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The present paper deals with the Mannheim-Kazanas metric which is supposed to offer a
reliable explanation on the observed galaxy rotation curves. The effective potential and the geodesic
deviations are discussed. For a particular form of the metric, depending only on two parameters,
the Gordon equation for massless bosons is satisfied by the Heun general functions. A special
attention is given to the physically important local Minkowskian region, which has no analogue in

the Schwarzschild case.
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1. Introduction. In this work, we consider a spacetime described by a metric

containing, besides the well-known Schwarzschild solution, a second linear con-

tribution, of the form Ar.
For negative k values, the expression corresponds to the Schwarzschild black

hole surrounded by quintessential matter, with the state parameter w=-2/3 [1].
Such a form of the metric is sustained by recent astrophysical observations
suggesting that an accelerating expansion of our universe may be explained by the

presence of dark energzy. one of the highly plausible candidates being the

quintessence.
However, the lack of tangible evidence for the existence of quintessence

motivates the consideration of alternative gravity theories aiming to achieve similar
results, without the need of the dark sector.

One of the most prominent examples is the metric proposed, in 1989, by
Mannheim and Kazanas (the MK metric) [2]. The metric function contains a
first term similar to the Schwarzschild solution and a second contribution which
grows linearly with r, of the form kr. Now, k is a positive constant, whose value
is comparable to the inverse of the Hubble length. Even though the MK metric
ard solution of General Relativity Equations, since it leads, as we
are going to see. to a negative energy density, it has the advantage of solving,
in a purely geometric way, the problem of the flat galactic rotational curves of
galaxies. Thus, for k~107°m", there is a good agreement between the corre-

is not a stand
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sponding flat rotational velocity and the experimental data [2].

Since the Schrédinger-type form of the Gordon equation is generally used to
study the field scattering by a black hole, a main part of our work is devoted
to the Gordon equation for particles evolving in the spacetime described by a
particular expression of the MK metric. In the massless case. the solutions are
expressed in terms of the Heun general functions [3,4].

Even though these were introduced more than 100 years ago. by Heun [5],
they have been brought to the scientific community attention at the Centennial
Workshop on Heun Equations, in 1989 [3]. In the last years, the Heun functions
have been found as solutions to a wide range of problems in theoretical and applied
science,

However, the theory of Heun equations is very complicated, because of the
singular points and there are open questions related to the normalization procedure
of the solutions, their series expansions or integration ‘[6,7].

As expected, in the local Minkowskian region, the amplitude function is given
by the Airy functions.

Finally, special attention is given to the energy spectrum which is associated
with the so-called resonant frequencies, which are essential characteristics of black
holes [8].

2. The modified =0 MK spacetime. Let us describe the exterior region
of an astrophysical object by the MK vacuum solution [2]
~3Bk— B2- 3Bk)+kr—xr2,

r

(1)

where B, k and X are integration constants. Obviously, for =k =0, one can
recover the well-known Schwarzschild external solution.
For the spherically symmetric static line element

ds? = g, (dr) +r? [(d 0) +sin20(d lp)z] ~geldt) , (2)
where the functions g, and g,, are depending only on r and satisfy the relation
211 =20 - One can define the pseudo-orthonormal frame

1 1 1

E = P LT o =3 z E,=———¢ s E =70,
1 g0, » 2T 37 rsing ° . oo f (%)
whose corresponding dual base is
= dr, ©’=rd0, o =rsindde, © =gy d, (4)
Eoo

so that @®=n_ %’ with n,, =diag[l,1,1,-1].
As in [9], we are working in an SO(3, 1)-gauge covariant approach. Thus,
the connection coefficients can be easily obtained from the first Cartan's equation,
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do® =T 0" ro°, (5)

with 1€b<c¢<4 and FI;:c]=r.§c—Ff‘f;’ and they read:

cotd /
r”:ﬁ =—l_..,23 :_f’ ]—144 :_]’"4]4 ! gUU : (6‘)‘

where ()' means the derivative with respect to r.
From the second Cartan's equation, one can derive the tetradic curvature tensor

components
Rizpp = Rizs :_%T—=—Rz4z4 =—Rip43
= g0 (7)
Ryps = foo » R :2.2_,

"
ant k is comparable to the inverse of the

Since the value of the positive const
3kB is 3kB~107"7 [2], one can

Hubble length and the dimensionless quantity
write the metric (1), for p=M, in the particular form

