АСТРОФИЗИКА

TOM 52

ФЕВРАЛЬ, 2009

выпуск 1

МОРФОЛОГИЧЕСКОЕ И СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ГАЛАКТИК Kaz 5, Kaz 92 и Kaz 390

В.Ж.АДИБЕКЯН, М.А.КАЗАРЯН, Э.Л.КАРАПЕТЯН

Поступила 6 июня 2008 Принята к печати 12 ноября 2008

Приводятся результаты морфологического и спектрального исследований галактик Каz 5, Каz 92 и Каz 390. Наблюдения проводились на 2.6-м телескопе Бюраканской обсерватории с многозрачковым спектрографом ВАГР. Построены изофоты изображений галактик в эмиссионных линиях $\mathrm{H}\alpha$, [NII] $\lambda\lambda6584$, 6548 и [SII] $\lambda\lambda6731$, 6717, а также в непрерывном спектре. Определены массы галактик Каz 5 и Каz 92, которые равны $8.6\times10^8~M_{\odot}$ и $6.1\times10^9~M_{\odot}$, соответственно, а также массы газовых составляющих в центрах областей I и IV галактики Каz 390, охватывающих размеры 1 пиксель. Морфологическая структура центральной части галактики Каz 5 в изучаемой области спектра $\lambda\lambda6400$ – 6800Å совершенно отличается от структуры той же части галактики, наблюдавшейся на снимках 6-м и 2.5-м телескопов. Показано, что такие разницы структур в изображениях Каz 5 в основном объясняются сравнительно низкой разрещающей способностью используемого нами телескопа с ВАГР-ом. Некоторую роль играет также поглощающая материя. Также показано, что в исследуемой области Каz 390 (круг с диаметром 40") наблюдается "дефицит" азота.

Ключевые слова: галактики:УФ-избыток:спектры

1. Введение. Первое наблюдение галактик Казаряна на 2.6-м телескопе Бюраканской обсерватории с многозрачковым спектрографом ВАГР сделано в 2003г., объектом наблюдения был Каз 73. Наблюдения с этой системой продолжаются, последнее наблюдение проведено 17.09.2007г. В течение этого времени получены спектры следующих 12 объектов: Каз 5, Каз 47, Каз 50, Каз 69, Каз 73, Каз 92, Каз 128, Каз 198, Каз 199, Каз 357, Каз 390 и Каз 460. Результаты наблюдения галактики Каз 73 опубликованы в [1], а данные для Каз 69 и Каз 460 - в [2]. В [1] дано описание этой системы и отмечены роли всех необходимых деталей этого спектрографа.

В настоящей работе приводятся результаты исследований галактик Каz 5, Каz 92 и Каz 390. Наблюдения этих галактик были проведены 17.09.2007, 20.09.2007 и 29.04.2005гт., соответственно. Для каждой галактики были получены два спектра с одинаковыми экспозициями, 40 мин, 30 мин и 30 мин, соответственно.

2. Морфология. Угловые размеры Ках 5, Ках 92 и Ках 390 равны 8"x68", 15"x30" и 30"x135" [3-5]. Так как рабочее поле системы ВАГР охватывает круг диаметром 40" [1], то Ках 92 полностью помещается в поле системы, в случае галактик Ках 5 и Ках 390 в поле спектрографа

были подставлены только их центральные части.

Наблюдательный материал обрабатывался программой ADHOCw.

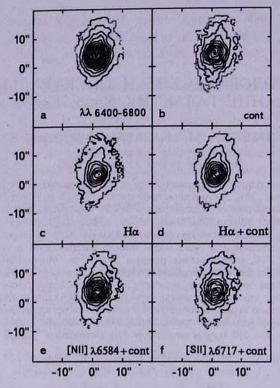


Рис.1a, b, c, d, e и f. Изображения галактики Kaz 5, a) в области $\lambda\lambda6400-6800\,\text{Å}$, b) в области $\lambda\lambda6685-6735\,\text{Å}$, c) в линии $\text{H}\alpha$, d) $\text{H}\alpha+\text{cont}$, e) [NII] $\lambda6584+\text{cont}$ и f) [SII] $\lambda6717+\text{cont}$.

