АСТРОФИЗИКА

TOM 51

МАЙ. 2008

ВЫПУСК 2

ПРОФИЛИ ЛИНИЙ На И НВ В СПЕКТРАХ В И Ве-ЗВЕЗД В РАССЕЯННОМ ЗВЕЗДНОМ СКОПЛЕНИИ *h/x* ПЕРСЕЯ

С.Л.МАЛЬЧЕНКО¹, А.Е.ТАРАСОВ² Поступила 4 октября 2007 Принята к печати 15 января 2008

В настоящей работе на основе высокодисперсионных ПЗС спектров, изучены профили линии На для 48 звезд ранних спектральных классов молодого рассеянного двойного скопления h/χ Рег. Дополнительно были исследованы спектры 15 В и Ве-звезд в области 4400-4960 Å, полученных с умеренным разрешением. Обнаружены одна, возможно, две новых Ве-звезды. Измерены основные параметры линии На для наблюдаемых В и Ве-звезд. По спектрам в области 4400-4960 Å оценены T_{en} log g и Vsin!. Не обнаружено следов эмиссии в профилях линии На у 28 звезд, для 20 наблюдавась эмиссия в линии На. У некоторых звезд, таких как Oo146, Oo566, Oo922, Oo1268 в период нации наблюдений был получен абсорбционный профиль линии На, хотя ранее они были идентифицированы как Ве-звезды. У Ве-звезд Oo1161 и Oo2242 обнаружена значительная долговременная переменность профиля линии На. Oo2371 показывает переменность слабого эмиссионного спектра, свойственную тесным двойным системам, в состав которых входит Ве-звезда.

Ключевые слова: звезды:спектры - звездное скопление h/x Персея

1. Введение. Феномен Ве известен более ста лет, и тот факт, что среди В-звезд, по крайней мере, 20% показывают эмиссионный спектр, безусловно указывает на то, что данный феномен не является чем-то особенным, а скорее типичен для широкой группы объектов, находящихся на определенном этапе эволюции. Расплывчатость формулировки Ве феномена предполагает, что под данное определение попадает широкая группа объектов вблизи Главной последовательности, включая двойные системы с различной интенсивностью обмена массой. Поэтому, гипотеза о том, что все Ве-звезды являются результатом эволюции двойных систем [1]. остается актуальной по настоящее время. С другой стороны, большинство классических Ве-звезд, скорее всего, являются одиночными объектами и формирование дисков вокрут них, при скоростях вращения далеких от критических, требует своего объяснения (см., напр., [2]).

Одним из путей решения данной проблемы может быть изучение свойств Ве-звезд в молодых рассеянных звездных скоплениях. В 80-х годах прошлого столетия был выполнен ряд фотометрических [3] и спектральных [4] исследований, которые показали, что максимальное число Ве-звезд содержат скопления, возраст которых находится в интервале 14-25 млн лет [5]. Относительно низкая яркость большинства рассеянных скоплений до последнего времени существенно ограничивала возможности детального исследования Ве-звезд в них, а эпизодически выполненные наблюдения не давали картины переменности их эмиссионных спектров. Повышение чувствительности приемников излучения и введение в строй новых телескопов позволяет существенно увеличить число изучаемых скоплений и продвинуться в анализе полговременной переменности Ве-звезд в ряде скоплений.

В данной работе изучается популяция Ве-звезд в хорошо известном скоплении *h*/χ Per. Целью работы было найти новые Ве-звезды со слабой эмиссией в линии Hα и изучить переменность ранее известных Ве-звезд по спектральным наблюдениям высокого разрешения в области линии Hα.

Двойное рассеянное скопление h/χ Per (NGC 869 и NGC 884 соответственно) имеет примерно одинаковый возраст 12-20млн лет с популяцией порядка 6 тыс. членов. Расстояние до скопления около 2.3 кпк при модуле расстояния 11^m.4-12^m.0 [6]. Скопления богаты Ве-звездами. В каждом из них обнаружено по 20 Ве-звезд, что составляет по разным оценкам от 25 до 50% от общего количества В-звезд [5].

