АСТРОФИЗИКА

TOM 52

ФЕВРАЛЬ, 2009

ВЫПУСК 1

УРАВНЕНИЕ СОСТОЯНИЯ ВЕЩЕСТВА НЕЙТРОННОЙ ЗВЕЗДЫ В РЕЛЯТИВИСТСКОЙ ТЕОРИИ СРЕДНЕГО ПОЛЯ И МАКСВЕЛЛОВСКИЙ ФАЗОВЫЙ ПЕРЕХОД К СТРАННОМУ КВАРКОВОМУ ВЕЩЕСТВУ

Г.Б.АЛАВЕРДЯН

Поступила 21 мая 2008 Принята к печати 12 ноября 2008

В рамках релятивистской теории среднего поля рассматривается уравнение состояния вещества нейтронной звезды, когда учитывается также скалярно-изовекторное δ -мезонное эффективное поле. Значения констант теории численно определяются так, чтобы воспроизвести эмпирически известные характеристики симметричного ядерного вещества при плотности насыщения. Изучаются термодинамические характеристики как асимметричного нуклонного вещества, так и β -равновесной адронно-электронной *пре*-плазмы. В предположении, что переход к странному кварковому веществу является обычным фазовым переходом первого рода, описываемым построением Максвелла, детально исследуются изменения параметров фазового перехода, обусловленные наличием δ -мезонного поля. Для описания кварковой фазы используется усовершенствованная версия модели мешка, в которой взаимодействия параметра мещка в интервале $B \in [60,120]$ МэВ/Фм³ определены характеристики фазового перехода и показано, что учет δ -мезонного поля приводит к уменьщению давления фазового перехода и контервания n_{α} и n_{α} в точке фазового перехода.

Ключевые слова: (звезды:)нейтронные:сверхплотное вещество: уравнение состояния:кварки

1. Введение. Изучение структурных характеристик и состава конституентов вещества при экстремально больших плотностях и температурах помимо самостоятельного, фундаментального значения имеет также весьма важную роль для выяснения физической природы внутреннего строения и интегральных параметров нейтронных звезд. Квантово-полевой подход позволяет в рамках квантовой адродинамики (КАД) достаточно адекватно описать свойства ядерного вещества и конечных ядер, рассматривая их как систему сильновзаимодействующих барионов и мезонов. Одной из эффективно применяемых теорий такого рода является релятивистская теория среднего поля [1-3]. В этой теории получены результаты, удовлетворительно описывающие структуру конечных ядер [4], уравнение состояния ядерного вещества [5] и особенности рассеяния тяжелых ионов [6]. Параметры модели среднего поля, характеризующие взаимодействие

нуклона с σ , ω , ρ мезонами, удается самосогласованно определить, исходя из эмпирических данных относительно симметричного ядерного вещества вблизи плотности насыщения. Это в свою очередь приводит к возможности получения уравнения состояния сверхплотного, изоспиново-асимметричного ядерного вещества. В этих исследованиях считалось, что массы скалярноизоскалярного (σ), векторно-изоскалярного (ω) и векторно-изовекторного (ρ) мезонов и их константы связи не зависят от плотности и значений полей. Кроме того, в состав обменных мезонов не включен скалярноизовекторный δ -мезон ($a_n(980)$).

В работах [7,8] построены модели релятивистской теории среднего поля, в предположении, что массы нуклона и обменных мезонов в ядерной среде подчиняются скейлинговому закону Брауна-Ро [9]. Результаты показали, что учет зависимости массы от плотности приводит к более жесткому уравнению состояния вещества. Включение в схему скалярно-изовекторного δ -мезона и исследование его роли для асимметричного ядерного вещества в области малых плотностей проведено в [10-12]. В работах [13-15] этот подход был применен для исследования процессов рассеяния нейтроноизбыточных тяжелых ионов средних энергий и возможности образования в процессе столкновения адронно-кварковой смешанной фазы.

Целью данной работы является исследование уравнения состояния вещества нейтронной звезды в рамках релятивистской теории среднего поля и изучение изменений параметров фазового перехода первого рода, обусловленных учетом вклада δ -мезонного обмена. Полученные результаты позволят выяснить как будут влиять эти изменения на интегральные характеристики и структуру гибридных нейтронных звезд с сердцевиной из кваркового вещества.

2. Лагранжиан и термодинамические характеристики нуклонной системы. Плотность нелинейного лагранжиана взаимодействующей многочастичной системы, состоящей из нуклонов и изоскалярноскалярного σ-мезона, изоскалярно-векторного ω-мезона, изовекторноскалярного δ-мезона и изовекторно-векторного ρ-мезона, в КАД имеет вид

$$\mathcal{L} = \overline{\psi}_{N} \left[\gamma^{\mu} \left(i \partial_{\mu} - g_{\omega} \omega_{\mu}(x) - \frac{1}{2} g_{\rho} \overline{\tau}_{N} \cdot \overline{\rho}_{\mu}(x) \right) - \left(m_{N} - g_{\sigma} \sigma(x) - g_{\delta} \overline{\tau}_{N} \cdot \overline{\delta}(x) \right) \right] \psi_{N} + \frac{1}{2} \left(\partial_{\mu} \sigma(x) \partial^{\mu} \sigma(x) - m_{\sigma}^{2} \sigma(x)^{2} \right) - U(\sigma(x)) + \frac{1}{2} m_{\omega}^{2} \omega^{\mu}(x) \omega_{\mu}(x) - \frac{1}{4} \Omega_{\mu\nu}(x) \Omega^{\mu\nu}(x) + (1) + \frac{1}{2} \left(\partial_{\mu} \overline{\delta}(x) \partial^{\mu} \overline{\delta}(x) - m_{\delta}^{2} \overline{\delta}(x)^{2} \right) + \frac{1}{2} m_{\rho}^{2} \overline{\rho}^{\mu}(x) \overline{\rho}_{\mu}(x) - \frac{1}{4} \mathcal{R}_{\mu\nu}(x) \mathcal{R}^{\mu\nu}(x),$$

где $x = x_{\mu} = (t, x, y, z)$, $\sigma(x)$, $\omega_{\mu}(x)$, $\bar{\delta}(x)$, $\bar{\rho}_{\mu}(x)$ поля σ , ω , δ , ρ обменных мезонов соответственно, $U(\sigma)$ - нелинейная часть потенциала σ поля и

Будем использовать естественную систему единиц $\hbar = c = 1$.

