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We used modified holographic Ricci dark energy to find anisotropic LRS Bianchi type I
cosmological model in five-dimensions based on Lyra geometry. The exact solutions of the Einstein
field equations were obtained by using hybrid expansion law (HEL). We have investigated the
interacting and non-interacting dark energy and dark matter. It is found that at late times the
equation of state parameter (EOS) for non-interacting case behaves like a cosmological constant
whereas it behaves like phantom dark energy for interacting model. Some cosmological parameters
and stability of the models are discussed. The physical and geometric aspects of the models have
been analysed. They are consistent with the recent observational results.
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1. Introduction. Supernova observations (SNeIa) point towards an acceler-
ated expansion of the universe and also various astrophysical observational evi-
dences have decided the fact that the universe experiences an early inflation as
well as late-time accelerated expansion [1–4]. In modern cosmology it believed
that this is caused by a mysterious form of energy termed as dark energy (DE)
[5] with positive energy density and negative pressure. The simplest candidate for
dark energy is the cosmological constant   with the equation of state 1 .
This includes the hurdle of fine-tunning and cosmic coincidence [6,7]. Further
investigations reveal that there are other types of DE, such as quintessence [8],
phantom [9,10], tachyon [11], dilation [12] with interacting dark energy models
like holographic [13] and agegraphic [14] models. Also, the cosmic viscosity is
successful in achieving to play a role of dark energy candidate causing the
acceleration of the universe [15-17]. From the observational fact of Wilkinson
Microwave Anisotropy Probe (WMAP) it is found that the dark energy occupies
68.3%, the dark matter occupies 26.8% of the total energy of the universe and
the rest 4.9% energy is baryonic matter [18].

The exact physical situation at very early stages of the formation of our
Universe is still unknown. The investigation of higher-dimensional space-time is
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important because it is believed that the cosmos at the early stage of evolution
of the universe might have had a higher dimensional era. A fifth dimension is
introduced by Kaluza and Klein [19,20] to unify gravity with electromagnetic
interaction. In view of Chodos and Detweller's [21] investigations, the present four-
dimensional stage of the universe could have been preceded by a higher-
dimensional stage, which becomes four-dimensional in the sense that extra
dimensions contract to unobserved planckian length scale due to dynamical
contraction. This contraction of the extra dimension is a result of cosmological
evolution. In view of the development of superstring theory and supergravity
theory, higher dimensional physics acquires a new degree of emphasis. A good
number of interior and exterior solutions of Einstein's equation in higher dimen-
sions have been derived by Yoshimura [22], Koikawa [23], Myers and Perry [24]
and Krori et al. [25]. Reddy and Venkateswara [26], Adhav et al. [27], Reddy
[28] and a host of authors have contribution to the study of higher dimensional
cosmological models in general relativity and also in other alternate theory of
gravitation. The higher-dimensional anisotropic DE cosmological models play an
important role in the study of early stages of evolution of the universe.

Holographic dark energy model is emerging from the holographic principle
which was first presented by 't Hooft [29]. This principle states that the entropy
of a system scales not with its volume, but also with its surface area. The energy
density of holographic dark energy is 2223  LMc plHDE , where L is the infrared
(IR) cut off radius, GM pl  812  is the Planck mass and c is constant according
to Li et al. [30]. Gao et al. [31] obtained a holographic dark energy model. In
this model the future event horizon is replaced by the inverse of the Ricci scalar
curvature. This model is "Ricci Dark Energy" (RDE) model. A new holographic
Ricci dark energy was proposed by Granda and Oliveros [32,33] with the density
of dark energy as  HHM plHDE


2

2
1

23  . In 2009, Chen and Jing [34]
modified this model as  1

32
2

1
23  HHHHM plMHRDE

 . Katore et al. [35],
Kumar and Yadav [36] and a considerable number of researchers have studied
cosmological models with anisotropic dark energy.