На рис.1а, b, c, d, е и f приведены изображения галактики Каz 5, построенные в виде изофот в произвольных единицах, причем для каждого изображения крайняя (или первая) изофота имеет яркость 2900, 1300, 40, 700, 500 и 370 условных единиц, а яркость каждой следующей изофоты к центру изображения увеличивается на 200, 200, 200, 200, 100 и 100 единиц, соответственно. При построении изображения на рис.1а учтено все излучение, пропускающееся спектрографом $\lambda\lambda6400-6800\text{Å}$, т.е. непрерывное излучение этой области и излучения в линиях $\text{H}\alpha$, [NII] $\lambda\lambda6584$, 6548 и [SII] $\lambda\lambda6731$, 6717. На рис.1b учтено только излучение непрерывного спектра в области $\lambda\lambda6685-6735\text{Å}$, на рис.1c – излучение в линии $\text{H}\alpha$, без излучения непрерывного спектра. На рис.1d, е и f приведены изображения в эмиссионных линиях $\text{H}\alpha$, [NII] $\lambda6584$ и [SII] $\lambda6717$, не отделяя излучение непрерывного спектра наблюдавшегося под ними.

Подобные изображения построены для галактик Каз 92 и Каз 390,

которые приведены на рис.2a, b, c, d и е и на рис.3a, b, c, d, е и f, соответственно. При построении изображений в непрерывном спектре, для галактик Kaz 92 и Kaz 390 взяты спектральные области $\lambda\lambda6540-6600$ Å

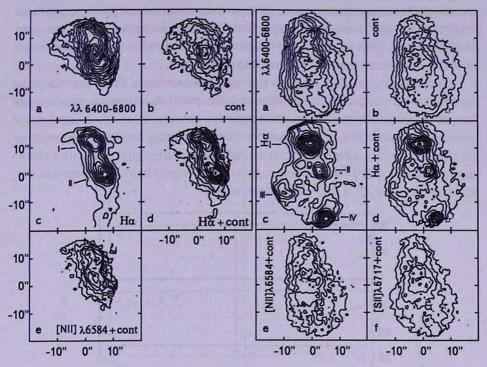


Рис.2a, b, c, d и е. Изображения галактики Каz 92, a) в области $\lambda\lambda6400-6800$ Å, b) в области $\lambda\lambda6540-6600$ Å, c) в линии $H\alpha$, d) $H\alpha+cont$, e) [NII] $\lambda6584+cont$.

Рис.3a, b, c, d, e и f. Изображения галактики Kaz 390, a) в области $\lambda\lambda6400-6800\,\text{Å}$, b) в области $\lambda\lambda6630-6700\,\text{Å}$, c) в линии $\text{H}\alpha$, d) $\text{H}\alpha+\text{cont}$, e) [NII] 6584+cont и f) [SII] $\lambda6717+\text{cont}$.

и $\lambda\lambda6630-6700\text{Å}$, соответственно. Для Каг 92 не построены изображения в линии [SII] $\lambda6717+\text{cont}$, так как эта часть спектра из-за сравнительно большого красного смещения галактики осталась вне наблюдательной области спектрографа. На каждом из изображений, приведенных на рис.1а, 2а и 3а, крестиком отмечена самая яркая часть изображения, каторую дальше условно будем называть "центром" галактики. Этот крестик также приводится и на других изображениях данной галактики.

3. Распределение лучевых скоростей. Лучевые скорости были определены по эмиссионным линиям Hα, [NII] λ6584 и [SII] λ6717 в каждом пространственном элементе. По этим линиям были построены распределения лучевых скоростей для каждой из этих галактик по разным направлениям относительно лучевой скорости "центра" галактики. В дальнейшем для краткости опустим слово "относительное". В каждом направлении были

использованы данные по двум секторам, каждый из которых охватывает область с центральным углом 40°. Так как распределение лучевых скоростей в данном направлении, построенное с помощью вышеотмеченных эмиссионных линий, в основном одинаковое, то в работе приведены только результаты, полученные по значениям лучевых скоростей линии Hα, так как интенсивность этой линии самая большая, а значит, и точность определения лучевых скоростей по этой линии более высокая.