дается формулой [16]

$$U(\sigma) = \frac{b}{3} m_N (g_\sigma \sigma)^3 + \frac{c}{4} (g_\sigma \sigma)^4 , \qquad (2)$$

 $m_N, m_\sigma, m_\omega, m_\delta, m_\rho$ - массы свободных частиц, $\Psi_N = \begin{pmatrix} \Psi_F \\ \Psi_n \end{pmatrix}$ - изоспиновый дублет нуклонных биспиноров, $\bar{\tau}$ - изоспиновые 2 x 2 матрицы Паули. Знаком " \rightarrow " обозначены векторы в пространстве изотопического спина. В Лагранжиан, как и в квантовой электродинамике, входят также антисимметричные тензоры векторных полей $\omega_\mu(x)$ и $\rho_\mu(x)$:

$$\Omega_{\mu\nu}(x) = \partial_{\mu}\omega_{\nu}(x) - \partial_{\nu}\omega_{\mu}(x), \quad \Re_{\mu\nu}(x) = \partial_{\mu}\rho_{\nu}(x) - \partial_{\nu}\rho_{\mu}(x). \tag{3}$$

Через g_{σ} , g_{ω} , g_{δ} и g_{ρ} в (1) обозначены константы связи нуклона с соответствующим мезоном. В релятивистской теории среднего поля мезонные поля $\sigma(x)$, $\omega_{\mu}(x)$, $\bar{\delta}(x)$ и $\bar{\rho}_{\mu}(x)$, зависящие в общем случае от пространственно-временных координат, заменяются на средние (эффективные) однородные и постоянные по времени поля $\bar{\sigma}$, $\bar{\omega}_{\mu}$, $\bar{\delta}$, $\bar{\bar{\rho}}_{\mu}$. Уравнения Эйлера-Лагранжа для нуклонных и мезонных полей позволяют самосогласованно решать задачу и найти в конечном результате уравнение состояния вещества в нуклонной фазе. Переобозначая мезонные поля и константы связи:

$$g_{\sigma} \overline{\sigma} \equiv \sigma, \quad g_{\omega} \overline{\omega}_0 \equiv \omega, \quad g_{\delta} \overline{\delta}^{(3)} \equiv \delta, \quad g_{\rho} \overline{\rho}_0^{(3)} \equiv \rho, \quad (4)$$

$$(g_{\sigma}/m_{\sigma})^2 \equiv a_{\sigma}, \quad (g_{\omega}/m_{\omega})^2 \equiv a_{\omega}, \quad (g_{\delta}/m_{\delta})^2 \equiv a_{\delta}, \quad (g_{\rho}/m_{\rho})^2 \equiv a_{\rho}$$
 (5)

и введя параметр асимметрии

$$\alpha = (n_n - n_p)/n , \qquad (6)$$

уравнения для полей можно представить в виде

$$\sigma = a_{\sigma} \left(n_{sp}(n, \alpha) + n_{sn}(n, \alpha) - b m_N \sigma^2 - c \sigma^3 \right), \tag{7}$$

$$\omega = a_{\omega}n, \qquad (8)$$

$$\delta = a_{\delta} (n_{sp}(n, \alpha) - n_{sn}(n, \alpha)), \qquad (9)$$

$$\rho = -\frac{1}{2}a_{\rho}n\alpha, \qquad (10)$$

где

$$n_{sp}(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{1/3}} \frac{m_p^*(\sigma,\delta)}{\sqrt{k^2 + m_p^*(\sigma,\delta)^2}} k^2 dk , \qquad (11)$$

$$n_{sn}(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_{p}(n)(1+\alpha)^{l/3}} \frac{m_{n}^{*}(\sigma,\delta)}{\sqrt{k^2 + m_{n}^{*}(\sigma,\delta)^2}} k^2 dk , \qquad (12)$$

$$k_F(n) = \left(\frac{3\pi^2 n}{2}\right)^{1/3}.$$
 (13)

Эффективные массы протона и нейтрона определяются выражениями

$$m_{\mu}^{\bullet}(\sigma, \delta) = m_N - \sigma - \delta, \quad m_{\mu}^{\bullet}(\sigma, \delta) = m_N - \sigma + \delta.$$
 (14)

Если известны константы a_{∞} и a_{ρ} , то уравнения (8) и (10) определяют функции $\omega(n)$ и $\rho(n, \alpha)$. Знание же других констант a_{σ} , a_{δ} , b и с позволяет самосогласованно решать систему уравнений (7), (9), (11), (12) и определять две остальные функции мезонных полей $\sigma(n, \alpha)$ и $\delta(n, \alpha)$.

Плотность энергии ядерного *пр* вещества как функция концентрации *n* и параметра асимметрии *α* имеет вид

$$\varepsilon(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{y_3}} \sqrt{k^2 + (m_N - \sigma - \delta)^2} k^2 dk + \frac{1}{\pi^2} \int_{0}^{k_F(n)(1+\alpha)^{y_3}} \sqrt{k^2 + (m_N - \sigma + \delta)^2} k^2 dk + \widetilde{U}(\sigma) + \frac{1}{2} \left(\frac{\sigma^2}{a_{\sigma}} + \frac{\omega^2}{a_{\omega}} + \frac{\delta^2}{a_{\delta}} + \frac{\rho^2}{a_{\rho}} \right),$$
(15)

где

$$\widetilde{U}(\sigma) = \frac{b}{3}m_N \sigma^3 + \frac{c}{4}\sigma^4 .$$
(16)

Для давления ядерного вещества получим

$$P(n, \alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{V^3}} \left(\sqrt{k_F(n)^2(1-\alpha)^{2/3} + (m_N - \sigma - \delta)^2} - \sqrt{k^2 + (m_N - \sigma - \delta)^2} \right) k^2 dk + \frac{1}{\pi^2} \int_{0}^{k_F(n)(1+\alpha)^{V^3}} \left(\sqrt{k_F(n)^2(1+\alpha)^{2/3} + (m_N - \sigma + \delta)^2} - \sqrt{k^2 + (m_N - \sigma + \delta)^2} \right) k^2 dk - \frac{1}{2} \left(-\frac{\sigma^2}{a_\sigma} + \frac{\omega^2}{a_\omega} - \frac{\delta^2}{a_\delta} + \frac{\rho^2}{a_\rho} \right).$$

$$(17)$$

Химические потенциалы протона и нейтрона определяются выражениями:

$$\mu_{p}(n, \alpha) = \sqrt{k_{F}(n)^{2}(1-\alpha)^{2/3} + (m_{N}-\sigma-\delta)^{2}} + \omega + \frac{1}{2}\rho,$$

$$\mu_{n}(n, \alpha) = \sqrt{k_{F}(n)^{2}(1+\alpha)^{2/3} + (m_{N}-\sigma+\delta)^{2}} + \omega - \frac{1}{2}\rho.$$
(18)

