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Abstract. In recent years, nonhomogeneous wavelet frames have been widely studied by many
researchers, while the ones in L2(R+) have not. Some practical applications indicate that it is
desirable to have a nonhomogeneous dual wavelet frame in L2(R+) because of the time variable
can not take negative values in signal sampling. In addition, similar to the homogeneous dual

wavelet frames, the nonhomogeneous ones derived from refinable functions have fast wavelet algo-
rithms. In view of this, under the setting of L2(R+), we study the properties of nonhomogeneous
dual wavelet frames, and obtain a construction of nonhomogeneous dual wavelet frames from a
pair of p-refinable functions.

MSC2010 numbers: 42C40; 42C15.
Keywords: Bessel sequence; wavelet frame; nonhomogeneous dual wavelet frame;
Walsh-Fourier transform.

1. Introduction

The concept of frames was introduced already in 1952 by Duffin and Schaeffer [10]

in the study of nonharmonic Fourier series, but the importance of this concept was

not recognized by mathematicians until the ground-breaking work of Daubechies

et al. [7]. In the past three decades, the theory of frames has attracted many

mathematicians and engineers, and has achieved fruitful results (see [5, 6, 27, 28]

and many references therein).

An important example about frames is wavelet frames, which are generated

by translation and dilation of a finite number of functions. Wavelet frames have

many good properties that make them useful in the study of signal processing,

image restorations, sampling theory, function spaces [2, 17, 24, 32] and so forth.

In order to make the wavelet frames have more applications, several generalized

notions of wavelet frames are proposed and studied, namely tight wavelet frames

[18], dual wavelet frames [19], (quasi) affine frames and (quasi) affine dual frames

[3, 27]. One of the fundamental methods to construct tight wavelet frames from

refinable functions is the unitary extension principle (UEP) which was proposed

1Supported by the National Natural Science Foundation of China (Grant No. 11961072);
the Natural Science Basic Research Program of Shanxi (Grant No: 2020JM-547); the Doctoral
Research Project of Yan’an University (Grant No.YDBK2017-21).
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by Ron and Shen [27, 28], and then was extended by Daubechies et al. [5] in the

form of the oblique extension principle (OEP). They gave sufficient conditions for

constructing tight affine frames and affine dual frames from any given refinable

functions. From then on, many works along this direction can be found in [1, 4, 25,

34]. Observe that all above works main focus on homogeneous (dual) wavelet frames.

In applications, fast wavelet transforms are our main concern, and nonhomogeneous

(dual) wavelet frames derived from refinable functions have fast wavelet algorithms.

Han in [20–22] comprehensive studied nonhomogeneous (dual) wavelet frames and

they connect with homogeneous ones. Similar to the homogeneous dual wavelet

frames, the nonhomogeneous ones derived from refinable functions have fast wavelet

algorithms, which play an important role in wavelet analysis.

Wavelets and frames have been generalized in many different settings. For example,

Lang [23] constructed compactly supported orthogonal wavelets on the locally

compact Cantor dyadic group by following the procedure of Daubechies [8] (or

see [9]) via scaling filters, and these wavelets turn out to be certain lacunary Walsh

series on the real line. Recent works about wavelets and frames on the Cantor

group and Vilenkin groups can be found in [12–16]. It is worth noting that the first

constructions of wavelet frames on the positive half line with binary addition were

proposed by Farkov [11], in which wavelets and frames on the half line R+ related to

the Walsh-Dirichlet kernel and its modification are considered. Shah and Debnath

[30] studied Dyadic wavelet frames on a half-line using the Walsh-Fourier transform.

Shah in [31] give an explicit construction of tight wavelet frames generated by the

Walsh polynomials on positive half-line R+ using the extension principles, and

derive the wavelet frames decomposition and reconstruction formulas.