Из графиков, построенных по разным направлениям, были рассмотрены только два. В одном из этих графиков абсолютная величина радиальных скоростей до данного расстояния от центра галактики имеет минимальное значение, а в другом - максимальное. Такие графики, для Каз 5, приведены на рис.4а и b. На каждом из этих графиков приведены значения позиционного угла (ПУ) биссектрис одного из секторов данного направления, которые равны 20° и 110°, соответственно.

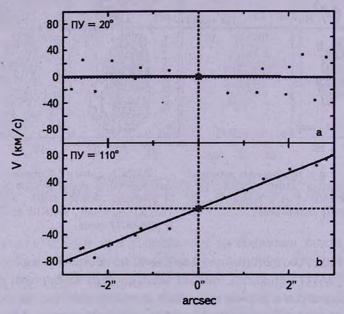


Рис.4а и b. Распределение значений радиальных скоростей на поверхности монохроматических изображений Kaz 5 в линии $H\alpha$, a) $\Pi Y = 20^\circ$, b) $\Pi Y = 110^\circ$.

Подобные графики были построены для галактик Каz 92 и Каz 390. На рис.2с, в галактике Каz 92 четко выделяются две яркие области, которые не совпадают с центром галактики и находятся от него на расстоянии 5".3 к юго-западу и 8".2 к северу (на рис.2с они отмечены I и II), поэтому для этой галактики были построены распределения радиальных скоростей вокруг центра и вокруг центров этих областей, т.е. вокруг трех точек. Из этих графиков видно, что основными являются графики, построенные вокруг

"центра" галактики, а графики, построенные вокруг центров вышеотмеченных областей, лишь отражают общее вращение галактики вокруг центра, т.е. они не имеют автономного вращения. Эти графики одновременно показывают, что "крестик" в действительности является центральной частью галактики, и распределение радиальных скоростей вокруг центра галактики до ±4" в среднем имеет линейный характер, т.е. эта часть галактики вращается как твердое тело. На рис.5а и в приведены два графика, в одном из которых среднее значение радиальных скоростей до ±4" равно ±130 км/с, а в другом - примерно 0 км/с. Направления, для которых построены эти графики, как и следовало ожидать, оказались перпендикулярными. ПУ биссектрис этих перпендикулярных смежных секторов равны 50° и 140° (рис.5а и в).

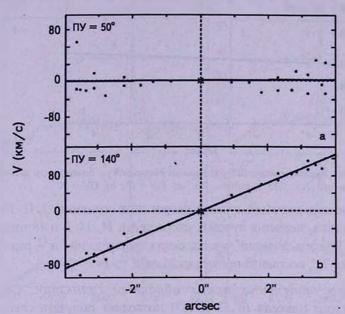


Рис. 5а и b. Распределение значений радиальных скоростей на поверхности монохроматических изображений Каz 92 в линии $H\alpha$, a) $\Pi y = 50^{\circ}$, b) $\Pi y = 140^{\circ}$.

Графики распределения радиальных скоростей, построенные в любом направлении, проходящем через центр галактики Каз 390, а также графики, построенные вокруг центральных частей ярких сгущений I и IV (рис.3с), показывают почти одинаковые распределения. На рис.ба и в приведены графики двух из них, которые по направлениям перпендикулярны и, как видно, значения радиальных скоростей от центра до расстояния ±5" незначительные.

Затруднения построения распределений радиальных скоростей галактики Каз 390 обусловлены несколькими причинами. Каз 390 имеет пространную кривую вращения [6], и максимальная скорость на расстоянии 65" галактики не превышает 55-65км/с [6-8], а также является галактикой с низкой поверхностной яркостью [9], из-за чего вне сгущений интенсивности эмиссионных линий небольшие, и ошибки определения скоростей по этим линиям большие. Однако мы определили средние значения лучевых скоростей для пяти сгущений. Для

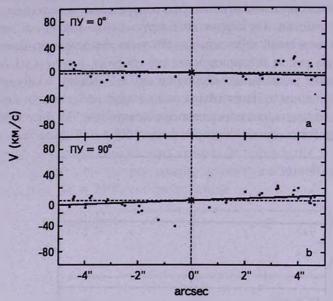


Рис.ба и b. Распределение значений радиальных скоростей на поверхности монохроматических изображений Каz 390 в линии $H\alpha$, a) $\Pi Y = 0^{\circ}$, b) $\Pi Y = 90^{\circ}$.