3. Определение констант модели. Эмпирические характеристики насыщенного ядерного вещества и константы теории. Для определения констант теории a_{σ} , a_{ω} , a_{δ} , a_{ρ} , b и с можно получить систему уравнений, связывающих эти параметры с эмпирически известными характеристиками симметричного ядерного вещества при концентрации насыщения n_0 (см. [17]). Считая, что эффективная масса нуклона в симметричном ядерном веществе ($\alpha = 0$) при концентрации насыщения n_0 связана с голой массой нуклона выражением

$$m_N^* = \gamma \, m_N \,, \tag{19}$$

где ү - постоянная, значение которой находится в интервале 0.7 ÷ 0.8,

для о поля при концентрации насыщения n имеем

$$\sigma_0 = (1 - \gamma) m_N . \tag{20}$$

Из уравнений (9) и (10) следует, что при концентрации насыщения в симметричном ядерном веществе $\delta_0 = 0$ и $\rho_0 = 0$. Требуя, чтобы приходящаяся на нуклон энергия $\varepsilon(n, \alpha)/n$ имела минимум при $n = n_0$ и $\alpha = 0$, получим

$$\frac{d \varepsilon(n, \alpha)}{dn} \bigg|_{\substack{n=n_0\\\alpha=0}} = \frac{\varepsilon(n_0, 0)}{n_0} = m_N + \hat{f}_0 , \qquad (21)$$

где $f_0 = B/A$ удельная энергия связи ядра, без учета кулоновского взаимодействия и конечности размеров ядра.

Пользуясь выражением (15), из (21) можно получить

$$a_{\omega} = \frac{1}{n_0} \left(m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2} \right).$$
(22)

Поле же ω₀ для симметричного вещества при n₀ имеет вид

$$\omega_0 = a_{\omega} n_0 = m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2} . \qquad (23)$$

Из уравнения о поля (7) имеем

$$\frac{\sigma_0}{a_{\sigma}} = \frac{2}{\pi^2} \int_0^{k_F(n_0)} \frac{(m_N - \sigma_0)}{\sqrt{k^2 + (m_N - \sigma_0)^2}} k^2 dk - bm_N \sigma_0^2 - c \sigma_0^3.$$
(24)

Плотность энергии $\varepsilon_0 = n_0(m_N + f_0)$ для симметричного ядерного вещества при концентрации насыщения n_0 представляется в виде

$$\varepsilon_{0} = n_{0} (m_{N} + f_{0}) = \frac{2}{\pi^{2}} \int_{0}^{k_{F}(n_{0})} \sqrt{k^{2} + (m_{N} - \sigma_{0})^{2}} k^{2} dk + \frac{b}{3} m_{N} \sigma_{0}^{3} + \frac{c}{4} \sigma_{0}^{4} + \frac{1}{2} \left(\frac{\sigma_{0}^{2}}{a_{\sigma}} + n_{0}^{2} a_{\omega} \right)$$
(25)

Важной эмпирической характеристикой, определенным образом связывающей феноменологические константы теории, является модуль сжимаемости ядерного вещества, который определяется так

$$K = 9 n_0^2 \frac{d^2}{dn^2} \left(\frac{\varepsilon(n, \alpha)}{n} \right)_{\alpha = 0}^{n - n_0}$$
(26)

Подставляя (15) в (26), можно получить

$$K = 9 a_{\omega} n_0 + 3 \frac{k_F(n_0)^2}{\sqrt{k_F(n_0)^2 + (m_N - \sigma_0)^2}} -$$

$$-9 \frac{n_0(m_N - \sigma_0)^2}{k_F(n_0)^2 + (m_N - \sigma_0)^2} \frac{1}{\frac{1}{a_\sigma} + \frac{2}{\pi^2} \int_0^{k_F(n_0)} \frac{k^4 dk}{\left[k^2 + (m_N - \sigma_0)^2\right]^{3/2}} + 2 bm_N \sigma_0 + 3 c \sigma_0^2} \cdot (27)$$

В полуэмпирической формуле Вейцзеккера член, учитывающий удельную энергию асимметрии нуклонной системы, имеет вид

$$\frac{\varepsilon_{sym}}{n} = E_{sym}(n)\alpha^2 . \tag{28}$$

Г.Б.АЛАВЕРДЯН

Коэффициент энергии асимметрии $E_{sym}(n)$ определяется выражением

$$E_{sym}(n) = \frac{1}{2n} \frac{d^2 \varepsilon(n, \alpha)}{d \alpha^2} \bigg|_{\alpha=0}$$
 (29)

Пользуясь выражением (15), для значения энергии симметрии при концентрации насыщения ядерной материи $E_{sym}^{(0)} = E_{sym}(n_0)$ можно получить

$$E_{sym}^{(0)} = \frac{n_0}{8} a_p + \frac{k_F(n_0)^2}{6\sqrt{k_F(n_0)^2 + (m_N - \sigma_0)^2}} - \frac{1}{2 \frac{n_0(m_N - \sigma_0)^2}{k_F(n_0)^2 + (m_N - \sigma_0)^2}} \frac{1}{\frac{1}{a_5} + \frac{2}{\pi^2}} \int_0^{k_F(n_0)} \frac{k^4 dk}{\left[k^2 + (m_N - \sigma_0)^2\right]^{3/2}}}.$$
(30)

3.1. Определение констант модели. Результаты численного определения констант теории. Для определения констант теории нами использованы следующие значения известных ядерных параметров при насыщении: масса голого нуклона $m_N = 938.93$ МэВ, параметр $\gamma = m_N^*/m_N = 0.78$, концентрация насыщения ядерного вещества $n_0 = 0.153 \, \text{фm}^3$, удельная энергия связи $f_0 = -16.3$ МэВ, модуль сжимаемости K = 300 МэВ, $E_{sym}^{(0)} = 32.5$ МэВ. Формулы (20) и (23) позволяют определить поля σ_0 и ω_0 . Тогда выражения (22), (24), (25), (27) и (30) образуют систему 5-ти уравнений для 6-ти неизвестных констант a_{σ} , a_{ω} , a_{δ} , a_{ρ} , b и с. Из уравнения (30) видно, что учет канала взаимодействия, обусловленного изовекторно-скалярным δ -мезоном, приводит к определенной корреляции значений констант a_{δ} и a_{ρ} .