Intuitively, we can obtain L2(R+) wavelet frames by projection from L2(R) ones,

while it is not the case for L2(R+) since the projections do not have complete

affine structure. Furthermore, in many practical problems of nature and physics, the

time variable can not take negative values in signal sampling; and in mathematics,

R+ is not closed according to the usual addition “+”. As a result, the classical

Fourier transform method can not be directly applied to the wavelet frames in

L2(R+). However, R+ is closed in terms of the operation “⊕”, and the Walsh-Fourier

transform is defined by ⊕.
Inspired by the above observation, in this paper we investigate nonhomogeneous

dual wavelet frames under the setting of L2(R+). In Section 2 we give some preliminaries

and notations. In Section 3 we present some properties of nonhomogeneous dual
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wavelet frames in L2(R+). Section 4 is devoted to constructing nonhomogeneous

dual wavelet frames from a pair of general p-refinable functions.

2. Preliminaries and notations

We first recall some basics of addition “⊕"and subtraction “	". We denote by Z,
Z+ and N the set of integers, the set of nonnegative integers and the set of positive

integers, respectively; and by Nt the set of {0, 1, · · · , t− 1} for t ∈ N. Let p > 1 be

a fixed integer. For x, y ∈ Np, we define the ⊕ and 	 on Np respectively by

x⊕ y = (x+ y)(mod p) =

{
x+ y, x+ y < p,
x+ y − p, x+ y > p,

and

x	 y = (x− y)(mod p) =

{
x− y, x > y,
x− y + p, x < y.

Given x ∈ R+, we denote by [x] its integer part, and by {x} its fraction part. Then

we have

(2.1) x =

kx∑
j=1

x−jp
j−1 +

∞∑
j=1

xjp
−j = [x] + {x},

where kx ∈ Z+, xj , x−j ∈ Np for j ∈ N, and the sequence {xj}∞j=1 is required to

have only finitely many nonzero terms when x is rational. For y, ω ∈ R+, we define

yj , y−j and ωj , ω−j similarly. Using the above operations on Np, we define the ⊕
and 	 on R+ respectively by

(2.2) x⊕ y =

∞∑
j=1

(xj ⊕ yj)pj−1 +

∞∑
j=1

(x−j ⊕ y−j)p−j

and

(2.3) x	 y =

∞∑
j=1

(xj 	 yj)pj−1 +

∞∑
j=1

(x−j 	 y−j)p−j

for x, y ∈ R+. Note that z = x	 y if z ⊕ y = x, and it is easy to check that R+ is

a group under the operation “⊕ ”. Given x, ω ∈ R+, write

(2.4) χ(x, ω) = exp

2πi

p

∞∑
j=1

(xjω−j + x−jωj)

 .

For a function f ∈ L1(R+) ∩ L2(R+), its Walsh-Fourier transform is defined by

Ff(·) =

∫
R+

f(x)χ(x, ·)dx,

and is extended uniquely to the whole space L2(R+). The details of the Walsh-

Fourier transform and Walsh series can be found in [29]. Similarly to the classical

Fourier transform, the Walsh-Fourier transform is an unitary operator on L2(R+),

and the system {χ(k, ·) : k ∈ Z+} is an orthonormal basis for L2(T) with T = [0, 1).
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We define the dilation operator D and the translation operator Tk with k ∈ Z+

respectively by

Df(·) = p1/2f(p ·) and Tkf(·) = f(· 	 k) for f ∈ L2(R+).

Obviously, they are both unitary operators on L2(R+). And we write

fj,k = DjTkf for j ∈ Z and k ∈ Z+.

Let J ∈ Z, ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL} with L ∈ N be a finite subset in

L2(R+). We define the homogeneous wavelet systemX(Ψ) and the nonhomogeneous

wavelet system XJ(ψ0, Ψ) respectively by

(2.5) X(Ψ) = {ψl,j,k : j ∈ Z, k ∈ Z+, 1 ≤ l ≤ L}

and

(2.6) XJ(ψ0, Ψ) = {ψ0,J,k : k ∈ Z+} ∪ {ψl,j,k : j ≥ J, k ∈ Z+, 1 ≤ l ≤ L}.