Several researchers were inspired by Einstein's geometrization of gravitation in
his theory of general relativity to geometrize other physical fields. Weyl [37]
proposed a unified theory to geometrize gravitation and electromagnetism. But this
theory was not considered as it was depended on non-integrability of length
transfer. Lyra [38] suggested a modification by introducing a gauge function into
the structure less manifold which removes the non-integrability condition of the
length of a vector under parallel transport. Sen [39] and Sen and Dunn [40]
suggested a new scalar-tensor theory of gravitation and constructed an analogue
of the Einstein field equations based on Lyra's geometry, which in normal gauge
may be written as
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kijjiijij TgRgR  (1)

where i  is the displacement vector, c = 1 and G8  and other symbols have
their usual meaning in the Riemannian geometry. A brief note on Lyra's geometry
is given by Beesham [41] and Singh and Singh [42]. According to Halford [43],

i  the displacement vector in Lyra geometry plays the role of cosmological
constant in the normal general relativistic treatment. Rahman et al. [44,45]
presented cosmological models in Lyra geometry. Singh and Desikan [46] pre-
sented the exact solutions for FRW cosmological model in Lyra's geometry with
constant deceleration parameter. These theories are the modified theories of the
gravitation or alternate theory of gravitation. The accelerating expansion of the
universe can be explained in the context of these modified theories of gravitation.
Motivated by the above investigationswe study here a higher dimensional (5D)
cosmological model in one of these modified theories of gravitation, i.e. Lyra
geometry. It is of great significance at the early stage of the universe.

The paper is organized as follows: The metric and field equations are given
in Section 2. The solution of the field equations are presented in Section 3. In
Section 4, some physical and geometrical representations of the model are
discussed. The stability of models, the cosmic parameter and statefinder diagnostic
parameters are discussed respectively in Section 5, Section 6 and Section 7. In
Section 8, results and discussions of various parameters are discussed. The paper
is devoted to some concluding remarks in Section 9.

2. The metric and field equations. The 5-D Bianchi type I metric is
given by

  , 222222222  dZdzdyYdxXdtds (2)

where X, Y and Z are functions of cosmic time t.
The field equations based on Lyra manifold in normal gauge as proposed by

Sen [39] and Sen and Dunn [40] is

 , 
4
3

2
3

2
1

ijij
k

kijjiijij TTgRgR  (3)

where i  is the displacement vector and is defined as

  0 ,0 ,0 ,0 ,ti  (4)

and in geometrised unit 18 G , c = 1, R
ij
 is the Ricci tensor, R is the Ricci

scalar, T
ij
 and ijT  are the energy momentum tensors for dark matter (pressure

less) and MHRDE. T
ij
 and ijT  defined as follows

 , 0 ,0 ,0 ,0 ,diag MA
i
jT  (5)
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 
 

     ,  ,  ,  ,1diag

 , , , ,1diag
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MHRDEMHRDEMHRDEMHRDEMHRDE
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



(6)

where MA  is the energy density of the dark matter and MHRDE is the energy
density of the MHRDE and 

xMHRDEp , 
yMHRDEp , 

zMHRDEp , 
MHRDEp , are the

pressures on the x, y, z and   respectively. The skewness parameter   is the
deviations from MHRDE  on y and z axes. Here EOS parameter MHRDE  and
skewness parameter   can be functions of t.

The field equation (3) using Eqs. (4), (5) and (6) takes the form

MHRDEMHRDEY
Y

Z
Z

Y
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The energy conservation equation is

  , 0221

2
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where dot    denotes derivative with respect to the cosmic time t.

3. Solutions of the field equations. The spatial volume V is given by

, 42 RZXYV  (12)

where R is the average scale factor. The Hubble's parameter H is given by

  , 2
4
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where H
x
, H

y
, H

z
 and H  are the directional Hubble parameters in the directions

of x, y, z and   axes respectively.
The anisotropy parameter A

p
 is given by
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Eq. (7) and Eq. (8) together yield

, exp1 








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  dt
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(15)

where d1 is a constant of integration. To solve the Eq. (15), we take (according
to Adhav [47])

. 
Y
Y

X
X

MHRDE


 (16)

Using Eq. (16), Eq. (15) takes the form

. 1 te
V
d

Y
Y

X
X 


(17)

Eqs. (7)-(10) are four field equations with seven unknowns X, Y, Z,  ,

MHRDE , MHRDE ,  and MA . So, in order to solve the system completely we
need extra three relations. We take the following relations (i), (ii) and (iii):