Таблица 1

ЗНАЧЕНИЯ КОНСТАНТЫ а, ПРИ РАЗНЫХ ЗНАЧЕНИЯХ а,

$a_{\rm g} = (g_{\rm g} / m_{\rm g})^2, \ \Phi {\rm M}^2$	0	0.5	1	1.5	2	2.5	3
$a_{p} = (g_{p} / m_{p})^{2}, \Phi M^{2}$	4.794	6.569	8.340	10.104	11.865	13.621	15.372

В табл.1 представлены значения константы a_p при разных значениях константы a_{δ} . Для выяснения роли учета δ -мезона в дальнейшем будем использовать значение $a_{\delta} = 2.5 \text{ фm}^2$ (см. [11]). Отсутствию δ -канала взаимодействия будет соответствовать значение константы взаимодействия $a_{\delta} = 0$. Заметим, что использованное нами значение $a_{\delta} = 2.5 \text{ фm}^2$ находится в хорошем согласии с результатами работы [18], в которой микроскопическая теория Дирака-Бракнера-Хартри-Фока была применена к асимметрическому ядерному веществу и экзотическим ядрам для исследования плотностной зависимости мезон-нуклонных констант связи. Из рис.2 работы [18], где приводится зависимость параметра a_{δ} от концентрации *n*, видно, что усредненное значение a_{δ} в области $n \approx 0.1 \pm 0.3 \text{ фm}^3$ порядка 65 ГеВ⁻² $\approx 2.5 \text{ фm}^2$.

В табл.2 приведены значения параметров, полученных в результате

численного решения системы пяти уравнений (22), (24), (25), (27) и (30) без учета (σωρ) и с учетом канала взаимодействия, обусловленного изовекторно-скалярным δ-мезоном (σωρδ).

Таблица 2

КОНСТАНТЫ ТЕОРИИ БЕЗ УЧЕТА δ-МЕЗОННОГО ПОЛЯ (σωр) И С УЧЕТОМ ЭТОГО ПОЛЯ (σωρδ)

Параметры	σωρ	σωρδ		
$\begin{array}{c}a_{\sigma}, \Phi M^{2}\\a_{\sigma}, \Phi M^{2}\\a_{\delta}, \Phi M^{2}\\a_{p}, \Phi M^{2}\\b_{r}, \Phi M^{-1}\\c\end{array}$	9.154 4.828 0 4.794 $1.654 \cdot 10^{-2}$ $1.319 \cdot 10^{-2}$	9.154 4.828 2.5 13.621 1.654 · 10 ⁻² 1.319 · 10 ⁻²		

4. Характеристики β - равновесной пре-плазмы и уравнение состояния вещества нейтронной звезды в нуклонной фазе. Найденные нами в предыдущем разделе значения констант релятивистской теории среднего поля a_{σ} , a_{ω} , a_{δ} , a_{ρ} , b и c (см. табл.2) позволяют рассчитать различные характеристики как вещества, имеющего асимметричный протонно-нейтронный состав (*пр* - вещество), так и β - равновесного *пре* - вещества. Плотность лагранжиана *пре* - плазмы в рамках релятивистской теории среднего поля имеет вид

$$\mathcal{L}_{NM} = \mathcal{L} + \overline{\psi}_e (i \gamma^{\mu} \partial_{\mu} - m_e) \psi_e , \qquad (31)$$

где \mathcal{L} - лагранжиан системы, состоящей из нуклонов и $\sigma \omega \rho \delta$ мезонов (см.(1)), ψ - волновая функция электрона, а m_{μ} - его масса. В этом случае для плотности энергии *пре*-плазмы получим

$$\varepsilon_{NM}(n, \alpha, \mu_e) = \varepsilon(n, \alpha) + \varepsilon_e(\mu_e), \qquad (32)$$

где $\varepsilon(n, \alpha)$ - плотность энергии системы $np \, \sigma \omega \rho \delta$, определяемая выражением (26),

$$\varepsilon_{e}(\mu_{e}) = \frac{1}{\pi^{2}} \int_{0}^{\sqrt{\mu_{*}^{2} - m_{*}^{2}}} \sqrt{k^{2} + m_{*}^{2}} k^{2} dk$$
(33)

вклад электронов в плотность энергии, а μ_e - химический потенциал электронов. Для давления *пре*-плазмы имеем

$$P_{NM}(n, \alpha, \mu_e) = P(n, \alpha) + \frac{1}{3\pi^2} \mu_e \left(\mu_e^2 - m_e^2 \right)^{3/2} - \varepsilon_e(\mu_e).$$
(34)

Известно, что в зависимости от значения коэффициента поверхностного натяжения σ_s фазовое превращение ядерного вещества в кварковое вещество может иметь двоякое проявление [19]. Оно может иметь либо характер обычного фазового перехода первого рода с постоянным давлением перехода и скачкообразным изменением плотности (Построение Максвелла), или же может происходить образование смешанного нуклон - кваркового вещества с непрерывным изменением давления и плотности [20]. Во втором случае применение условия глобальной электронейтральности приводит к тому, что для определения параметров фазового перехода и уравнения состояния смешанной фазы становится необходимым знание уравнения состояния β -равновесной заряженной *пре*-плазмы. Для нахождения характеристик β -равновесной, но необязательно нейтральной, *пре*-плазмы необходимо при заданных значениях концентрации *n* и параметра асимметрии α решать систему 4-х уравнений (7)-(10), найти неизвестные средние мезонные поля $\sigma(n, \alpha)$, $\omega(n)$, $\delta(n, \alpha)$ и $\rho(n, \alpha)$. Формулы (18) позволяют определить химические потенциалы нуклонов $\mu_n(n, \alpha)$ и $\mu_p(n, \alpha)$, что дает возможность, используя условие β -равновесия, найти химический потенциал электрона

$$\mu_{e}(n, \alpha) = \mu_{n}(n, \alpha) - \mu_{p}(n, \alpha)$$
(35)

и, в конечном итоге, плотность энергии ε_{NM} и давление P_{NM} β -равновесной *пре*-плазмы. На рис.1 представлена трехмерная картина зависимости приходящейся на барион энергии $E_b(n, \alpha) = \varepsilon_{NM}/n$ от концентрации *n* и параметра асимметрии α в случае β -равновесной заряженной *пре*-плазмы. Линии соответствуют разным фиксированным значениям приходящегося на барион заряда $q = (n_p - n_q)/n = (1 - \alpha)/2 - n_q/n$.