2. Наблюдательный материал. Спектральные наблюдения В и Ве-звезд рассеянного звездного скопления h/χ Рег были выполнены в Крымской астрофизической обсерватории в период с 1997 по 2002гг. со спектрографом, установленным в фокусе Кудэ 2.6-м телескопа ЗТШ. В качестве приемника излучения использовалась матрица Photometrics SDS-9000 с ПЗС EEV 15-11 размером 1024 x 256 элементов. Наблюдения проводились во втором порядке дифракционной решетки с обратной линейной дисперсией 3 Å/мм и с разрешением 30000. При каждом наблюдении регистрировался участок спектра длиной 60 Å, центрированный на линию На. Длительность отдельных экспозиций составляла 30-100 мин в зависимости от погодных условий и яркости объекта. Отношение сигнал/шум для большинства спектров было около 100. Всего было получено 68 спектров для 48 звезд скопления.

Последующая редукция спектрограмм проводилась с использованием стандартной методики и включала в себя учет фона неба и уровня темнового тока, деление на плоское поле и нормировку к локальному континууму. Привязка к шкале длин волн осуществлялась по спектру сравнения лампы с торий - аргоновым наполнением с привязкой нуль пункта шкалы длин волн к барицентру Солнечной системы, средняя ошибка привязки не превышала 1 км/с.

Спектральная область в районе линии На богата теллурическими линиями. Для получения более достоверных оценок основных параметров профиля линии На их необходимо убрать из наблюдаемого спектра. С этой целью нами получен ряд спектров ярких звезд с большими скоростями вращения. Удаление теллурических линий из наблюдаемых спектров состояло в построении таблицы перенормированных спектров линий воды с разной интенсивностью. Из наблюдаемого спектра таким образом удалялся теллурический спектр с интенсивностью линий, соответствующей моменту наблюдений.

Профиль линии На имеет широкие крылья, поэтому узкий спектральный диапазон наблюдений (60 Å) не позволил провести достоверный континуум по синему и красному участку крыльев линии На. Как следствие, неопреде-

Таблица 1

Номер звезлы	JDh	EW	FWHM	Vsini	SD-THIT
(по каталогу [18])	2450000+	(A)	(KM/C)	(KM/C)	op mit
				(
h Persei	1004 507	2.52	201	(1.55)	
146 HD13900	1084.527	2.52	381	(155)	
245	1084.605	2.8/	288	(105)	
566	1099.529	0.27	030	(309)	DICI
622	707.386	2.00	189	22	B1.5 1
717	/07.360	2.60	235	57	BIV
843	726.225	2.85	299	88	B1.5 V
859	763.269	3.40	414	192	B2 V
864	760.379	2.96	337	113	B2 V
922	762.265	2.35	449	258	B2 V
	1916.991	2.18	400		1
929	763.347	2.86	376	151	BI.5 III
936	675.464	3.25	123	26	B1.5 V^
980	763.306	2.87	156	39	B2 III
1078	762.446	2.75	379	167	BIV
1116	762.333	2.38	268	93	B0.5 V
1132	675.539	1.90	198	60	B2 I
1133	675.519	1.85	326	(120) ·	
1 10 11 10	1084.438	1.93	353		the second s
	1398.480	1.96	369		
1268	760.221	2.53	292	127	B0.5 V
X Persei	- 172	0-0-1	S		
1781 HD14321	1095.362	2.63	292	(106)	
2172 HD14434	1095.421	1.81	554	(258)	
2227 HD14443	761.428	1.66	158	22	B1.5 II
2235	669.505	2.57	329	(128)	1222
2246	668.546	2.27	241	101	B2 III
2255	668.521	2.85	568	(267)	
2299	761.390	2.47	294	106	B1.5 I
	1083.488	2.34	289		
2311	669,534	2.80	141	20	B1.5 II
2361 HD14476	1083.530	2.36	195	(50)	T
2488	1095.506	2.67	313	(120)	
2541 HD14520	1095.450	2.63	225	55	BI.5 III