And we write X0(ψ0, Ψ) = X(ψ0, Ψ) for simplicity. Let X(Ψ̃) and XJ(ψ̃0, Ψ̃) be

defined similarly. We say X(Ψ) is a homogeneous wavelet frame (HWF) in L2(R+)

if there exist two constants 0 < A ≤ B <∞ such that

(2.7) A‖f‖2 ≤
L∑

l=1

∑
j∈Z

∑
k∈Z+

|〈f, ψl,j,k〉|2 ≤ B‖f‖2 for f ∈ L2(R+),

where A,B are called frame bounds. It is called a Bessel sequence in L2(R+) if

only the right-hand side of (2.7) holds, where B is called a Bessel bound. We say

(X(Ψ), X(Ψ̃)) is a homogeneous dual wavelet frame (HDWF) in L2(R+) if X(Ψ)

and X(Ψ̃) are both Bessel sequences in L2(R+), and the identity

(2.8) 〈f, g〉 =

L∑
l=1

∑
j∈Z

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

holds for f, g ∈ L2(R+). Similarly, we say XJ(ψ0, Ψ) is a nonhomogeneous wavelet

frame (NWF) in L2(R+) if there exist two constants 0 < A ≤ B <∞ such that

(2.9)

A‖f‖2 ≤
∑
k∈Z+

|〈f, ψ0,J,k〉|2 +

L∑
l=1

∞∑
j=J

∑
k∈Z+

|〈f, ψl,j,k〉|2 ≤ B‖f‖2 for f ∈ L2(R+),

where A,B are called frame bounds. It is called a Bessel sequence in L2(R+) if

only the right-hand side of (2.9) holds, where B is called a Bessel bound. We

say
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a nonhomogeneous dual wavelet frame (NDWF) in

L2(R+) if XJ(ψ0; Ψ) and XJ(ψ̃0; Ψ̃) are both Bessel sequences in L2(R+), and the
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identity

(2.10) 〈f, g〉 =
∑
k∈Z+

〈f, ψ̃0,J,k〉〈ψ0,J,k, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

holds for f, g ∈ L2(R+). It is easy to check that both XJ(ψ0; Ψ) and XJ(ψ̃0; Ψ̃) are

frames for L2(R+), and reconstruction formula

f =
∑
k∈Z+

〈f, ψ̃0,J,k〉ψ0,J,k +

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉ψl,j,k,

or

f =
∑
k∈Z+

〈f, ψ0,J,k〉ψ̃0,J,k +

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψl,j,k〉ψ̃l,j,k

holds for f ∈ L2(R+) if
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF in L2(R+).

Nonhomogeneous (dual) wavelet frames play an important role in frame theory

because they are related to filter banks and have a natural relationship with refinable

structures as pointed out in [26] where this type of wavelet frames was introduced

for the first time. It is worth noting that Han named the term ‘nonhomogeneous’

for this type of frames and widely studied them in the distribution space and in

L2(Rd) [21, 22]. In particular, Han proved that if
(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
is a

NDWF in L2(Rd) for some J0 ∈ Z, then
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF in

L2(Rd) for a general J ∈ Z, and (X(Ψ), X(Ψ̃)) is a HDWF in L2(Rd).

3. Some properties of NDWFs in L2(R+)

This section is devoted to some properties of NDWFs in L2(R+). Observe that

the dilation operator and the Walsh-Fourier transforms are unitary operator on

L2(R+). Let {Tkψ0 : k ∈ Z+} and {Tkψ̃0 : k ∈ Z+} be Bessel sequences in L2(R+),

define a quasi-interpolatory operator PJ on L2(R+) with J ∈ Z by

(3.1) PJf =
∑
k∈Z+

〈f, ψ̃0,J,k〉ψ0,J,k for f ∈ L2(R+).

It is not difficult to prove that {ψ0,J,k : k ∈ Z+} and {ψ̃0,J,k : k ∈ Z+} are also Bessel
sequences for each J ∈ Z under the Bessel assumptions of integer translation of ψ0

and ψ̃0. Therefore, PJ is a bounded operator by the Cauchy-Schwarz inequality,

and is well defined. Also we have next result.

Lemma 3.1. Given J ∈ Z, let {Tkψ0 : k ∈ Z+} and {Tkψ̃0 : k ∈ Z+} be Bessel

sequences in L2(R+), then we have

(3.2) lim
J→−∞

PJf = 0 for f ∈ L2(R+).
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Proof. Fix f ∈ L2(R+). For an arbitrary ε > 0, let g ∈ L2(R+) with supp(g) ⊂
[0, R] for some R > 0 such that ‖f − g‖ < ε. Then by the above argument, we have

‖PJf‖ ≤ ‖PJ(f − g)‖+ ‖PJg‖ ≤ Cε+ ‖PJg‖ for some constant C > 0.