Жирная линия соответствует β-равновесному электронейтральному *пре*веществу. Нижняя поверхность соответствует модели "σωρ", а верхняя -

Рис.1. Трехмерное представление зависимости приходящейся на барион энергии E_b от концентрации *n* и параметра асимметрии α в случае β -равновесной заряженной *пре*плазмы. Верхняя поверхность соответствует модели "σωρδ", а нижняя - "σωρ". Линии соответствуют разным значениям приходящегося на барион заряда.

" σωρδ". Видно, что учет δ -мезонного поля увеличивает значение приходящейся на нуклон энергии, причем это изменение усиливается при увеличении параметра асимметрии ядерного вещества. Параметр асимметрии при фиксированном значении удельного заряда монотонно убывает с увеличением концентрации. На рис.2 представлена зависимость параметра асимметрии в случае электронейтральной *пре*-плазмы от концентрации *n* в рамках двух моделей - "σωρ" и "σωρδ". Видно, что учет δ -мезонного поля, при заданном значении концентрации *n*, уменьшает значение параметра асимметрии α .

На рис.3 приведены зависимости от концентрации барионов *n* эффективных масс протона и нейтрона β -равновесной незаряженной *пре*плазмы в случае модели " $\sigma\omega\rho\delta$ ". Заметим, что в модели " $\sigma\omega\rho$ " значения эффективных масс протона и нейтрона одинаковы. Учет δ -мезонного среднего поля нарушает симметрию, в этом смысле, между протоном и

Рис.2. Зависимость параметра асимметрии α от концентрации *n* для β-равновесной незаряженной *пре*-плазмы. Сплошная линия соответствует модели "σωρδ", а пунктирная - "σωρ".

Рис.3. Эффективные массы нуклонов в зависимости от концентрации барионов *n* для β-равновесной незаряженной *пре*-плазмы в случае модели "σωρδ". Пунктирная линия соответствует модели "σωρ".

нейтроном, эффективная масса протона в такой среде становится больше эффективной массы нейтрона, т.е. происходит расщепление значений эффективных масс протона и нейтрона.

На рис.4 показаны зависимости концентраций протонов и нейтронов от барионной концентрации *n* для β -равновесной незаряженной *npe*-плазмы. Штриховая прямая соответствует случаю изоспин-симметричного вещества. Из этого рисунка видно, что наличие δ -мезонного поля уменьшает концентрацию нейтронов и увеличивает концентрацию протонов.

На рис.5 представлено рассчитанное нами в модели "σωρδ" уравнение состояния электронейтрального β-равновесного *пре*-вещества (вещества нейтронной звезды в нуклонной фазе). Полученное нами уравнение состояния

Рис.4. Концентрации протонов и нейтронов в зависимости от барионной концентрации для β-равновесной незаряженной *пре*-плазмы. Сплошные линии соответствуют модели "σωρδ", а пунктирные - модели "σωр". Штриховая линия соответствует изоспиносимметричному веществу.

Рис.5. Уравнение состояния вещества нейтронной звезды в нуклонной фазе. Отрезок "MFT- σωρδ" представляет результаты данной работы, "MBJ" - результаты работы [22]. Область, соответствующая ядерно-нейтронному ("Aen") веществу описывается уравнением состояния BBP [21].

(отрезок кривой с обозначением "MFT-σωρδ" на рис.5) в области нормальной ядерной плотности сшито с известным уравнением состояния Байма-Бете-Петика (BBP) [21]. Для сравнения приводится также уравнение состояния Малоне-Бете-Джонсона (MBJ) [22].

5. Уравнение состояния кварк-электронной ("udse") плазмы. Для описания кварковой фазы была использована усовершенствованная версия модели мешка Массачусетского технологического института (MIT) [23], в которой взаимодействия между *u*, *d*, *s* кварками внутри мешка учитываются в приближении одноглюонного обмена [24]. Кварковая фаза состоит из трех кварковых ароматов *u*, *d*, *s* и электронов, находящихся в равновесии относительно слабых взаимодействий, обеспечиваемых реакциями

 $d \rightarrow u + e^- + \tilde{v}_e$, $u + e^- \rightarrow d + v_e$, $s \rightarrow u + e^- + \tilde{v}_e$, $u + e^- \rightarrow s + v_e$. Поскольку частицы v_e и \tilde{v}_e покидают систему, то энергия системы уменьшается и реакции с испусканием нейтрино протекают до тех пор, пока для химического потенциала нейтрино не выполняется условие $\mu_v = 0$. Для химических потенциалов частиц u, d, s, e тогда выполняются условия:

$$\mu_d = \mu_s \equiv \mu, \quad \mu_u + \mu_e = \mu. \tag{36}$$

В рамках квантовой хромодинамики (КХД) в работе [24] для плотности термодинамического потенциала Ω_f кваркового аромата f ($f=u, \dot{d}, s$) получено выражение

$$\Omega_{f}(\mu_{f}) = -\frac{1}{4\pi^{2}} \left\{ \mu_{f} \sqrt{\mu_{f}^{2} - m_{f}^{2}} \left(\mu_{f}^{2} - \frac{5}{2} m_{f}^{2} \right) + \frac{3}{2} m_{f}^{4} \ln \left(\frac{\mu_{f} + \sqrt{\mu_{f}^{2} - m_{f}^{2}}}{m_{f}} \right) - \frac{2}{\pi} \frac{\alpha_{s}}{\pi} \left[3 \left(\mu_{f} \sqrt{\mu_{f}^{2} - m_{f}^{2}} - m_{f}^{2} \ln \frac{\mu_{f} + \sqrt{\mu_{f}^{2} - m_{f}^{2}}}{\mu_{f}} \right)^{2} - 2 \left(\mu_{f}^{2} - m_{f}^{2} \right)^{2} - (37) \right]$$

$$-3 m_f^4 \ln^2 \left(\frac{m_f}{\mu_f}\right) + 6 m_f^2 \ln \left(\frac{\tilde{\rho}}{\mu_f}\right) \left(\mu_f \sqrt{\mu_f^2 - m_f^2} - m_f^2 \ln \frac{\mu_f + \sqrt{\mu_f^2 - m_f^2}}{m_f}\right) \right],$$