IM i,

Lo =I—T+A?. (8)

Thus, we have kept only the Newtonian term, M/r, and the linear term kr and
we have neglected the 2.2 contribution which becomes important at cosmological
distances [2].

As in the case of the Schwarzschild solution, this metric has a real singularity

in r=0.
Now. the components (7) have the expressions:
M &k
Rz = Ria13 =‘—T_?‘:'R2424 =—Rag»
I Ll
2M  k 2M 9)
Rossi=—3 3 R =s—3 -

and the Einstein's tensor components read:

2k k
G1|='_—='G44: Gz:=Gs:-:'j- (10)

! 7
Since the proper encrgy density Ty, =G, is negative, one may conclude by saying
that the astrophysical object described by the metric (8) is surrounded by exotic

matter.

The curvature of the metric (8) is negative,

R=-—,
5
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and has a singularity in »=0.

However, in the tetradic frame (3), the components of the Weyl tensor have
the simple expressions

M 2M

Ciapz = Ciz13 = Cogny = Cig3q = Cospy = Cagagz = _r__‘;? Cosns = =-Ciqs

pointing out that, for M =0, the metric is conformally flat. For M =0, the above
components are all vanishing, for r—o0.
The unique horizon is the positive solution of the equation g,= 0, namely:

r;, ____*“*82*;’*'..2»{( ~4kM). (11)

For discussing the timelike geodesics, we write the spacetime line element (2) as

2
I [(d 0) +sin’6(d o) ]— gooldt) =-d*, (12)
goo .
where 1 is the proper time.
If the motion of the particle with zero angular momentum is on the equatorial

plane, the relation (12) leads to the simple expression

where dot means the derivatives with respect to t. Since the metric (8) is static
and the Killing vector field &, is orthogonal to the surfaces /= const, the energy
derived from the Lagrangian

_L=L| L ¢ 1262 +sin0¢? — gl |5
2{ g
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Fig.1. The cffective potential (15). represented by the solid line, and (16), represented by the
dashed plot. The numerical values of the parameters are: M =1, k=0.03, A =127.
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as
| 16E ;
5 g =&ool (13)
is conserved. Thus, we come to the important relation
2 =E*= gy, (14)
where we identify the effective potential
2M e
V(:;‘}' =g00=1-—-——. -i'k.", (15)

7
which is represented in the Fig.1, by the solid plot.
Similarly to the Schwarzschild spacetime, since the effective potential becomes
—o, as r— 0, a particle with suitable total energy can reach the center.
Moreover, the exotic matter brings an additional contribution in the attractive

force acting on the particle
2M
F=- (:,]- =———-k.
; 22
Let us consider a particle located at the finite distance r, >r, , with zero initial
velocity, which is falling toward the black hole. The relation

E*= eff

is leading to the equation
kig—gr—2M =0,

_1>0, whose physical solution is

Ve +8kM +¢
et g
2k
One may easily check that 7, exceeds the Schwarzschild radius r;=2M. On the
way from 7, to the horizon. the particle crosses the locally Minkowskian sphere,

of radius 7. = f2M [k , where g,= 1. This is an interesting feature, which has
no analogue in the case of the Schwarzschild metric.
The relation (14) can be written as

with €= E®

where the negative sign comes from the decreasing of time while r is increasing.
7 D
with the change of variable r=r,sin® x, where xe[O. ,-:/2], the above relation

leads to

ed I sin® xdx i 20
t==dyn T p = =
p 4sinTx 7o

——ETTTTT
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The proper time is expressed in terms of the Elliptic integrals of the first and
second kind as [10]

T:-z- 2M{E]hpncF|:—-—:| Elllptch[——]Z-]}_
k\’ 7o p p

For each value of k, one may easily check, using Mathematica, that < is a positive
function, which is increasing with the particle's energy, E. This can be easily
understood since, for a particle with a higher energy, 1, is moving to larger r values
and the particle needs more time to reach the r=0 singularity.