(i) Chen and Jing [34] proposed the MHRDE density as

 , 3 1
32

2
1

 HHHHMHRDE
 (18)

where 1 , 2  and 3  are constants and 182  GM pl .
(ii) The average scale factor R(t) which is a combination of power law and

exponential law as proposed by Akarsu et al. [48] is given by
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p e
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where a1 and a2 are non-negative constants and R
p
 and t

p
 represents the present

value of scale factor and age of the universe.
The relation (19) is a combination of power and exponential law which is

commonly known as Hybrid Expansion Law (HEL). And also

    (iii) , 1
nt

Z  (20)

where n > 0 is a positive constant.
Eq. (12), on using Eq. (19) gives the spatial volume V of the model as
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Eq. (20) and Eq. (21) yield
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Eq. (17) gives
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where d2 is a constant of integration.
Eqs. (22) and (23) yield
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The deceleration parameter q is defined as
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3.1. Non-interacting dark energy and dark matter. In this section
we have assumed that there is no interaction between Dark Energy and Dark
Matter.



301ANISOTROPIC  MHRDE  MODEL  IN  LYRA  MANIFOLD

Eq. (11) yields the conservation equation for matter and MHRDE as
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where d3 is an integrating constant. The expression for EOS parameter MHRDE
for MHRDE is obtained from Eq. (32) as
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Eqs. (18) and (29) lead to
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The skewness parameter   can be obtained from Eq. (16) using Eqs. (24) and
(25) as
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Eq. (34) on using the values of X, Y, Z, MHRDE , H yields,
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The displacement field vector   obtained from Eq. (9) on using Eqs. (26),
(27), (35) and (37) is given by
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3.2. Interacting dark energy and dark matter. We have considered that
there is an interaction between Dark Energy and Dark Matter. The Eq. (11) yields
the conservation equation for matter and MHRDE as

Q
Z
Z

Y
Y

X
X

MAMA 





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

 2 (39)

  , 221 Q
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where Q  is the interaction between Dark Energy (DE) and Dark Mater (DM).
Here 0Q  means that the energy flows from DE to DM, 0Q  means that
the energy flows in opposite direction and 0Q  means that there is no
interaction between DE and DM. In general, Q  is inversely proportional of time.
Wei and Cai [49] proposed

MAHQ  4 (41)

where 0  is a coupling constant.
Eqs. (39) and (41) implies

  1   ,14
4  RdMA (42)

where d4 is a constant of integration.
Eqs. (40) and (41) on using the values of X, Y, Z, MHRDE , H yields,
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4. Some physical and geometrical representation. The graphical
representations of various cosmological parameters for both the interacting case and
non-interacting case are discussed here. The numerical values used in the graphs are
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(44)

Fig.1. a) The plots of H (dashed line) and q (solid line) versus cosmic time t. b) The plots
of MA  and MHRDE  versus cosmic time t.
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5. Stability analysis. The stability conditions can be determined by testing
the sound speed. The square sound speed for any fluid is given as

,2
MHRDEMHRDEsq p  v  MHRDEMHRDEMHRDEp  . The positive value of 2

sqv  implies
that the model is stable whereas the negative value implies that the model is

Fig.2. a) The plot of Ap versus cosmic time t. b) The plot of MHRDE  versus cosmic time t.
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unstable. Also, the casualty condition must be satisfied. It means that the sound
speed is less than the speed of light. The Energy conditions, i.e. Weak Energy
Conditions (WEC), Dominant Energy Conditions (DEC) and Strong Energy
Conditions (SEC) are respectively given by

(I) 0MHRDE   (II) 0 MHRDEMHRDE p   (III) 04  MHRDEMHRDE p

6. Cosmic jerk parameter.  Cosmic jerk parameter is defined as the third
order derivative of the average scale factor w.r. to the cosmic time. It is a
dimensional quantity and it is given by Chiba and Nakamura [50]

  . 21 2
3 H

qqq
R
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H
tj


 (45)

Using Eqs. (29) and (30) in Eq. (45), we get the expression of cosmic jerk
parameter as
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(46)

It is believed that the transition from the decelerating to the accelerating phase
of the universe isdue to a cosmic jerk parameter. This transition of the universe

Fig.4. a) The plots of   versus cosmic time t. b) The plots of 2
sqv  versus cosmic time.
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occurs for different models with a positive value of the jerk parameter and the
negative value of the deceleration parameter [51-53]. The CDM  model has a
constant jerk j = 1.