Next, we prove lim
J→−∞

PJg = 0 to complete the proof. We estimate

‖PJg‖2 ≤ C
∑
k∈Z+

|〈g, ψ̃0,J,k〉|2 ≤ C‖g‖2
∑
k∈Z+

∫
[0, R]

|ψ̃0,J,k(x)|2dx

= C‖g‖2
∑
k∈Z+

∫
[0, R]

|pJ/2ψ̃0(pJx	 k)|2dx = C‖g‖2
∫
∪k∈Z+ [0, pJR+k]

|ψ̃0(y)|2dy,

(3.3)

it tends to 0 as J → −∞ by Lebesgue’s dominate convergence theorem, and thus

lim
J→−∞

PJg = 0. �

The following theorem shows that the equivalence of NDWFs between different

scale levels, and an NDWF in L2(R+) can derive an HDWF.

Theorem 3.1. Given an integer J0. Let ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL}
be a finite subset in L2(R+). Suppose

(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
is a NDWF for

L2(R+), then
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF for L2(R+) for all integer J .

In particular,
(
X(Ψ), X(Ψ̃)

)
is a HDWF for L2(R+).

Proof. For any integer J and f, g ∈ L2(R+), we have

(3.4) 〈f, ψ̃0,J,k〉 = 〈DJ0−Jf, ψ̃0,J0,k〉, 〈ψ0,J,k, g〉 = 〈ψ0,J0,k, D
J0−Jg〉

and

(3.5) 〈f, ψ̃l,j,k〉 = 〈DJ0−Jf, ψ̃l,j+J0−J,k〉, 〈ψl,j,k, g〉 = 〈ψl,j+J0−J,k, D
J0−Jg〉

due to D is a unitary operator on L2(R+). And thus, we have∑
k∈Z+

〈f, ψ̃0J,k〉〈ψ0,J,k, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉(3.6)

=
∑
k∈Z+

〈DJ0−Jf, ψ̃0J0,k〉〈ψ0,J0,k, D
J0−Jg〉

+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈DJ0−Jf, ψ̃l,j+J0−J,k〉〈ψl,j+J0−J,k, D
J0−Jg〉

=
∑
k∈Z+

〈DJ0−Jf, ψ̃0,J0,k〉〈ψ0,J0,k, D
J0−Jg〉

+

L∑
l=1

∞∑
j=J0

∑
k∈Z+

〈DJ0−Jf, ψ̃l,j,k〉〈ψl,j,k, D
J0−Jg〉,
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it equals to 〈DJ0−Jf, DJ0−Jg〉, and then equals to 〈f, g〉, since (XJ0
(ψ0; Ψ),XJ0

(ψ̃0; Ψ̃))

is a NWDF for L2(R+). So
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF for L2(R+) for all

integer J , and thus

(3.7) 〈PJf, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉 = 〈f, g〉 for f, g ∈ L2(R+).

Letting J → −∞ in (3.7) and using Lemma 3.1, we obtain

(3.8)
L∑

l=1

∑
j∈Z

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉 = 〈f, g〉 for f, g ∈ L2(R+).

Therefore,
(
X(Ψ), X(Ψ̃)

)
is a HDWF for L2(R+). The proof is completed. �

Theory 3.1 tells us that the study of NDWFs of the form
(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
with general J0 ∈ Z can reduces to the study of NDWFs with J0 = 0. The next

theorem characterizes NDWFs in L2(R+) under the general Bessel assumption.

Theorem 3.2. Let ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL} be a finite subset in

L2(R+). Suppose {Tkψl : k ∈ Z+, 0 ≤ l ≤ L} and {Tkψ̃l : k ∈ Z+, 0 ≤ l ≤ L} are

Bessel sequences in L2(R+). Then
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+)

if and only if

(3.9) lim
J→∞

〈PJf, g〉 = 〈f, g〉

and

(3.10) 〈PJ+1f, g〉 = 〈PJf, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,J,k〉〈ψl,J,k, g〉

for f, g ∈ L2(R+) and J ∈ Z, where PJ is defined as in (3.1).