A circular orbit has the radius R_ solution of the equation [11]

Vi =0.

el =
Since, for the metric (8), 7/ o7 # 0, there are no circular orbits of the test particles.

The situation changes if one is taking the full expression of the MK metric, with
A # 0, and work with the effective potential

V‘_ﬂ,=]—£+f(r~lr2, (16)
: =

represented in the Fig.1, by the dashed plot. The horizons are given by the
physical solutions of the equation g, =0, i..

AP+t r-2M =0.
As it is known [12], the cubic equation ax’+ bx’+ cx+d =0, has three real distinct
solutions if the discriminant A =18abcd—4b°d+b*c>—4ac’—27ad>~is positive.
This means the relation

—108M 227 + 41+ kM )h + k(1 +8kM ) > 0,
which leads to the upper limit of the model's parameter A :

1+ 9kM+(1+6kMP” 1+ 9kM
54M* 27TM?

Among the three roots, given by the intersection of l/ with the horizontal axis,
one is negative, while the other two are situated in the allowed r-region, as it
can be seen in the Fig.1. We denote the two horizons by r, and r, and one may
notice that the potential has a positive maximum in between. For large r-values,
the potential is steeply falling down, to negative values. A particle coming from
infinity, with E2=V,,., will follow a circular orbit, with R, solution of the
equation ¥/, =0 . This orbit is unstable because ¥, <0 . Particles with EY <V
can follow elliptical orbits, with two turning points.

Finally, using the tetradic components of the Riemann tensor (9), one can
work out the equation of geodesic deviation [13]

=

A<

b c d'
T| +Rbuf v _0
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where ©“ is the unit vector tangent to the geodesic and n“ are the components
of the connecting vector between two neighboring geodesics.
For the congruence of timelike geodesics with v4v4 =—1, the above relation

leads to the following system, similar to the one obtained in [14],

uy  2M. witoio] VL s &
=t (), : S =0y
1 = TS »e " Dr i . (17)

where A=2, 3.
One may noticed that the angular tidal forces, given by the second equation

in (17), are affected by the parameter k. With

ﬁ=ﬂ=?‘ﬂ'=m¢, ﬁ=(‘92‘gon)“”‘%‘£“"

dt
we get the explicit form of the geodesic deviation vectors, expressed in terms of

the hypergeometric functions, [10], as

|5
r|] = AH’&E—M' + Aﬁ,[—l +4/l=x le[l,—,i.xD
r 3 4 2 4

Ia 115 (18)
4 - -F LT (e e
n —BH"FB:'J»’- 2][ 4,2.4,‘\]

re integration constants. For x<<1,

where x=k?/2M (0,1] and 4,, and B,, a
4 have the same form as the ones

meaning r<<r,, the expression of n' and M
to the Schwarzschild black hole (SBH):

R
J;

corresponding

:
+Cyr,

and
TT'I =D1r+Dz-\/?_'.