ОСНОВНЫЕ ИЗМЕРЕННЫЕ ПАРАМЕТРЫ ФОТОСФЕРНОГО ПРОФИЛЯ ЛИНИИ на ДЛЯ В-ЗВЕЗД СКОПЛЕНИЯ h/χ PER

Таблица 2

ОСНОВНЫЕ ИЗМЕРЕННЫЕ ПАРАМЕТРЫ ЭМИССИОННОГО ПРОФИЛЯ ЛИНИИ на ДЛЯ ВЕ-ЗВЕЗД СКОПЛЕНИЯ h/χ PER

Номер звезды	JDh, 2450000+	EW (Å)	Ι _ν	IR	<i>EW()</i> (по [8])
(no kataboly [10])	2430000	00.74	4.54	4.42	
49	1084.500	-32.74	4.54	4.42	24.2
309	1084.582	-51.23	9.24	1.07	-34.3
847	760.326	-4.26	1.53	1.38	-
992	762.374	1.57	0.61	0.01	-
	1863.291	1.65	0.56	0.59	-
1161	675.429	-13.98	2.64	2.11	-
	755.359	-18.81	2.84	2.03	
and the second second	760.262	-18.53	2.76	2.48	
	1084.461	-14.24	2.29	2.37	-
	1396.437	-13.40	2.12	2.35	
	1863.218	-12.18	2.03	2.25	-
	2187.350	-13.56	2.27	2.28	-
1261	760.287	-72.22	9.40	9.47	-58.4
1702	1095.256	-17.63	4.90	4.83	-20.9
1926	1095.321	-34.96	11.69	-	-
2088	663.545	-7.07	2.07	2.08	-10.6
	1082.596	-8.28	2.23	2.20	
2138(HD14422)	1083.560	-2.68	1.55	1.49	-2.1
2165	667.540	-21.21	8.76	-	-27.2
2242	668.491	-18.32	2.17	3.17	
	761.257	-13.21	1.92	2.61	-
	1082.545	-22.57	3.23	2.92	- 10
	1107.394	-20.62	3.21	2.81	-
	1397.461	-23.91	3.20	2.61	-
2262	1107.327	-9.84	2.28	2.26	
2284	660.521	-74.40	12.85	-*+	-66.4
	1083.604	-78.71	13.72		-
	1917.236	-69.56	12.00	-	-
2296	761.328	1.72	0.72	0.73	
2371	660.459	1.08	0.76	0.77	1.1
	710.365	1.12	0.77	0.81	
	756.349	0.92	8.20	-	_
	1083.443	0.90	0.80	0.79	
	1094.502	1.20	0.72	0.72	
	1095.219	1.41	0.88	0.82	
1 1	1099.449	1.37	0.74	0.74	
	1863.350	1.17	0.80	0.78	
2402	1083.511	-8.10	2.08	2.09	-8 1
2563	1121 558	-50.40	7.84	7.06	-0.1
2566	1121.606	-52.23	875	7.68	
2649	1095 548	-7.09	1.91	1.00	10 10 2
2017	1073.340	-/.70	1.01	1./0	-

ленности в проведении континуума в некоторых случаях достигали 5%. Для всех спектров определялись эквивалентные ширины профиля линии Hα (EW), для абсорбционных профилей определялась ширина линии На на середине интенсивностей (FWHM), а для эмиссионных пиков дополнительно определялись нормированные к континууму интенсивности эмиссионных линий (I_{ν} , I_{R}). Результаты измерений профилей линии На у наблюдаемых нами В и Ве-звезд представлены в табл.1 и 2, соответственно.

Дополнительно к наблюдениям в линии На в 2000г. были проведены спектральные наблюдения В и Ве-звезд в области 4400-4960 Å. Спектры были получены в фокусе Несмита 2.6-м телескопа ЗТШ с умеренным разрешением 2.5 Å и отношением сигнал-шум около 100. В качестве приемника излучения использовалась матрица ASTRO-550 размером 580х520 элементов. В указанную спектральную область попадает линия Нβ, ряд линий НеI и некоторые линии металлов.

Всего получено 16 спектров для 15 Ве-звезд, кроме того был получен спектр одной В-звезды. Редукция спектрограмм, полученных в фокусе Несмита, проводилась при помощи той же методики, что и для профилей линии На.

3. Общая характеристика В и Ве-звезд скопления. Скопление h/x Рег неоднократно исследовалось фотометрически. Наиболее полное

Рис.1. Диаграмма цвет - звездная величина (B - V) - V (по данным [7]). Точками обозначены звезды скопления h/χ Рег, чъи спектры не были получены; темными кружками отмечены В-звезды, для которых были получены спектры в области На; открытые кружки соответствуют Ве-звездам, для которых в данной работе были получены профили линии На. Сплошная линия - ZAMS, пунктирные линии - изохрона для возраста log I = 7.1 с учетом покраснения E(B - V) 4.5, 5.4и 6.5, соответственно (первая и последняя показаны более тонкими штриховыми линиями).