определения средних значений лучевых скоростей в сгущениях I, II, III и IV (рис.3с) усреднялись значения лучевых скоростей в 14, 14, 9 и 18 пикселях, соответственно. Разность значений лучевых скоростей стущений I и V, расстояние между которыми 28", составила примерно 26 км/с.

4. Спектры отдельных ярких областей галактик. Система ВАГР для каждого пикселя (0".63 x 0".63) позволяет получать спектры в

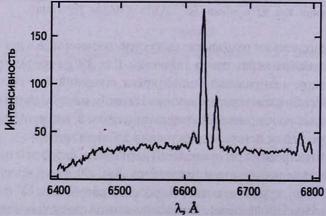


Рис.7. Спектр 1 пикселя центра галактики Каз 5.

диапазоне $\lambda\lambda6400-6800$ Å. Такие спектры, полученные для самых ярких областей галактик Kaz 5, Kaz 92 и Kaz 390, приведены на рис.7, 8a, b, с и 9a, b, c, соответственно. В табл.1 приведены эквивалентные ширины (W_{λ}) и полуширины (FWHM) линий, наблюдавшихся в спектрах этих областей.

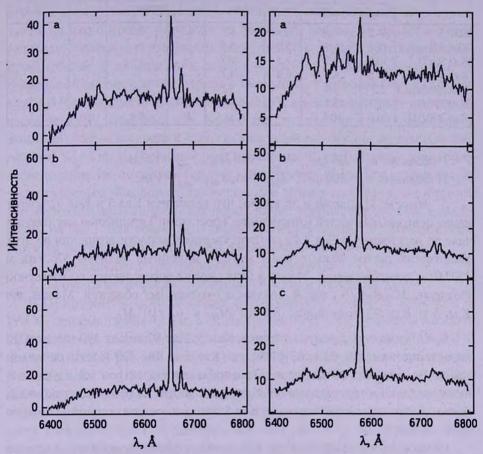


Рис.8а, b и с. Спектр I пикселя центра галактики Каz 92, а) центр, b) самая яркая часть области I, c) самая яркая часть области II.

Рис.9а, b и с. Спектр 1 пикселя центра галактики Каз 390, а) центр, b) самая яркая часть области I, c) самая яркая часть области IV.

Используя отношения интенсивностей линий [SII] λ 6731, 6717: I_{6717}/I_{6731} , для одного пикселя в сгущениях I и IV галактики Каz 390, определена электронная плотность и масса газового составляющего. Расчеты этих величин выполнялись по методу, описанному в [10]. Эквивалентные ширины линий взяты из табл.1, а красная звездная величина – из каталога MAPS ($m_{\rm c}=12.7$).

При расчетах использовалась монохроматическая звездная величина в линии Hα звезды 16 Суg В спектрального типа G4 V из работы Кода [11]. Получены следующие данные:

Таблица 1

эквивалентные ширины и полуширины линий

Галактика	тика На		[NII] \(\lambda 6584\)		[SII] \(\lambda 6717\)		[SII] \(\lambda 6731	
	$W_{\lambda}(A)$	FWHM(Å)	W₁(Å)	FWHM(Å)	$W_{\lambda}(A)$	FWHM(Å)	W, (Å)	FWHM(Å)
Kaz 5	34.2	7.2	12.6	6.8	4.7	7.2	2.0	5.3
Ках 92(цен.)	15.6	6.4	5.0	5.5	-	-	-	-
Kaz 92(I)	30.5	5.3	7.2	4.7	-	-	-	-
Kaz 92(II)	30.6	4.9	6.0	4.7	-	-	-	-
Ках 390(цен.)	5.7	7.0	7-	-	-		-	-
Kaz 390(I)	24.7	7.5	-	-	2.4	5.7	1.9	5.5
Kaz 390(II)	26.8	10.1	-	-	2.9	6.8	2.6	6.5

I область:
$$n_e = 230 \text{ см}^{-3}$$
, $M_{res} = 100 M_{\odot}$, $r_{solo} = 1.6 \text{ пк}$, II область: $n_e = 500 \text{ см}^{-3}$, $M_{res} = 48 M_{\odot}$, $r_{solo} = 1 \text{ пк}$.