7. Statefinder parameters. Sahni et al. [54] first introduced the statefinder
parameters called {r, s} parameters to discriminate among the various DE models.
The {r, s} parameters depends on the average scale factor. The important property
of the {r, s} parameter is that it can explains the dynamics of the expansion of
the universe by using the higher derivatives of R and the deceleration parameter
q. The mathematical expression of {r, s} parameters are

. 

2
13

1and3






 


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q

rs
RH
Rr


(47)

For our model, the {r, s} parameters take the form

Fig.5. a) The plots of Energy conditions (for non-interacting case) versus cosmic time t. b) The
figure shows the plot of Energy conditions (for interacting case) versus cosmic time.
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Therefore r is related to s by the following expression:

  . 770, 
213

1
0 .q

q
rs 



 (50)

8. Results and discussions. It is observed from Fig.1a that H is a
decreasing function of t and vanishes for large values of t. From Fig.1a, it is seen
that the deceleration parameter q is positive at early stage of the universe and is
negative at later stage. This implies that the universe exhibits transition from the
decelerating to accelerating phase. Initially the universe is decelerating and ulti-
mately at late times it is accelerating. From Fig.2a, it is seen that A

p
 increases

sharply at early stage of the universe and then decreases and ultimately tends to
zero at late times. So, at early era the universe is anisotropic and at the late times
the universe becomes isotropic. From Fig.1b, it is observed that MA  is a

Fig.6. The plot of r versus s.
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decreasing function of t and tends to zero at late-times. From Fig.1b, it is seen
that MHRDE  is a decreasing function of t and tends to small value at late-times.
From Fig.2b, it is observed that MHRDE  tends to -1 at late times for non-
interacting case, where dashed line represents the non-interacting model and
interestingly it behaves like a cosmological constant [6]. Also, from Fig.2b, it is
observed that 1MHRDE  at late-times for interacting case. This depicts that the
model behaves like phantom dark energy [8]. It is observed from Fig.3, that 
increases sharply at early stage of the universe and then decreases and ultimately
tends to zero at late times. From Fig.3, it is seen that j tends to 1 at late times
and is positive throughout the entire age of the universe. From Fig.4a, it is seen
that   tends to zero at late times for both non-interacting (dashed line) case and
interacting (solid line) case. From Fig.4b, for non-interacting model (dashed line)
and interacting model (solid line), we see that 2

sqv  is positive for both the cases.
This confirms that our models are stable throughout the evolution of the universe.
WEC is satisfied for both non-interacting and interacting models, but the DEC
and SEC for both the models are violated which indicates that at late times our
models proceed to accelerating expanded models of the universe Fig.5a, b. Hence
our cosmological models are physically acceptable. From Fig.6, we observe that
the value of s is negative when 1r . Also, it is observed that universe starts from
an Einstein static era (  sr   , ) and goes to the CDM  model ( 0  ,1  sr ).

9. Conclusions. In this paper, we have studied interacting and non-
interacting DE and DM in the anisotropic five-dimensional Bianchi type-I
universe within the framework of Lyra geometry. The exact solutions of the
Einstein field equations in Lyra geometry are obtained by making use of MHRDE
proposed by Chen and Jing [34]. Also, we have used HEL which is a combination
of power law and exponential law. The anisotropy of the universe ultimately tends
to zero at later times and the universe becomes isotropic. The skewness parameter
  in this model also tends to zero at later age of the universe. Also, the equation
of state parameter for MHRDE, MHRDE  approaches -1 at late times and it behaves
like a cosmological constant for non-interacting model. But for interacting model

1MHRDE  which indicates the model behaves like phantom dark energy at late
times. The cosmic jerk parameter j approaches to 1 at late times of the evolution
of the universe and it is positive throughout the age of the universe. Also, it is
found that the sound speed is positive for non-interacting and interacting models
and therefore our models are stable throughout the evolution of the universe. The
statefinder diagnostic pair {r, s} is obtained. The trajectories in the {r, s} plane
corresponds to the CDM  model (as shown in Fig.6). The displacement field
vector   which plays an important role in the dynamics of the universe, tends
to zero at later age of the universe. The constant displacement vector field   in
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Lyra geometry plays the role of cosmological constant   in normal relativistic
treatment [43]. Therefore, the displacement field behaves as a candidate for dark
energy. Interestingly, within the frame work of Lyra geometry while investigating
five-dimensional LRS Bianchi type-I model universe with time-dependent decel-
eration parameter our models (interacting and non-interacting) are dark energy
models of the universe which are consistent with the observational findings. It is
seen that all physical and geometrical aspects of the models are in good agreement
with the recent scenario of modern cosmology. It is observed that our models may
be useful for better understanding of higher-dimensional cosmological model in
early stage of the universe with modified holographic Ricci dark energy based
within the frame work of Lyra geometry.