где $\alpha_s = g^2/4\pi$, g - константа связи КХД, а $\tilde{\rho} \approx m/3 \approx 313$ МэВ - параметр перенормировки. Концентрации кварков определяются формулой

$$n_f(\mu_f) = \frac{\partial \Omega_f}{\partial \mu_f} = \frac{\mu_f^2 - m_f^2}{\pi^2} \left\{ \sqrt{\mu_f^2 - m_f^2} - 2\frac{\alpha_s}{\pi} \left[\mu_f - \frac{3m_f^2}{\sqrt{\mu_f^2 - m_f^2}} \ln \frac{\mu_f + \sqrt{\mu_f^2 - m_f^2}}{\widetilde{\rho}} \right] \right\} \cdot (38)$$

Для электронов термодинамический потенциал Ω, и концентрация определяются выражениями

Г.Б.АЛАВЕРДЯН

$$\Omega_{e}(\mu_{e}) = -\frac{1}{\pi^{2}} \int_{0}^{\sqrt{\mu_{e}^{2} - m_{e}^{2}}} \left(\mu_{e} - \sqrt{k^{2} + m_{e}^{2}}\right) k^{2} dk , \quad n_{e}(\mu_{e}) = \frac{\left(\mu_{e}^{2} - m_{e}^{2}\right)^{3}}{3\pi^{2}} .$$
(39)

Условие электронейтральности "udse" плазмы имеет вид

$$\frac{2}{3}n_{\mu}-\frac{1}{3}n_{d}-\frac{1}{3}n_{s}-n_{e}=0.$$
 (40)

Это уравнение позволяет, используя функции $n_u(\mu, \mu_e)$, $n_d(\mu)$, $n_s(\mu)$ и $n_e(\mu_e)$ из формул (38) и (40), определить функцию $\mu_e(\mu)$ и, в конечном итоге, функции - $\Omega_u(\mu)$, $\Omega_d(\mu)$, $\Omega_s(\mu)$, $\Omega_e(\mu)$.

Давление "*udse*" плазмы при заданном значении химического потенциала µ определяется формулой

$$P_{QM}(\mu) = -\sum_{i=u,d,s,e} \Omega_i(\mu) - B, \qquad (41)$$

где *В* - постоянная "мешка", характеризующая вакуумное давление и обеспечивающая конфайнмент.

Плотность энергии "udse" плазмы ε_{QM} и концентрация барионов n_{QM} определяются выражениями

$$\varepsilon_{QM}(\mu) = \sum_{i=u,d,s,s} (\Omega_i + \mu_i n_i) + B, \qquad (42)$$

$$n_{QM}(\mu) = (n_u + n_d + n_s)/3.$$
(43)

Формулы (41), (42) и (43) в параметрическом виде определяют уравнение состояния кварк-электронной ("*udse*") плазмы – $\varepsilon_{QM}(P)$ и $n_{QM}(P)$. Так же, как и в случае *пре*-плазмы для кварк-глюонного вещества барионный химический потенциал определяется формулой

$$\mu_{\mathcal{QM}}(P) = (P_{\mathcal{QM}} + \varepsilon_{\mathcal{QM}}(P)) / n_{\mathcal{QM}}(P).$$
(44)

6. Фазовый переход к кварковому веществу при постоянном давлении. Современное представление о фазовом переходе между ядерным веществом и кварковым веществом основывается на замеченную впервые Гленденнингом [20,17] особенность этого перехода, заключающуюся в том, что в этом переходе имеются две сохраняющиеся величины - барионное число и электрический заряд. Требование глобальной электронейтральности тогда приводит к возможности образования смешанной фазы, где ядерное и кварковое вещества по отдельности являются электрически заряженными, а общая электронейтральность обеспечивается электронами (лептонами). В случае такого фазового превращения непрерывное поведение имеет не только давление P, но и плотность энергии ε , концентрация барионов n и химический потенциал электрона μ_e .

Вопрос об энергетической выгодности образования смешанной фазы с учетом конечных размеров кварковых структур внутри ядерного вещества, кулоновского взаимодействия и поверхностной энергии были рассмотрены в работах [19,25-27]. В этих работах показано, что смешанная фаза

158

11 1 1 1 1 1 1 1 2 2 1

энергетически выгодна при малых значениях поверхностного натяжения между кварковым и ядерным веществом.

В этой работе мы предпологаем, что превращение ядерного вещества в кварковое вещество является обычным фазовым переходом первого рода, описываемым построением Максвелла. Исследованию изменений характеристик фазового перехода с образованием смешанной фазы [20], обусловленных учетом вклада δ -мезонного поля, а так же влияние этих изменений на интегральные и структурные параметры гибридных звезд будет посвящена отдельная работа. В случае обычного фазового перехода первого рода считается, что как ядерное, так и кварковое вещества по отдельности являются электронейтральными и при некотором значении давления P_0 , соответствующему сосуществованию двух фаз, барионные химические потенциалы обеих фаз совпадают

$$\mu_{NM}(P_0) = \mu_{QM}(P_0).$$
(45)

Заметим, что приходящийся на барион химический потенциал в ядерном веществе определяется выражением

$$\mu_{NM} = \left(\mu_p \, n_p + \mu_n \, n_n + \mu_e^{(NM)} \, n_e^{(NM)}\right) / n \,, \tag{46}$$

и в случае нейтрального, β -равновесного ядерного вещества (в силу условий $n_p - n_*^{(NM)} = 0$ и $\mu_p = \mu_n - \mu_*^{(NM)}$) совпадает с химическим потенциалом нейтрона μ_n , определяемый выражением (29). В случае нейтральной, β -равновесной кварк-глюонной плазмы связь между барионным химическим потенциалом и химическими потенциалами *d* кварка ($\mu_d = \mu$) и электрона ($\mu_{(QM)}^{(QM)}$) имеет вид:

$$\mu_{OM} = 3\mu - \mu_e^{(QM)} \,. \tag{47}$$

7. Результаты численного расчета. В табл.3 представлены результаты расчета параметров фазового перехода в рассмотренной в настоящей работе модели " $\sigma\omega\rho\delta$ + MIT" при постоянном давлении (построение Максвелла) для 12-ти разных значений параметра "мешка" В. Для масс кварков использованы значения $m_u = 5$ МэВ, $m_d = 7$ МэВ и m = 150 МэВ, а для константы сильного взаимодействия - $\alpha_s = 0.5$. В этой таблице μ_b - барионный химический потенциал в точке фазового перехода, n_N и n_Q - барионные концентрации соответственно ядерного и кваркового веществ в точке перехода, ε_N и ε_Q - плотности энергии, $\mu_s^{(NM)}$ и $\mu_s^{(QM)}$ - химические потенциалы электрона соответственно в ядерной и кварковой фазах, P_0 - давление фазового перехода.