Proof. “⇐”: It follows from (3.10) that

(3.11) 〈PJ+1f, g〉 = 〈P0f, g〉+

L∑
l=1

J∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+) and J ∈ Z. Letting J →∞ in (3.11) and using (3.9), we have

(3.12) 〈f, g〉 = 〈P0f, g〉+

L∑
l=1

∞∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+). Therefore,
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+).
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“⇒”: Suppose
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+), then (XJ(ψ0, Ψ),

XJ(ψ̃0, Ψ̃)) is a NDWF for L2(R+) for all integer J by Theory 3.1. It follows that

〈f, g〉 = 〈PJ+1f, g〉+

L∑
l=1

∞∑
j=J+1

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

= 〈PJf, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉(3.13)

for f, g ∈ L2(R+) and J ∈ Z, which leads to (3.10), and thus

(3.14) 〈PJ+1f, g〉 = 〈P0f, g〉+

L∑
l=1

J∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+) and J ∈ Z. Also, observe that
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF

for L2(R+). Letting J →∞ in (3.14), we obtain (3.9). The proof is completed. �

4. Refinable functions based construction of NDWFs in L2(R+)

This section is devoted to constructing NDWFs from a pair of general refinable

functions.

For f, g ∈ L2(R+), we define

(4.1) [f, g](·) =
∑
k∈Z+

f(· ⊕ k)g(· ⊕ k) a.e. on R+,

then it belongs to L1(T), and is well defined. And we write

(4.2) D := {f ∈ L2(R+) : Ff ∈ L∞(R+) and supp(Ff) is bounded},

where supp(Ff) = {ξ ∈ R+ : Ff(ξ) 6= 0} for f ∈ L2(R+) and is well defined up to

a set 0. It is not difficult to verify that D is dense in L2(R+).

Now, let us make some assumptions:

Assumption 1. ψ0, ψ̃0 ∈ L2(R+) are p-refinable functions with symbols in

L∞(T), i.e., there exist m0, m̃0 ∈ L∞(T) such that

(4.3) Fψ0(p ·) = m0(·)Fψ0(·) and F ψ̃0(p ·) = m̃0(·)F ψ̃0(·) a.e. on R+.

Assumption 2. lim
j→∞

Fψ0(p−j ·)F ψ̃0(p−j ·) = 1 a.e. on R+.

Assumption 3. [Fψ0, Fψ0], [F ψ̃0, F ψ̃0] ∈ L∞(T).

Given L ∈ N, let ml, m̃l ∈ L∞(T) with 1 ≤ l ≤ L, and define ψl and ψ̃l by

(4.4) Fψl(p ·) = ml(·)Fψ0(·) and F ψ̃l(p ·) = m̃l(·)F ψ̃0(·) a.e. on R+.
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With ml and m̃l, l = 0, 1, · · · , L as the framelet symbols, we write

(4.5)

M(·) =


m0(·) m1(·) · · · mL(·)

m0(· ⊕ 1/p) m1(· ⊕ 1/p) · · · mL(· ⊕ 1/p)
...

...
. . .

...
m0(· ⊕ (p− 1)/p) m1(· ⊕ (p− 1)/p) · · · mL(· ⊕ (p− 1)/p)


and

(4.6)

M̃(·) =


m̃0(·) m̃1(·) · · · m̃L(·)

m̃0(· ⊕ 1/p) m̃1(· ⊕ 1/p) · · · m̃L(· ⊕ 1/p)
...

...
. . .

...
m̃0(· ⊕ (p− 1)/p) m̃1(· ⊕ (p− 1)/p) · · · m̃L(· ⊕ (p− 1)/p)


We will study what ml, m̃l ∈ L∞(T) with 0 ≤ l ≤ L are qualified for (X(ψ0, Ψ),

X(ψ̃0, Ψ̃)) to be a NDWF in L2(R+). We begin with some lemmas for latter use.

The following lemma shows that Assumption 3 is equivalent to the fact that

{Tkψ0 : k ∈ Z+} is a Bessel sequence in L2(R+).

Lemma 4.1. ([33, Theorem 2.1]) Let ψ0 ∈ L2(R+). Then {Tkψ0 : k ∈ Z+} is a

Bessel sequence in L2(R+) with Bessel bound B if and only if

[Fψ0, Fψ0](·) ≤ B a.e. on T.