- 5. *Массы*. Из рис.4b и 5b видно, что галактики Kaz 5 и Kaz 92 вокруг своих центральных частей (отмеченные "крестиками") вращаются как твердые тела до расстояний ± 3 " и ± 4 ", соответственно. Скорости вращения до этих расстояний равны 80 км/с и 130 км/с, а линейные радиусы 576.9 пк и 1527.9 пк, соответственно. Массы в этих случаях определяются по известной формуле $M = RV^2/G$, где R радиусы отмеченных областей. Массы для Каz 5 и Kaz 92 получались $8.6 \times 10^8 \, M_\odot$ и $6.1 \times 10^9 \, M_\odot$.
- 6. Обсуждение результатов. Ках 5, Ках 92 и Ках 390 имеют СМ характеристики ds1, d3 и d2 [3,4], т.е. Ках 5 и Ках 390 имеют сильный, а Ках 92 слабый УФ-избыток. По морфологии спектров все изученные галактики имеют характеристику "d", т.е. их спектры на обзорных пластинках имеют диффузные края, однако у Ках 5 эти края резкие, а ширина спектра превосходит 15".

Самым ярким изображением Каz 5, как и следовало ожидать, является изображение, приведенное на рис.1а: оно образовалось из контуров 14 изофот, размеры самой крайней или первой изофоты равны примерно 16" x 24". Самый яркий контур, который охватывает ее центральную часть ("крестик"), имеет угловые размеры примерно 1".2 x 1".8, примерно 2ріх х 3ріх. Чтобы определить поверхностную яркость т/□" этой части относительно яркости первой изофоты, достаточно использовать условные значения интенсивностей этих частей. Учет этих значений показывает, что поверхностная яркость центральной части Каz 5 на 0™.7 величину ярче. Подобные расчеты можно сделать также для галактик Каz 92 и Каz 390. Имея в виду вышесказанное о ширине спектра Каz 5, полученной на обзорных пластинках, можно утверждать, что спектр охватывает почти всю область, приведенную на рис.1а, т.е. основную яркую часть галактики.

Репродукция прямого снимка в фотографических лучах, полученного на 6-м телескопе САО АН России [5], говорит о том, что центральная часть галактики Каз 5 расщеплена на две вытянутые параллельно друг другу области, восточную и западную, которые отделяются узкой полосой шириной в 1" и имеют размеры 3".8 х 7".6, 2".5 х 9".5, соответственно. Восточная часть, в свою очередь, разделена на две почти равные по яркостям и по размерам области круглой формы диаметром 3".8. Причем, эти лве области простираются в направлении север-юг, из них северный компонент с радиальной скоростью 660 ± 65 км/с смещается к красной части спектра Ках 5. В [5] западная часть обозначена через І, южный компонент восточной части через IV, северный - V. Кроме того, от упомянутых (восточной и запалной) частей к северу и к югу отходят прямые слабые хвосты. Общие размеры Каz 5 на этом рисунке равны примерно 8" х 68". Однако настоящее исследование не показывает такую клочковатую структуру центральной части галактики. Наоборот, приближаясь к центру галактики, монотонно увеличиваются яркости изофот, которые имеют круглую форму. Они хорошо видны на рис.1. Для объяснения такой большой разницы морфологических структур центральной части Ках 5, рассмотрим следующие аспекты:

- 1. Поглощение в центральной части галактики.
- 2. Роль разрешающих способностей используемых систем.

В [5] приведены относительные интенсивности $H\alpha/H\beta$ в областях I и IV+V, которые равны 12.4 и 7.75, соответственно. Эти величины на 4.4 и 2.8 раза больше теоретического значения этого отношения при $T=10000\,\mathrm{K}$ и $n=100\,\mathrm{cm}^{-3}$ (2.8) [12], что является результатом неравномерного поглощения в линиях $H\alpha$ и $H\beta$. Из этих данных видно, что оптические толщины поглощающей материи в этих двух направлениях разные. В направлении области I, поглощения в линии $H\beta$, которая находится в фотографической части излучения, на $1^{\mathrm{m}}.6$ звездную величину больше, чем в линии $H\alpha$, находящаяся в красной части излучения, а в направлении области IV+V разница в поглощении в линии $H\beta$ и $H\alpha$ составляет $1^{\mathrm{m}}.1$. Разумеется, поглощения такого порядка могут повлиять на структуру изображений, построенных в разных линиях и цветах.