Как показано в работе [28] при фазовом переходе первого рода значение параметра скачка плотности

$$\lambda = \varepsilon_Q / (\varepsilon_N + P_0) \tag{48}$$

имеет решающую роль с точки зрения устойчивости нейтронных звезд со сколь угодно малыми ядрами из вещества второй (более плотной) фазы.

Таблица 3

									_
B	μ	n _N	no	Po	εΝ	εQ	μ(NM)	μ(QM)	λ
МэВ/Фм ³	МэВ	Фм-3	Фм ⁻³	МэВ/Фм ³	МэВ/Фм ³	МэВ/Фм ³	МэВ	МэВ	
60	965.9	0.1207	0.2831	2.11	114.5	271.4	99.14	9.205	2.327
65	999.7	0.1787	0.3161	7.218	171.4	308.8	138.0	8.350	1.728
69.3	1032	0.2241	0.3504	13.84	217.5	347.9	166.0	7.588	1.504
70	1038	0.2312	0.3564	15.10	224.9	354.9	170.2	7.464	1.479
75	1079	0.2810	0.4027	25.55	277.6	- 408.8	198.1	6.613	1.349
80	1119	0.3276	0.4525	37.95	328.8	468.6	221.9	5.842	1.278
85	1158	0.3704	0.5036	51.51	377.5	531.8	242.1	5.173	1.240
90	1194	0.4089	0.5541	65.54	422.8	596.2	259.0	4.605	1.221
95	1227	0.4435	0.6029	79.56	464.7	660.4	273.1	4.125	1.213
100	1257	0.4746	0.6497	93.30	503.3	723.5	285.2	3.717	1.213
110	1309	0.5281	0.7369	119.5	572.0	845.4	304.5	3.066	1.223
120	1354	0.5729	0.8165	143.9	631.7	961.4	319.5	2.568	1.240

ПАРАМЕТРЫ МАКСВЕЛЛОВСКОГО ФАЗОВОГО ПЕРЕХОДА ПРИ РАЗНЫХ ЗНАЧЕНИЯХ ПОСТОЯННОЙ "МЕШКА" В

Перефразируя выводы этой работы, в случае адрон-кваркового фазового перехода первого рода имеем следующие условия. Если $\lambda \leq 3/2$, то нейтронная звезда со сколь угодно малым ядром из странного кваркового вещества является устойчивой. В случае же $\lambda > 3/2$ нейтронные звезды с малыми кварковыми ядрами являются неустойчивыми. В последнем случае существует отличное от нуля минимальное значение радиуса кваркового ядра устойчивой звезды. Аккреция вещества на нейтронную звезду при $\lambda > 3/2$ будет приводить к катастрофической (скачкообразной) перестройке звезды с образованием звезды, имеющей кварковое ядро конечных размеров. Подобный катастрофический переход может иметь место и в случае замедления вращающейся нейтронной

Рис.6. Давление фазового перехода P₀ в зависимости от значения постоянной "мешка" В. Сплошная линия соответствует модели "строб", штриховая - "стр.

звезды, когда давление в центре увеличиваясь превышает пороговое значение P_0 . Процесс катастрофической перестройки с образованием в центре звезды кваркового ядра конечного радиуса будет сопровождаться освобождением колоссальной энергии, сравнимой с энерговыделением при взрыве сверхновой. Последний столбец представляет значения параметра скачка λ , при разных значениях постоянной "мешка" *В.* Из табл.З видно, что вышеупомянутой катастрофической перестройке нейтронной звезды (при аккрещии вещества на ее поверхность или замедлении ее вращения) соответствуют первые три варианта уравнения состояния, для которых $B \le 69.3$ МэВ/Фм³.

Рис.6 демонстрирует зависимость давления фазового перехода P₀ от значения параметра "мешка" В. Видно, что учет δ-канала взаимодействия приводит к

Рис.7. Барионные концентрации ядерной материи (n_{N}) и странной кварковой материи (n_{Q}) в точке Максвелловского фазового перехода в зависимости от значения постоянной "мешка" В. Обозначения те же, что и на рис.6.

Рис.8. Уравнения состояния сверхплотного вещества с фязовым переходом Максвелловского типа, рассчитанные в модели " окорб + MFT" при пяти разных значениях параметра В.

уменьшению давления перехода P_0 . Подобные зависимости для барионных концентраций ядерной (n_N) и кварковой (n_Q) фаз в точке фазового перехода показано на рис.7. Видно, что учет скалярно-изовекторного эффективного δ -мезонного поля уменьшает концентрации барионов обеих фаз в точке фазового перехода. Параметр скачка плотности при этом увеличивается.

Рис.8 представляет уравнения состояния сверхплотного вещества с фазовым переходом Максвелловского типа, рассчитанные в нашей модели MFT-"σωρδ + MIT" при пяти разных значениях параметра *B*.

8. Заключение. В этой статье мы исследовали уравнение состояния сверхплотного ядерного вещества в рамках релятивистской теории среднего поля, когда в схему включается также скалярно-изовекторное δ -мезонное эффективное поле. Найденные нами значения констант релятивистской теории среднего поля позволили рассчитать характеристики как асимметричного ядерного вещества, так и β -равновесной *пре*-плазмы. Исследованы зависимости эффективных масс протона и нейтрона от концентрации барионов *n* при заданных значениях параметра асимметрии α и показано, что в асимметричной нуклонной среде эффективная масса протона становится больше эффективной массы нейтрона.

Для β -равновесной *пре*-плазмы исследована зависимость параметра асимметрии α от концентрации барионов при разных значениях приходящегося на один барион электрического заряда и показано, что учет δ -поля уменьшает параметр асимметрии α .

Предполагая, что фазовый переход между ядерным веществом и странным кварковым веществом является обычным фазовым переходом первого рода, описываемым построением Максвелла, подробно исследовано влияние учета δ -мезонного поля на параметры фазового перехода. Для 12-ти разных значений параметра мешка в интервале $B \in [60; 120]$ МэВ/Фм³ определены параметры фазового перехода и показано, что учет δ -мезонного поля лриводит к уменьшению давления фазового перехода P_0 и концентраций сосуществования двух фаз - n_N и n_Q . При этом параметр скачка плотности λ увеличивается. Критическому значению $\lambda_{cr} = 3/2$ соответствует значение параметра мешка $B \approx 69.3$ МэВ/Фм³. При B < 69.3 МэВ/Фм³ параметр скачка плотности $\lambda > \lambda_{cr}$ и конфигурации нейтронных звезд с бесконечно малыми кварковыми ядрами будут неустойчивыми.

