликов с $M = M_{0 core}$ больше, чем у sd с $M \sim M_{\odot}$, однако из-за малых размеров таких звезд ($R \sim 1$ км, рис.2) их трудно наблюдать.

3. Выводы. Странные карлики - сверхплотные звезды, у которых в центре имеется странная звезда малой массы ($M_{0\,core}/M_{\odot} < 0.017$) и кора, состоящая из атомных ядер и вырожденного электронного газа, плотность которой может на два порядка превосходить предельную плотность обычных белых карликов. Масса и радиус таких конфигураций могут достигать

массы и радиуса белых карликов. Кора не находится в фазовом равновесии с кварковой сердцевиной и изолируется от нее электростатическим полем, достигающим у поверхности кварковой сердцевины $10^{17} + 10^{18}$ В/см [8]. С увеличением массы коры плотность у поверхности кварковой сердцевины растет, но не может превосходить $\rho_{drop} = 4.3 \cdot 10^{11}$ г/см³, при которой в коре рождаются свободные нейтроны, которые беспрепятственно пройдут в кварковую сердцевины, увеличив его массу. Масса, полное число барионов, радиус странных карликов однозначно определяются центральной плотностью энергии ρ_c и плотностью энергии коры ρ_{dr} у поверхности кварковой сердцевины.

Для исследования устойчивости странных карликов необходимо рассматривать всю область изменений ρ_e и ρ_b . Этого можно достичь рассмотрением серий конфигураций с фиксированной массой покоя (полного числа барионов) кварковой сердцевины и различными значениями массы коры, что позволяет для этих исследований применить свободный от громоздких математических выкладок статический критерий устойчивости [2]. В каждой серии с увеличением ρ_b масса странного карлика M растет и при M_{--} происходит потеря устойчивости.

Показано, что для серий с $M_{0 core}/M_{\odot} < 0.0131$ при потере устойчивости $\rho_{dr} < \rho_{drip}$. Если для них вычисления продолжить до значения $\rho_{dr} = \rho_{drip}$, то для каждой серии конфигурации с $M(\rho_{drip})$ расположены на нисходящей ветви $M(\rho_{dr}) (M(\rho_{drip}) < M_{max})$ - такие конфигурации неустойчивы. Для них квадрат частоты радиальных пульсаций основной моды меньше нуля ($\omega_0^2 < 0$) [6,7]. Однако в силу вышеотмеченного, из этого нельзя делать заключение, что такие кварковые сердцевины не могут образовать устойчивые странные карлики.

Для серии с $M_{0 core}/M_{\odot} = 0.0131$ потеря устойчивости происходит при $\rho_{tr} = \rho_{drip}$, т.е. $M_{max} = M(\rho_{drip})$. Для странных карликов, у которых $M_{0 core}/M_{\odot} > 0.0131$, условие $\rho_{tr} = \rho_{drip}$ имеет место прежде чем кривая $M(\rho_{tr})$ достигнет максимума. Поэтому для таких серий для предельной конфигурации $M(\rho_{drip}) \omega_0^2 > 0$ [6,7]. Однако, несмотря на это, такие конфигурации неустойчивы относительно перехода в состояние странных звезд с тем же полным числом барионов, у которых весьма тонкая ядерноэлектронная кора [5], и радиус порядка радиуса нейтральных звезд. При таком переходе выделяется энергия порядка энергии при взрыве сверхновых.

Данная работа выполнена в рамках темы №130, финансируемой Министерством образования и науки РА.

Ереванский государственный университет, Армения, e-mail: yuvartanyan@ysu.am

УСТОЙЧИВОСТЬ СТРАННЫХ КАРЛИКОВ. П

STABILITY OF STRANGE DWARFS. II. RESULT OF CALCULATION

YU.L.VARTANYAN, G.S.HAJYAN, A.K.GRIGORYAN, T.R.SARKISYAN

For investigation of stability of strange dwarfs we studied the sequences of strange dwarfs with following fixed values of quark core mass of rest $M_{0 \text{ core}}/M_{\odot} = 10^{-4}$, 5 · 10⁻⁴, 10⁻³, 5 · 10⁻³, 10⁻², 1.31 · 10⁻², 1.6 · 10⁻², 1.7 · 10⁻², 2 · 10⁻². In each case the sequences of strange dwarfs were calculated for configurations in which ρ_{tr} changes from values in white dwarfs to $\rho_{dre} = 4.3 \cdot 10^{11} \text{ g/cm}^3$, at which in the crust free neutrons are produced. In each sequence with increase of ρ_{e} , the mass of strange dwarfs increases too and there is a loss of stability in peak of mass. For the sequences with $M_{0,corg}/M_{\odot} < 0.0131$ the loss of stability occurs at $\rho_{tr} < \rho_{drip}$. For the sequences with $M_{0 corr}/M_{\odot} > 0.0131$ the equality $\rho_{tr} = \rho_{drip}$ occurs before the mass of the strange dwarf reaches its maximal value $(M(\rho_{drig}) < M_{max})$. In spite of such configurations have square of frequency of radial pulsation for basic mode more zero ($\omega_0^2 > 0$), but they are instable to transition in the state of strange stars with some total number of baryons and radius which order of neutron stars radius. Such transition accompanied with a creation of energy as for of energy of explosion of supernova is given off. It is shown that the gravity red shift is in white and strange dwarfs essentially discernible in range of small and limiting (large) masses.

Key words: strange stars:strange dwarfs:stability

ЛИТЕРАТУРА

- 1. Ю.Л.Вартанян, Г.С.Аджян, А.К.Григорян, Т.Р.Саркисян, Астрофизика 52, 325, 2009.
- 2. Я.Б.Зельдович, Вопросы космогонии, 9, 157, Изд. АН СССР, 1963.
- 3. G.Baym, C.Pethick, P.Sutherland, Astrophys. J., 170, 299, 1971.
- 4. R.P.Feynman, N.Metropolis, E.Teller, Phys. Rev., 75, 469, 2001.
- 5. Ю.Л.Вартанян, А.К.Григорян, Т.Р.Саркисян, Астрофизика, 47, 223, 2004.
- 6. N.K. Glendenning, Ch. Kettner, F. Weber, Phys. Rev., Lett., 74, 3519, 1995.
- 7. N.K. Glendenning, Ch. Kettner, F. Weber, Astrophys. J., 450, 253, 1995.
- 8. C.Alcock, E.Farhi, A.Olinto, Astrophys. J., 310, 261, 1986.