современное исследование в системе Джонсона выполнено в [7], а в системе Стремгрена в [8,9]. Многие члены скопления ранних спектральных классов являются переменными звездами типа В Сер. обнаружено также несколько затменных или эллипсоидальных двойных систем [10,11]. На рис.1 приведена диаграмма (В - V) - V, построенная по данным наблюдений [7]. В и Ве-звезды, чьи спектры были получены в нашей работе, отмечены темными и открытыми кружками, соответственно, остальные звезды отмечены точками. Согласно [7], звезды в скоплении имеют различное покраснение, меняющееся от 0™.45 до 0^{т.}.65. Поэтому, помимо изохроны log t = 7.1 для среднего покраснения 0.54 (пунктирная линия) на рис.1. приведены, следуя [7], те же изохооны лля E(B - V) = 0.45 и 0.65 (более разреженные пунктирные линии). Стремпреновская фотометрия, выполненная в [8], дает различные оценки возраста для h и x Per log t=7.0 и 7.3, соответственно, что находится в хорошем согласии с результатами [7], а вопрос о реальности слегка различного возраста скоплений остается открытым по настоящее время.

Рис.1 демонстрирует значительное рассеяние точек на диаграмме цвет-величина. Помимо возможной неоднородной экстинкции внутри каждого из скоплений и/или слегка различного возраста каждого из скоплений, на заметное рассеяние звезд может влиять, как показано в [12], различная ориентация оси вращения к наблюдателю у быстровращающихся В-звезд, а избыточное покраснение самих Везвезд хорошо известно и объясняется рассеянием света от звезды околозвездным диском, которое в свою очередь зависит от его ориентации к наблюдателю.

Поиск и исследование Ве-звезд в скоплении проводились неоднократно, как по На фотометрии [7], так и спектроскопически [4,8,13-16]. 24 Везвезды наблюдались в [4]; в [5] приведен список из 20 Ве-звезд; в [17] идентифицировано 7 новых Ве-звезд; 33 Ве-звезды, из них 8 новых, исследовались в [7]. Таким образом, по настоящее время в скоплении h/χ Рег обнаружено в общей сложности 40 Ве-звезд, по 20 в каждом из скоплений.

4. Поиск слабой эмиссии в линии На и оценка Vsini у В-звезд скопления. Большинство спектральных наблюдений В и Ве-звезд выполнялись с низким или умеренным разрешением. Вместе с тем, хорошо известно, что многие Ве-звезды имеют слабую эмиссию на фоне фотосферного профиля линии На, которая может быть обнаружена по спектрам высокого разрешения. Одной из задач данной работы как раз и являлся поиск слабой эмиссии в линии На среди В-звезд скопления.

В период с 1997 по 2002гг. нами получено 79 спектров для 48 звезд раннего спектрального класса ВО-ВЗ, членов скопления h/χ Рег. По возможности, для наблюдений подбирались звезды с разной температурой и скоростью вращения.

В спектрах 28 звезд следов эмиссии в линии Нα нами не обнаружено. Причем для 23 звезд эмиссия в Нα никогда прежде не наблюдалась. Несколько ранее идентифицированные или заподозренные, как Везвезды, объекты, в период наших наблюдений не показали следов эмиссии в профиле линии Нα. К ним относятся звезды Оо146, Оо566, Оо717, Оо922 и Оо1268 (тут и далее нумерация по каталогу [18]).

Оо146: в [8] сделано предположение, что звезда не является членом скопления по ее положению на двухиветной диаграмме. Профиль линии Нα был фотосферным по наблюдениям [19], но Нα фотометрия [7] указывает на возможную эмиссию в линии в 1999г. Профиль линии, полученный нами в 1998г., не имеет следов эмиссии, но асимметричен с более крутым красным крылом.

Оо566: в [4] отмечена незначительная эмиссия в линии На, в [8] звезда выделена по двухцветной диаграмме как возможный не член скопления. Спектр звезды оставался фотосферным по данным [19] и [7]. Звезда имеет большую скорость вращения (см. табл.2).

О0717: в [20] звезда заподозрена как Ве, на основе фотометрической переменности, в [19] обнаружена эмиссия умеренной интенсивности в линии Нα, в [17] эмиссия подтверждена, но отсутствует в период наших наблюдений.

О0922: в [11] указано, что возможно это звезда принадлежит к типу λ Еп. Эпизодические появления эмиссии в линии Нα отмечены в [21] и [11]. Нами получен абсорбционный профиль.

Оо1268: в [19] спектр был абсорбционный, но эквивалентная ширина линии была меньше нормальной для своего спектрального класса. На фотометрия [7,9] указывает на присутствие эмиссии в линии, но нами получен абсорбционный профиль.