Для сравнения морфологических структур Каz 5 в разных цветах мы использовали прямые снимки в $u(3551\text{\AA})$, $g(4686\text{\AA})$, $r(6165\text{\AA})$, $i(7481\text{\AA})$ и $z(8931\text{\AA})$ цветах, взятые из веб-страницы SDSS с адресом http://www.sdss.org/dr5 (2.5m telescope Apache Point Observatory, New Mexico) [13]. Прямые снимки приведены на рис.10.

Из этих снимков видно, что изображения галактики во всех цветах имеют почти ту же структуру, какую она имела на снимке 6-м телескопа, приведенном в [5]. Области I, IV и V (рис.10и) более четко выделяются на изображении галактики в и цвете, где области IV и V полностью

отделены. Переходя к изображениям в более длинноволновых цветах, размеры областей IV и V постепенно увеличиваются и в g цвете они соприкасаются, а начиная с r цвета, они сливаются. Область I самая яркая в u цвете, переходя к более длинноволновым цветам ее яркость уменьшается,

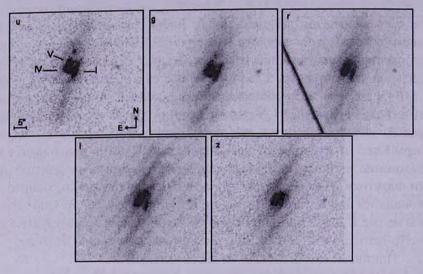


Рис.10. Репродукция снимков Каз 5 в цветах и, д, г, і, г.

и в цвете z она едва заметна. Полоса между областями I и IV+V, отмеченной выше, по виду, мало изменяется переходя от u к z. Однако разницы структур изображений в разных цветах небольшие, и по всей вероятности являются следствием того, что поглощение в разных цветах не одинаковое, размер поглощения постепенно уменьшается от u к z. Что касается изменения яркости области I, то она по-видимому является голубым объектом.

После этого анализа мы приходим к выводу, что вышеотмеченные разницы структур изображений объясняются главным образом низкой разрешающей способностью используемого нами телескопа с ВАГР-ом. Некоторую роль играет также поглощающая материя.

Ось вращения галактики Ках 5 мало отклоняется от большого диаметра центральной части галактики, приведенного на рис.1а (приблизительно 20°). Возможно, такая необычная ориентация оси вращения галактики является следствием того, что мы рассматривали распределение радиальных скоростей только в центральной части галактики. Возможно также, что отдельные области I, IV и V в центральной части галактики имеют такие собственные движения, которые, суммируясь с общим вращением галактики, дают подобную картину. Поэтому для выяснения многих кинематических и морфологических особенностей этой галактики необходимо более детальное изучение.

Ось вращения галактики Каz 92 совпадает с направлением двух секторов, один из которых находится на северо-западе, другой - на юго-востоке. В плоскости вращения галактики, как было отмечено выше, находится яркая область II. Ее радиальная скорость на 100 км/с больше скорости "центра" галактики.

Из рис.9а, b и с видно, что в спектрах вышеотмеченных самых ярких областей Каz 390 практически не наблюдаются линии [NII] $\lambda\lambda$ 6584, 6548, кроме этого, "дефицит" азота виден также из рис.3b и е, которые являются изображениями галактики в области непрерывного спектра $\lambda\lambda$ 6630 – 6700Å и в линии [NII] λ 6584 + cont . Эти изображения почти не отличаются, так как на рис.3e вложение азота незаметно. Однако в [14] показано, что в галактике имеются отдельные области, в спектрах которых наблюдаются линии [NII] $\lambda\lambda$ 6584, 6548.