3. The Gordon equation and its Heun solutions. In order to
1e behavior of a black hole, one can consider a test field evolving
ponding manifold. The quantized energy spectrum is expressed in
and therefore they carry important informa-

understand I

in the corres

terms of the black hole's parameters

tion.
1

Gordon equation, i.e.
nan)[nb = nub(p Ipr:h = MEq) .

n the pseudo—orthonormal frame (3), the SO(3. 1) gauge-covariant Klein-

= E,® . has the explicit form
2 ’} I & 1 9%
2

with @,
| o2 0@ +,1Hi[sme; + =
?Ef-[’ oo =, 2 inB 60 o0 | r*sin’0 a¢? o Ot
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where the metric function describing the external region of the astrophysical object
is (8).
The variables being separated, one can take the wave function as

O=F (1) i (9, {p)e'f L (19)
where ¥;" are the spherical functions and the radial equation reads
1d[, dF) [o* de+1)
+| ————=—2-u? |F =0.
2 [ 8o~ 5. ] [goo o H (20)

The standard way for computing the quasinormal modes of the spherically
symmetric black holes is to introduce the tortoise coordinate and use the WKB
method. We do not insist on the procedure since it has been developed in [15].
However, we want to point out that, introducing the customary amplitude function

")="'Jguu F(r),
the equation (20) becomes

3 '2 - P
d i" 5 Lz o2 + 3% _L[i+ f(L-H)“*‘!-l ] = (21
dr | guo 4 oo L7 rt

where one may identify, besides the corrected energy, the Newtonian contribution.

Now, let us watch the field evolution around the locally Minkowskian region
g =1, i.e. 1, =4/2M/k . In terms of the dimensionless space variable x=r/r, ,
the equation (21) can be written as

"2;‘+ [1—m J’—) [ ® +%{%+1)2]

dx

-1 { )
_[I_W+mx] { 2t el “] My
X

+5
X xz

For x=1+p, to first order in p and \fsz ., the above equation becomes

2’2024{ ;‘"’" (02 —2)- i(£+1)]+[2f(€+l)+~/m[1*%(2mz"F‘Z))]p}‘go’

. A = 7 2 Be 0
and, in the semiclassical linear approximation w=p+¢, with 0" ~p +2ue, it

can be written as

2 5 2M
Py M—f(€+])]+ ze-(m)_cm—mf-— plu=0. 22)
atp.’. k k

In the particular S-case, corresponding to ¢ =0, the above relation turns into the
following Schrodinger-like equation for the amplitude function
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d*u 2M
107 ++2p-—k—[a—p42kMp]n =0. (23)

The solutions are the oscillatory Airy functions [10]

u=C,Ai(v)+C, Bi(v)

2P ”
":[%] [sz ——}.
= B

To find the solution for the entire range of the variable r, let us go back to the
radial equation (20). For the metric (8) written as

=1 Zﬂff_l_;,_-__k ,-_,.fil_][;-_a;l]
8, == e T AR I B (24)

a=A+1+8kM,

this can be analytically solved only in the massless case. Using Maple, one may
find the solution given by the Heun general functions [3,4]

iola=-1)/2ka —iw(a=1)f2ka
Ty | +1 2a 2k
F(;-):[;-_%Q_} |:r+ a?,k } Heun GI:;]— 7.0, B.7.8,1+ r] 25)

a+1
whose absolute value is represented in the Fig.2, for r=r,, where 7, is given in (11).
One may notice that, just outside the ho
for the particle to exist. For r close to r,.

of variable

with

rizon, there is a maximum probability
the probability is sharply decreasing,

Abs|F|

1.4 1.8 2.2 2.6
X

Fig.2. The absolute value Abs|F| =|FP, of the function (25), for »=r,
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as a clear indication that the particles are not propagating on the horizon.
To have a polynomial form of the Heun general functions, one has to impose

that the o parameter
io VK=o

et

ka k
satisfies the necessary condition o =-n, with n a positive integer [4]. This leads
to the following imaginary energy spectrum depending on M and &,

7

i(n+ 1) 8kMn(n+2
=—J1+8kM |1+ [1+—————= |,
=gy { T 1y J (26)

One may notice that, for k=0, we get the equally spaced energy spectrum of
the SBH [8],

@5 = ——434 (n+ 1).

To first order in 84M, the quantized energy in (26) becomes

) [J?+1 (3:12+ 6+ Z)k:I

A=+ 4M+ 2(}1-!—1)

"
pointing out an additional contribution depending only on &.