Observe that {χ(k, ·) : k ∈ Z+} is an orthonormal basis for L2(T) and the

Walsh-Fourier transform is a unitary operator on L2(R+) .

Lemma 4.2. Let k ∈ Z+ and f, ψ ∈ L2(R+). Then, 〈f, ψj,k〉 is the k-th Walsh

Fourier coefficient of [pj/2Ff(pj ·), Fψ(·)] for each j ∈ Z+. In particular, we have

(4.7) [pj/2Ff(pj ·), Fψ(·)](ξ) =
∑
k∈Z+

〈f, ψj,k〉χ(k, ξ) a.e. ξ ∈ R+,

if {Tkψ : k ∈ Z+} is a Bessel sequence in L2(R+).

Proof. Since f, ψ ∈ L2(R+), we have Ff(pj ·)Fψ(·) ∈ L1(R+), and thus∫
T
[pj/2Ff(pj ·), Fψ(·)](ξ)χ(k, ξ)dξ =pj/2

∫
R+

Ff(pjξ)Fψ(ξ)χ(k, ξ)dξ

=p−j/2
∫
R+

Ff(ξ)Fψ(p−jξ)χ(k, p−jξ)dξ

=

∫
R+

Ff(ξ)[F (ψj,k) (·)] (ξ)dξ = 〈f, ψj,k〉,(4.8)

so 〈f, ψj,k〉 is the k-th Walsh-Fourier coefficient of [pj/2Ff(pj ·), Fψ(·)] for each

j ∈ Z+.
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If {Tkψ : k ∈ Z+} is a Bessel sequence in L2(R+), then {DjTkψ : k ∈ Z+}, that
is, {ψj,k : k ∈ Z+} is a Bessel sequence in L2(R+) for each j ∈ Z+ due to Dj being

unitary, it follows that {〈f, ψj,k : k ∈ Z+〉} ∈ `2(Z+), and thus (4.7) holds. �

As an application of Lemma 4.2, we have the following lemma immediately

Lemma 4.3. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumption 3. Then we have

〈Pnf, g〉 = pn
∫
T
[Ff(pn·), F ψ̃0(·)](ξ)[Fψ0, Fg(pn·)](ξ)dξ

for f, g ∈ L2(R+) and n ∈ Z, where Pn is defined as in (3.1).

The following two lemmas are necessary for us to prove the main result.

Lemma 4.4. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 2 and 3. Then

lim
n→∞

〈Pnf, g〉 = 〈f, g〉 for f, g ∈ D,

where D is defined as in (4.2).

Proof. By Lemma 4.3, we have

〈Pnf, g〉 = pn
∫
[0, 1]

[Ff(pn·), F ψ̃0(·)](ξ)[Fψ0, Fg(pn·)](ξ)dξ.

Since p > 1 and supp(Ff) and supp(Fg) are bounded, then there exists N > 0

such that supp(Ff(pn·)), supp(Fg(pn·)) ⊂ [0, 1) when n > N , and thus

[Ff(pn·), F ψ̃0(·)](ξ) = Ff(pnξ)F ψ̃0(ξ)

and

[Fψ0(·), Fg(pn·)](ξ) = Fg(pnξ)Fψ0(ξ)

for a.e. ξ ∈ (0, 1) and n > N . So

〈Pnf, g〉 = pn
∫
[0, 1]

Ff(pnξ)Fg(pnξ)F ψ̃0(ξ)Fψ0(ξ)dξ

=

∫
R+

Ff(ξ)Fg(ξ)F ψ̃0(p−nξ)Fψ0(p−nξ)χ[0, 1](p
−nξ)dξ(4.9)

when n > N . By Assumption 3 and the Cauchy-Schwarz inequality, we have∣∣∣F ψ̃0(·)Fψ0(·)
∣∣∣ ≤ ∑

l∈Z+

∣∣∣F ψ̃0(· ⊕ l)Fψ0(· ⊕ l)
∣∣∣

≤
(

[F ψ̃0, F ψ̃0](·)
)1/2

([Fψ0, Fψ0](·))1/2 ≤ C

for some constant C > 0. Therefore, the integrand in (4.9) is dominated in module