Резюмируя вышеприведенные результаты, можно сделать следующие выводы:

- 1. Определены массы галактик Каz 5 и Каz 92, которые равны $8.6 \times 10^8 \, M_\odot$ и $6.1 \times 10^9 \, M_\odot$, соответственно.
- 2. Определены электронные плотности и массы газовых составляющих в центрах областей I и IV галактики Ках 390, охватывающие размер 1 ріх, которые равны: І область, n_e =230 см⁻³; M_{am} =100 M_{\odot} , II область, n_e =500 см⁻³; M_{am} =48 M_{\odot} .
- 3. Морфологическая структура центральной части галактики Каz 5 в изучаемой области спектра $\lambda\lambda6400-6800$ Å совершенно отличается от структуры той же части галактики, наблюдавшейся на снимках 6-м и 2.5-м телескопах. Показано, что такие разницы структур в изображениях Каz 5 в основном объясняются сравнительно низкой разрешающей способностью используемого нами телескопа с ВАГР-ом. Некоторую роль играет также поглощающая материя.
- 4. Показано, что в исследуемой области Каz 390 (круг с диаметром 40") не наблюдаются линии [NII] $\lambda\lambda6584$, 6548, т.е. наблюдается "дефицит" азота.

В работе использовались данные от пятой базы данных Слоановского цифрового обзора неба (SDSS DR5), открытой для свободного доступа в - http://www.sdss.org/dr5.

Ереванский государственный университет, Армения, e-mail: adbvardan@rambler.ru

THE MORPHOLOGICAL AND SPECTRAL INVESTIGATION OF GALAXIES KAZ 5, KAZ 92 AND KAZ 390

V.Zh.ADIBEKYAN, M.A.KAZARIAN, E.L.KARAPETIAN

The results of morphological and spectral investigations of galaxies Kaz 5, Kaz 92 and Kaz 390 are presented. The observations were made on the 2.6-m telescope at the Byurakan Observatory in combination with a microlenses BAFP spectrograph. The isophotes of the images of galaxies in emission lines H α , [NII] $\lambda\lambda6584$, 6548 and [SII] $\lambda\lambda6731$, 6717 and in continuum have been constructed. The masses of galaxies Kaz 5 and Kaz 92 are determined to be $8.6\times10^8\,M_\odot$ and $6.1\times10^9\,M_\odot$ respectively. The masses of gaseous component in the center of I and IV regions of Kaz 390, covering 1 pix, are also determined. The morphological structure of central region of Kaz 5 in studied spectral region $\lambda\lambda6400-6800$ Å absolutely differs from the structure of the same region of galaxy observed with 6-m and 2.5-m telescopes. It is shown that the basic cause of such differences of structures in images Kaz 5 is the comparatively low resolution of a system telescope+BAFP. Absorbing matter also plays some role. It is also shown that in investigated region of Kaz 390 (the circle with a diameter 40") the "deficiency" of nitrogen is observed.

Key words: galaxies: UV-excess: spectra

ЛИТЕРАТУРА

- 1. *М.А.Казарян*, *Т.А.Мовсисян*, Астрофизика, **48**, 291, 2005.
- 2. М.А.Казарян, Э.Л.Карапетян, В.Ж.Адибекян, Астрофизика, 50, 507, 2007.
- 3. М.А.Казарян, Астрофизика, 15, 5, 1979.
- 4. М.А.Казарян, Э.С.Казарян, Астрофизика, 18, 512, 1982.
- 5. *М.А.Казарян*, Э.Е.Хачикян, Астрофизика, 13, 415, 1977.
- 6. T. Chattopadhyay, A.K. Chattopadhyay, Astron. J., 131, 2452, 2006.
- 7. I. Marquez, J. Masegosa, M. Moles et al., Astron. Astrophys., 393, 389, 2002.
- 8. D.Marchesini, E.D'Onghia, G.Chincarini et al., Astrophys. J., 575, 801, 2002.
- 9. W.J.G. de Blok, A.Bosma, Astron. Astrophys., 385, 816, 2002.
- 10. М.А. Казарян, Астрофизика, 20, 35, 1984.
- 11. А.Д.Код, Сб.: "Звездные атмосферы" ИЛ., М., 1963.
- 12. В.В.Соболев, "Курс теоретической астрофизики", изд. Наука, М., 1975.
- 13. J.K.Adelman-McCarthy, M.A.Agueros, S.S.Alam et al., 2007yCat.2276....0A
- 14. М.А.Казарян, Э.Л.Карапетян, Астрофизика, 45, 559, 2002.