Наиболее надежные измерения скоростей вращения В-звезд скопления выполнены в работе [22]. Для части звезд скорость врашения не оценена. Наши наблюдения профиля линии На дают возможность оценить скорость вращения звезды по уширению линии. Для нахождения связи между величиной FWHM и *vsin i* мы взяли определение величины скорости вращения из [22] для звезд и величины FWHM линии На данные в табл.1 и нашли их линейное соотношение по 20 звездам в виде:

 $V \sin i = (-63 \pm 12) + (0.58 \pm 0.05)$ FWHM.

Звезда Оо922 была исключена из зависимости, так как показала значительное уклонение (возможно, принадлежит к типу β Сер [11]).

Список звезд, имеющих в период наших наблюдений фотосферный профиль, представлен в табл. 1. В первой колонке дан номер звезды по

С.Л.МАЛЬЧЕНКО, А.Е.ТАРАСОВ

каталогу [18]; во - второй гелиоцентрическая юлианская дата наблюдений на середину экспозиции; в 3 дана измеренная эквивалентная ширина линии Н α ; в 4 приведена полная ширина линии на середине интенсивности (FWHM), выраженная в км/с; скорость вращения звезды представлена в колонке 5, результаты взяты из работы [22], полученная нами оценка vsin i дана в скобках; в последней колонке приведен спектральный тип звезды по данным [22].

Рис.2. Профили линии На для звезд Оо2296 и Оо992 (для каждой звезды указана колианская дата наблюдения).

5. Анализ эмиссионной линии На у Ве-звезд скопления. Эмиссионный профиль линии На был получен для 20 звезд скопления h/χ Per. C учетом тех Ве-звезд, чей профиль был абсорбционный в

Рис.3. Профили линии На для Ве-звезд, исследуемых в данной работе. Номера звезд указаны по каталогу [18] и отмечены справа от каждого профиля.

312

период наших наблюдений, мы получили спектры почти для 60% от общей популяции Ве-звезда. Кроме того, обнаружена одна новая Ве-звезда Оо2296 и, возможно, что звезда Оо992 также имеет слабую эмиссию в крыльях абсорбционного профиля. На рис.2 представлены профили линии На для этих звезд. Как видно из рисунка, слабая эмиссия, безусловно, присутствует в крыльях фотосферной линии На у Оо2296. Спектр звезды классифицировался как В1III [23] или В2I [20], а в [9] отмечено необычное положение звезды на двухцветной диаграмме. Звезда имеет умеренную скорость вращения $V\sin i = 146$ км/с [20]. Присутствие слабой эмиссии в линии На у Оо992 менее очевидно, как видно из рис.2, профиль линии На у звезды асимметричен и переменен во времени. В [11] звезда отнесена к типу β Сер с основным периодом около 0^d.133, однако в [17], она отмечена как возможный кандидат в Ве-звезды.

Рис.4. Переменность профилей линии На для звезд Ool161 (а) и Oo2242 (b).

Эмиссионные спектры для 17 известных Ве-звезд скопления представлены на рис.3 и 4 и в табл.2. На рис.3 представлены профили линии На для звезд, чьи спектры были получены только один раз, либо не показали заметной переменности в период наших наблюдений. Основные параметры эмиссионного профиля линии На представлены в табл.2. В колонке 3 дана эквивалентная ширина линии (EW); в 4 и 5 - интенсивность синего (I_{ν}) и красного (I_{R}) эмиссионных пиков для двухкомпонентных профилей и интенсивность линии для случаев однокомпонентные ширины профиля линии На для звезд, чьи спектры получены в [8]. Из 18 Ве-звезд скопления спектры трех звезд показали одиночный эмиссионный профиль, две звезды - сложный многокомпонентный профиль и остальные 15 имели двухкомпонентную эмиссию в линии Hα. Сравнение измеренных нами эквивалентных ширин с данными [8] показали, что большинство звезд, чьи спектры получены в обеих работах, не показали значительной переменности. Только *EW* линии Hα для Oo309, Oo1261 и Oo2284 имели расхождения более 10%, т.е. превысили ожидаемые ошибки в измерении эквивалентной ширины.