Результаты нашего анализа показывают, что скалярно-изовекторное δполе приводит к увеличению жесткости уравнения состояния ядерного вещества, обусловленного расщеплением эффективных масс протона и нейтрона, а так же увеличением энергии асимметрии. Известно, что хорошим источником информации относительно жесткости уравнения состояния плотного вещества является измерение массы компактной звезды. Недавние измерения массы компактной звезды, в двойной системе ассоциированной с пульсаром PSR

В1516+02В, привели к результату $M = 2.08 \pm 0.19 M_{\odot}$ [29]. Существование нейтронных звезд с такими большими массами говорит в пользу реализации более жесткого уравнения состояния, чем уравнения воспроизводящие известное значение $M = 1.44 M_{\odot}$.

Очевидно, что вышеупомянутые изменения уравнения состояния сверхплотного вещества и параметров фазового перехода будут обуславливать соответствующие изменения как структуры, так и значений интегральных характеристик гибридных звезд со странной кварковой сердцевиной. Исследованию конфигураций таких нейтронных звезд, рассчитанных путем инегрирования системы уравнений Толмена-Оппенгеймера-Волкова на основе полученных в настоящей работе уравнений состояния без учета и с учетом скалярно-изовекторного эффективного δ -мезонного поля будет посвящена отдельная статья.

Автор искренне признателен профессору Ю.Л.Вартаняну за ценные советы и поддержку идеи статьи, а так же всем участникам научного семинара кафедры теории волновых процессов и физики радиофизического факультета Ереванского государственного университета за полезные обсуждения.

Данная работа выполнена в рамках темы 2008-130, финансируемой Министерством образования и науки РА.

Ереванский государственный университет, Армения, e-mail: galaverdyan@ysu.am

NEUTRON STAR MATTER EQUATION OF STATE IN RELATIVISTIC MEAN-FIELD THEORY AND MAXWELLIAN PHASE TRANSITION TO STRANGE QUARK MATTER

G.B.ALAVERDYAN

The neutron star matter equation of state is considered in the framework of relativistic mean-field theory, when also the scalar-isovector δ -meson effective field is taken into account. The constants of the theory are numerically determined in a way to reproduce the empirically known characteristics of symmetric nuclear matter at saturation density. The thermodynamic characteristics of both asymmetric nucleonic matter and a β -equilibrium hadron-electronic *npe*-plasma are studied. In the assumption that the transition to strange quark matter is a usual first order phase transition described by Maxwells construction, the phase transition parameters

changes caused by presence of δ -meson field are investigated in details. The advanced version of MIT bag model for the description of a quark phase is used, in which the interactions between quarks are taken into account in one-gluon exchange approach. The phase transition parameters for different values of bag constant in an interval $B \in [60, 120]$ MeV/fm³ are determined and is shown that the account of a δ -meson field results in reduction of pressure of phase transition, P_0 and of concentrations n_N and n_0 at phase transition point.

Key words: (stars:)neutron:superdense matter:equation of state:quarks:

ЛИТЕРАТУРА

- 1. J.D. Walecka, Ann. Phys., 83, 491, 1974.
- 2. B.D.Serot, J.D.Walecka, in Adv. in Nucl. Phys., ed. by J.W.Negele, E.Vogt, v.16, 1986.
- 3. B.D.Serot, J.D.Walecka, Int. J. Mod. Phys., E6, 515, 1997.
- 4. S. Typel, H.H. Wolter, Nucl. Phys., A656, 331, 1999.
- 5. H.Miller, B.D.Serot, Phys. Rev. C52, 2072, 1995.
- 6. C.M.Ko, G.Q.Li, Journal of Phys., G22, 1673, 1996.
- 7. E.E.Kolomeitsev, D.N.Voskresensky, arXiv: 0410063 v1 [nucl-th], 2004.
- 8. C.Y.Ryu, C.H.Hyun, S.W.Hong, B.K.Jennings, arXiv: 0503004 v1 [nucl-th], 2005.
- 9. G.E.Brown, M.Rho, Phys. Rev. Lett., 66, 2720, 1991.
- 10. S. Kubis, M. Kutschera, Phys. Lett., B399, 191, 1997.
- 11. B.Liu, V.Greco, V.Baran, M.Colonna, M.Di Toro, Phys. Rev. C65, 045201, 2002.
- 12. V. Greco, M. Colonna, M.Di Toro, F. Matera, Phys. Rev. C67, 015203, 2003.
- 13. V. Greco et al., Phys. Lett. B562, 215, 2003.
- 14. T.Gaitanos, M.Colonna, M.Di Toro, H.H.Wolter, Phys. Lett. B595, 209, 2004.
- 15. M.Di Toro et al., arXiv: 0602052 v1 [nucl-th], 2006.
- 16. J. Boguta, A.R. Bodmer, Nucl. Phys., A292, 413, 1977.
- 17. N.K. Glendenning, Compact Stars, Springer, 2000.
- 18. F.Hofmann, C.M.Keil, H.Lenske, Phys. Rev., C64, 034314, 2001.
- 19. H.Heiselberg, C.J.Pethick, E.S.Staubo, Phys. Rev. Lett., 70, 1355, 1993. H.Heiselberg, M.Hjorth-Jensen, arXiv: 9902033 v1, [nucl-th] 1999.
- 20. N.K. Glendenning, Phys. Rev., D 46, 1274, 1992.
- 21. G.Baym, H.Bethe, Ch.Pethick, Nucl. Phys., A175, 255, 1971.
- 22. R. Malone, M. Johnson, H. Bethe, Astrophys. J., 199, 741, 1975.
- 23. A.Chodos, R.L.Jaffe, K.Johnson, C.B.Thorn, V.F. Weisskopf, Phys. Rev., D9, 3471, 1974.
- 24. E.Farhi, R.L.Jaffe, Phys. Rev., D30, 2379, 1984.
- 25. O.Benhar, R.Rubino, arXiv: 0410376 v1 [astro-ph], 2004.
- 26. D.N. Voskresensky, M. Yasuhira, T. Tatsumi, Nucl. Phys., A723, 291, 2003.
- 27. T.Marauyma, S.Chiba, H-J.Shultze, T.Tatsumi, arXiv: 0708.3277 v1 [nucl-th], 2007.
- 28. З.Ф. Сеидов, Астрон. ж., 15, 347, 1971.
- 29. P.C.C.Freire et al., arXiv: 0712.3826 v2 [astro-ph], 2008.