by C|Ff(·)Fg(·)|, which belongs to L1(R+). Applying the Lebesgue dominated

convergence theorem to (4.9), we obtain

lim
n→∞

〈Pnf, g〉 = 〈f, g〉

by Assumption 2. �
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Lemma 4.5. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 1 and 3. Assume that

ml, m̃l ∈ L∞(T) with 1 ≤ l ≤ L, are such that

(4.10) M(·)M̃∗(·) = Ip a.e. on T,

where M and M̃ are defined as in (4.5) and (4.6). Define ψl, ψ̃l, 1 ≤ l ≤ L as in

(4.4). Then

(4.11) 〈Pn+1f, g〉 = 〈Pnf, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,n,k〉〈ψl,n,k, g〉

for f, g ∈ L2(R+) and n ∈ Z.

Proof. First, we claim that (4.11) is equivalent to

(4.12) 〈P1f, g〉 = 〈P0f, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,0,k〉〈ψl,0,k, g〉

for f, g ∈ L2(R+). Indeed, if (4.12) holds, we can get (4.11) by replacing f by D−nf

and g by D−ng in (4.12), respectively. And, by Lemma 4.3, (4.12) can be written

as

(4.13)

p

∫
T
[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(pn·)](ξ)dξ =

∫
T

L∑
l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ)dξ

for f, g ∈ L2(R+).

Next, we prove (4.13) to complete the proof. Note that, ml, m̃l, 1 ≤ l ≤ L are

1-periodic functions. By the definitions of ψ̃l, 1 ≤ l ≤ L and Assumption 1, we have

[Ff, F ψ̃l](ξ) =
∑
k∈Z+

Ff(ξ ⊕ k)m̃l(p−1(ξ ⊕ k))F ψ̃0(p−1(ξ ⊕ k))

=

p−1∑
i=0

m̃l(p−1(ξ ⊕ i/p))
∑
k∈Z+

Ff(ξ ⊕ i/p⊕ pk)F ψ̃0(p−1(ξ ⊕ i/p)⊕ k)

=

p−1∑
i=0

m̃l(p−1(ξ ⊕ i/p))[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))(4.14)

for 0 ≤ l ≤ L. Similarly, we have

(4.15) [Fψl, Fg](ξ) =

p−1∑
i′=0

ml(p
−1(ξ ⊕ i′/p))[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i′/p))

for 0 ≤ l ≤ L. By a simple computation, we obtain
L∑

l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ) =

p−1∑
i=0

[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))×(4.16)

×
p−1∑
i′=0

(
MM̃∗(p−1ξ)

)
i,i′

[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i′/p)),
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where
(
MM̃∗(·)

)
i,i′

denotes the (i, i′)-entry of MM̃∗(·), 0 ≤ i, i′ ≤ p − 1. By

(4.10), (4.13) therefore follows that∫
T

L∑
l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ)dξ

=

∫
T

p−1∑
i=0

[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i/p))dξ

=p

p−1∑
i=0

∫
p−1(T+i/p)

[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(p ·)](ξ)dξ

=p

∫
T
[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(pn·)](ξ)dξ.(4.17)

Therefore, (4.13) holds. The proof is completed. �

The following theorem gives a sufficient condition for
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
to

be a NDWF in L2(R+).

Theorem 4.1. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 1-3. Assume thatml, m̃l,∈
L∞(T) with 1 ≤ l ≤ L, are such that

(4.18) M(·)M̃∗(·) = Ip a.e. on T.

where M and M̃ are defined as in (4.5) and (4.6). Define ψl and ψ̃l, 1 ≤ l ≤ L as

in (4.4). Then
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+).

Proof. Since ml, m̃l,∈ L∞(T) for 1 ≤ l ≤ L, by Lemma 4.1 and Assumptions 1

and 3, then we have

{Tkψl : k ∈ Z+, 1 ≤ l ≤ L} and {Tkψ̃l : k ∈ Z+, 1 ≤ l ≤ L}

are Bessel sequences in L2(R+). Therefore, the conclusion follows directly by Theory

3.2, Lemmas 4.4 and 4.5. The proof is completed. �
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