Три Ве-звезды Ool161, Oo2242 и Oo2371 показали в период наших наблюдений значительную переменность эмиссионного профиля и для каждой из этих звезд получена серия наблюдений линии На. На рис.4 а и b представлены профили для Ool161 и Oo2242. Как видно из рисунка, переменность профиля линии На у обеих звезд схожая и проявлялась в изменении как интенсивностей синего и красного эмиссионных компонент с характерным временем сотни дней, так и в медленных вариациях эквивалентной ширины линии. Данный тип переменности эмиссионного спектра достаточно распространен среди Ве-звезд и его общепринятым объяснением является возникновение и медленный дрейф области повышенной плотности газа в диске вокруг звезды [22]. Характерные времена подобной переменности колеблются в широких пределах от сотен дней до десятка лет. Сопоставления профилей линии На у Oo2284 в [17] с нашими профилями указывает на то, что эта Ве-звезда вероятно имеет схожий характер переменности эмиссионного спектра.

Oo2371 (BD58° 578, V622 Per) показала значительно более быструю переменность профиля линии На с характерным временем около нескольких суток (см. рис.5). Данная Ве-звезда имеет фотометрическую переменность

Рис.5. Избранные профили линии На у Ве-звезды Оо2371.

с возможным периодом 2.6 или 5.2 дня [11] и является двойной системой с эллипсоидальными компонентами. На значительную переменность лучевой скорости звезды указывает также большой разброс лучевой скорости звезды [20]. Звезда Оо2371 наблюдалась на протяжении 1997-2002гг. более детально. В ее спектрах отмечена регулярная переменность профиля линий На. Эта переменность свидетельствует о возможной двойственности этой звезды с орбитальным периодом около 5.2 дня. Данная звезда, повидимому, прошла фазу активного обмена масс и в настоящее время наблюдается незначительная эмиссия в линии На. Результаты более детального анализа переменности профилей линии этого объекта будут изложены в отдельной работе [25].

6. Анализ линии Нα у Ве-звезд скопления. Дополнительно к спектральным наблюдениям в линии Нα, для ряда В и Ве-звезд были изучены спектры с умеренным разрешением в области 4400-4960 Å. В эту спектральную область попадает линия Hβ, которая, наряду с линией На, показывает признаки эмиссии у большинства Ве-звезд. У некоторых наблюдаемых нами Ве-звезд профиль линии На практически полностью абсорбционный (Oo1268, Oo2262, Oo2371, Oo2649). Другие звезды показали слабовыраженную эмиссию в профиле линии Hβ, такие как Oo2402, Oo2242, Oo2088, Oo2138 или яркую однокомпонентную структуру (Oo309, Oo1261, Oo1926, Oo2284, Oo2563). Можно сделать предположение, что последняя группа объектов обладает более протяженными и оптически более толстыми дисками, в отличие от первой группы объектов, чьи диски оптически тонкие и поэтому

Рис.6. Профили линий Hβ для В и Ве-звезд скопления h/χ Per. (Нумерация звезд по каталогу [18]).

эмиссия в линии НВ не проявляется.

На всех спектрах профиль линии Нβ показывает значительную дополнительную абсорбцию в красном крыле линии. Данная депрессия в спектре изучена в [24] и интерпретируется как широкая межзвездная линия неизвестного происхождения с λ4882Å и полной шириной около 40Å.

Хорошо известно, что большинство Ве-звёзд иногда показывают значительную переменность профилей эмиссионных линий. Было проведено сравнение профилей линии Н β , полученных в данной работе для некоторых Ве-звезд рассеянного скопления h/χ Персея, с данными работы [19]. Профили линии Н β у большинства звёзд не имеют значительного отличия. Тем не менее, такие звёзды, как Oo2138, Oo2402 и Oo2165 показали существенную переменность профилей линии Н β . Интенсивность эмиссии в линии Н β для Oo2138 по спектрам, полученных в данной работе, значительно выше, чем в спектрах, полученных в [19]. Для Oo2165, наоборот, интенсивность значительно выше в работе [19]. Для Oo2402 на наших спектрах

Таблица 3

Номер звезды (по каталогу [18])	T _e r K	log g	Vsin <i>i</i> (км/с)
309	21000±2000	3.0±0.3	150±50
1161	22500±1500	3.5±0.2	175±50
1261	25000±2500	3.5±0.5	250±25
1268(HD14162)	24000±1000	3.5±0.2	125±25
1926	31000±2000	3.5±0.5	150±25
2088	25000±1000	3.5±0.2	150±50
2114	22000±2000	4.0±0.2	150±25
2138(HD14422)	26000±1500	3.5±0.2 [.]	100±25
2165	25000±1000	3.5±0.2	100±25
2242	21000±2000	3.5±0.5	200±50
2262	20000±1000	3.25±0.5	200±50
2284	20500±1500	3.0±0.2	100±25
0071	20000±1500	3.0±0.25	1001.50
2371	24000±500	4.0±0.1	100±50
2402	27500±1500	3.5±0.2	150±25
2563	27500±1500	3.5±0.2	250±50
2649	23000±1500	3.5±0.2	200±50