Acknowledgements. The authors are thankful to the referee for the positive
and constructive comments, which have helped to improve the quality of the
manuscript. They also like to thank the Department of Mathematics, Gauhati
University for providing facilities to work out this paper. One of the authors (JB)
acknowledges the financial support from UGC (NFOBC), India.

Department of Mathematics, Gauhati University, Assam (India)
e-mail: kallol@gauhati.ac.in    jumibharali2@gmail.com

ÌÍÎÃÎÌÅÐÍÀß ÀÍÈÇÎÒÐÎÏÍÀß
ÊÎÑÌÎËÎÃÈ×ÅÑÊÀß ÌÎÄÅËÜ

ÌÎÄÈÔÈÖÈÐÎÂÀÍÍÎÉ ÃÎËÎÃÐÀÔÈ×ÅÑÊÎÉ
ÒÅÌÍÎÉ ÝÍÅÐÃÈÈ ÐÈ××È Â ÌÍÎÃÎÎÁÐÀÇÈÈ ËÈÐÛ

Ê.ÄÀÑ, Ä.ÁÕÀÐÀËÈ

×òîáû íàéòè àíèçîòðîïíóþ êîñìîëîãè÷åñêóþ ìîäåëü LRS Áüÿíêè òèïà
I â ïÿòè èçìåðåíèÿõ íà îñíîâå ãåîìåòðèè Ëèðû, èñïîëüçîâàíà ìîäèôè-
öèðîâàííàÿ ãîëîãðàôè÷åñêàÿ òåìíàÿ ýíåðãèÿ Ðè÷÷è. Òî÷íûå ðåøåíèÿ óðàâíåíèé
ïîëÿ Ýéíøòåéíà ïîëó÷åíû ñ ïîìîùüþ ãèáðèäíîãî çàêîíà ðàñøèðåíèÿ (HEL).
Çàäà÷à ðàññìîòðåíà êàê ïðè íàëè÷èè âçàèìîäåéñòâèÿ ìåæäó òåìíîé ýíåðãèåé
è òåìíîé ìàòåðèåé, òàê è ïðè åå îòñóòñòâèè. Îáíàðóæåíî, ÷òî íà ïîçäíèõ
ñòàäèÿõ ðàñøèðåíèÿ óðàâíåíèå ïàðàìåòðà ñîñòîÿíèÿ (EOS) äëÿ íåâçàèìîäåéñò-
âóþùåãî ñëó÷àÿ âåäåò ñåáÿ êàê êîñìîëîãè÷åñêàÿ ïîñòîÿííàÿ, òîãäà êàê äëÿ
âçàèìîäåéñòâóþùåé ìîäåëè îíî âåäåò ñåáÿ êàê ôàíòîìíàÿ òåìíàÿ ýíåðãèÿ.
Îáñóæäàþòñÿ íåêîòîðûå êîñìîëîãè÷åñêèå ïàðàìåòðû è óñòîé÷èâîñòü ìîäåëåé.
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Ôèçè÷åñêèå è ãåîìåòðè÷åñêèå àñïåêòû ìîäåëåé áûëè ïðîàíàëèçèðîâàíû è
ñîãëàñîâàíû ñ íåäàâíèìè ðåçóëüòàòàìè íàáëþäåíèé.

Êëþ÷åâûå ñëîâà: LRS Áüÿíêè: òèï I: ïðîñòðàíñòâî-âðåìÿ: ãåîìåòðèÿ Ëèðû:
      ìîäèôèöèðîâàííàÿ ãîëîãðàôè÷åñêàÿ òåìíàÿ ýíåðãèÿ Ðè÷÷è:
      çàêîí ãèáðèäíîãî ðàñøèðåíèÿ
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