4. Conclusions. In this manuscript, we carried out an analysis of the (A =0)
MK metric. Even though this metric, with a linear contribution in r, is not a
standard solution of Einstein's equations in General Relativity, this has offered an
alternative explanation of the observations on the galaxy rotation curves. Throughout
this paper, we have worked in the approximation kM << 1, which is consistent
with the proposed numerical values, k=10 cm™ and M =107 |[2].

The negative Einstein tensor component G,, given in (10) is pointing out the
existence of exotic matter surrounding the stars. For r— 0, both the energy
density and the curvature are going to —o. However, one should keep in mind
that the metric (8) is valid only in the exterior region of the astrophysical object.

The metric (8) has the unique horizon (11) and one may notice that
7, <r¢ =2M , meaning that the linear contribution in the metric shrinks the
horizon of the SBH.

For falling particles, we have defined the effective potential, which is an
essential quantity in the analysis of the timelike geodesics. It turns out that the
proper time for the particle falling toward the black hole is given by Elliptic
integrals of the first and second kind. Also, by working out the equations of
geodesic deviations, we have pointed out that the angular tidal forces are affected
by the metric's parameter k, which brings a significant contribution in the explicit
form of the geodesic deviation vectors (18).
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The final part of the paper is devoted to the analysis of the Gordon equation
for massless bosons evolving in the spacetime described by the metric (8). The
obtained solution, given in (19) with (25), is valid for any values of k£ and M and
the whole range of r. The graphical description reveals that the absolute value of
the radial solution (25) has a maximum just outside the liorizon (see Fig.2).

Finally, we would like to mention some interesting features of the local
Minkowskian region g,, ~ 1., which has no analogue in the case of the Schwarzschild

metric. For a typical galaxy with

11
2M=w£zlo'4m,

and k=10%m", the terms 2M/r and kr are comparable for r, =2M/k =10 kpc
and the potential is constant. Such a potential is leading to approximately constant
rotational velocities which agree with the more or less flat observed galactic rotation
curves [16].

In the particular case corresponding to (=0, the Schrodinger-type equation

for the amplitude function (23) is satisfied by the Airy functions, which are well-

known solutions to the Schrodinger equation describing particles tunneling through

linear potentials.

Faculty of Physics, "Alexandru loan Cuza" University of I.BSI Bd. Carol I,
Romania, e-mail; marina@uaic.ro ciprian.dariescu@uaic.ro

BO30HOB B

PEIIEHUS 11 BE3SMACCOBDBIX |
NMA-KA3AHACA

[TPOCTPAHCTBE-BPEMEHH MAHTE

M.AJIAPUECKY, Y.JAPMECKY

B aHHOM CTAThe PACCMATPUBACTCS! METPHKA Manreiima-Kasanaca, KoTopasi, Kak
[IpE/IOAraeTCs, MOXKET AaTh HanexKHoe 0OBSICHEHHE HaBTI0NAEMBIM KPHBBLIM BPALLIEHHST
rasiakTHK. O6CyxaailoTcs 3 eKTUBHBII NOTCHLMAT 11 'e0Ie3HYECKUE OTKIOHEHMSL.
Jns KOHKpeTHO# (POpMbI METPHKH, jaBHCSLLIEH TOJBKO OT JABYX TNapamMeTpoB,
ypaBHEHHIO Topaoxa uist 6e3MaccoBbIX 0030HOB yAOBIETBOPSIIOT 00LIMe DyHKUMN
Ioiina. Ocoboe BHHMAHHNE yAC/IsIeTCS hn3nuecKn BAXKHOMY JIOKAITBHOMY PerrHoHY
MHHKOBCKOTO, HE MMEIOLIEMY aHaznora B cnyuae [IBapuinibia.

KJTioUeBbIE CIOBA: HPOCMPAHCRIGO=6PeM Manzeiima - Kasanaca: uepnvie dvipoi:

ypaenenue Topdona: gpynicuuu [ouHa
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