ОСНОВНЫЕ ИЗМЕРЕННЫЕ ПАРАМЕТРЫ АТМОСФЕР ДЛЯ В И ВЕ-ЗВЕЗД СКОПЛЕНИЯ h/χ PER ПО ПРОФИЛЯМ ЛИНИЙ В ОБЛАСТИ ДЛИН ВОЛН 4400-4960 Å наблюдается слабая эмиссия в профиле линии Hβ, а в [19] профиль линии Hβ имеет двухкомпонентный эмиссионный профиль. То есть для этих звезд выявлена характерная для Ве-звезд переменность эмиссионных профилей.

Полученные нами спектры звезд скопления h/χ Персей в области 4400-4960 Å представлены на рис.6. Поскольку для некоторых звезд из нашего списка определение основных параметров их атмосфер никогда прежде не выполнялось, нами сделана попытка оценить, по спектрам в области 4400-4960, эффективную температуру T_{eff} и силу тяжести logg в атмосфере звезд без учета возможного вклада излучения HI в непрерывном спектре. Для определения этих параметров была построена сетка моделей атмосфер для температур 19000-35000 К с шагом 1000 К и logg 3, 3.5, 4 и солнечным химическим составом. Синтетические спектры рассчитывались по моделям [26] с помощью программы SynthV [27]. Далее, на основе исходной сетки, при фиксированном значении величины log g, интерполяцией определялись значения T_{eff} и $V\sin i$. При определении параметров атмосферы звезды во внимание брались линии MgII 4481, HeI (4471, 4712, 4921 Å) и H β .

Результаты определения параметров атмосфер звезд представлены в табл.3. Как видно из таблицы, невысокое разрешение, эмиссия в линиях гелия и линии Н β у некоторых звезд привели к заметным ошибкам при оценке T_{eff} logg и Vsini. Несмотря на это, данные находятся в хорошем согласии с данными работы [20] и [28].

7. Выводы. В данной работе изучено 78 профилей линии На и 17 спектров, полученных в области Н β для 49 звезд молодого рассеянного звездного скопления h/χ Per. По спектрам высокого разрешения была обнаружена одна (возможно две) новая Ве-звезда. Такое малое число обнаруженных новых Ве-звезд со слабой эмиссией является неожиданным, учитывая тот факт, что до настоящего времени данное скопление наблюдалось, как правило, со значительно худшим спектральным разрешением.

В период наших наблюдений некоторые звезды, которые ранее классифицировались как Ве, не показали следов эмиссии в линии На. Большинство звезд имели двухкомпонентную эмиссию в профиле линии На, две имеют сложный многокомпонентный профиль и три - одно-компонентный профиль линии На. Звезды Ooll61 и Oo2242 проявили значительную долговременную переменность профиля линии На.

Профиль линии Нβ показал слабовыраженную эмиссию или яркую однокомпонентную структуру для 11 Ве-звезд и практически полностью абсорбционные профили для 4 Ве-звезд.

Обнаружено, что ранее заподозренная как двойная Ве-звезда Оо2371

действительно является таковой, с орбитальным периодом 5.2 дня, в спектре которой видны оба компонента.

Для ряда Ве-звезд по спектрам в области 4400-4950 Å были оценены физические параметры их атмосфер, такие как температура, сила тяжести и скорость вращения.

Авторы благодарны д-ру Хуану Фабрегату за инициацию данной работы и полезные дискуссии. Данная работа была выполнена при частичной финансовой поддержке украинского фонда UFFR Ф 25.2/139.

Таврический национальный университет им. Вернадского, Симферополь, Украина, e-mail: Svetlana mal 81@mail.ru:

² НИИ Крымская астрофизическая обсерватория.

Украина, e-mail: tarasov@crao.crimea.ua, aetarasov@mail.ru.

THE LINE PROFILES OF THE H α AND H β IN THE SPECTRA OF B AND Be STARS IN THE YOUNG OPEN STELLAR CLUSTER h/χ PERSEI

S.L.MALCHENKO¹, A.E.TARASOV²

48 spectra of the B and Be stars in the H α region were observed with the high-dispersion CCD spectra in the young double open stellar cluster h/χ Per. Additionally, observations of 15 B and Be stars were observed in the region 4400-4960 Å, wich were carried out with medium resolution. Main parameters of the H α line profiles were obtained. T_{ep} log g and Vsini were estimated from spectra in the region 4400-4960 Å. It is found that 28 stars have absorption profiles of the H α line, 20 stars have emission in the H α line. Such stars as Oo146, Oo566, Oo922 and Oo1268 have pure absorption profile of the H α line, but earlier they were detected as Be stars. It is found that Be stars Oo1161 and Oo2242 demonstrated long-term line profile variability. Oo2371 has variability of the faint emission in the H α line typical for close binaries system.

Key word: stars:spectra - stellar cluster h/χ Per

ЛИТЕРАТУРА

- 1. S.Kriz, P.Harmanec, Bull. Astron. Inst. Czechosl, 26, 65, 1975.
- P.Harmanec, IAU Coll. 175, The Be Phenomenon in Early Type Stars, ed M.A.Smith, H.F.Henrichs, J.Fabregat. PASP Conf. Ser, V.124, p.13.
- 3. J.C. Mermilliod, Astron. Astrophys., 109, 48, 1982.
- 4. A.Slettebak, Astrophys. J. Suppl. Ser., 59, 769, 1985.
- 5. J.Fabregat, J.M.Torrejon, Astron. Astrophys., 375, 451, 2000.
- 6. C.L.Slesnick, L.A.Hillenbrand, P.Massey, Astrophys. J., 576, 880, 2002.
- 7. S.C.Keller, E.K.Grebel, G.J.Miller, K.M.Yoss, Astrophys. J., 122, 248, 2001.
- 8. J.Fabregat, J.M.Torrejón, P.Reig et al., Astron. Astrophys. Suppl. Ser., 119, 271, 1996.
- 9. A. Marco, G. Bernabeu, Astron. Astrophys., 372, 477, 2001.
- 10. J.Krzesiński, A.Pigulski, Astron. Asrtophys., 325, 987, 1997.
- 11. J. Krzesiński, A. Pigulski, Z. Kolaczkowski, Astron. Astrophys., 345, 505, 1999.
- 12. Y.Fremat, J.Zorec, A.-M.Hubert, M.Floquet, Astron. Astrophys., 440, 305, 2005.
- 13. L.Kohoutek, R. Wehmeyer, Astron. Abh. Hamburger Sternw, 11, 1, 1997.
- 14. R.Schild, W.Romanishin, Astrophys. J., 204, 493, 1976.
- 15. P.W.Merrill, C.G.Burwell, Astrophys. J., 78, 87, 1933.
- 16. P.W.Merrill, C.G.Burwell, Astrophys. J., 98, 153, 1943.
- 17. A.E.Bragg, S.J.Kenyon, Astrophys. J., 124, 3289, 2002.
- 18. P.T. Oosterhoff, Ann. Sterrewacht Lriden, 17, part 1, 1937.
- J.M. Torrejon, J. Fabregat, G. Bernabeu, S.Alba, Astron. Astrophys. Suppl. Ser., 124, 329, 1997.
- 20. S.E.Strom, S.C.Wolff, D.H.A.Dror, Astron. J., 129, 809, 2005.
- 21. S.N. Goderya, E.G. Schmidt, Astrophys. J., 426, 159, 1994.
- 22. C. Waelkens, P. Lampens, D. Heynderickx et al., Astron. Astrophys. Suppl. Ser., 83, 11, 1990.
- 23. R.E.Schild, Asrtophys. J., 142, 979, 1965.
- 24. G.H. Herbig, Astrophys. J., 196, 129, 1975.
- 25. S.L. Malchenko, A.E. Tarasov, K. Yakut, 2008, в печати.
- R.L. Kurucz, Atlas9 Stellar Atmosphere Program and 2 km s⁻¹ grid. Kurutcz. No.CD-ROM 13. \\Cambridge, Mass.:Simithsonian Astrophys. Obs., 1993, 13.
- 27. V.V.Tsymbal, ASP Conf. Ser., 108, p.198, 1996.
- 28. W. Huang, D. R. Gies, Asrtophys. J., 648, 580, 2006.