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1. INTRODUCTION

Let D be the unit disk in the complex plane C and H (D) be the class of functions
analytic in ID. The Hardy space H? (0 < p < 00) is the set of all f € H(D) with
(see [4])

1 2m "
| f1%, = sup 2—/ |f(re')|Pdf < oo.
0<r<1 47T Jo
Let H*° be the space of all bounded analytic functions with the supremum norm

[ fll oo = sup,ep | f(2)]-
For 1 < p < oo, the Besov space, denoted by B, is the space of all functions
f € H(D) satisty

IFIE, = 1FO)F + / PP - 227 2dA(2) < oc.

Let 0 < p < o0, —2< ¢g<ooand0<s < oco. The space F(p,q,s) is the space
consisting of all f € H(D) such that

115 sy = 1£€ |”+sup/|f JP(L = 2291 — [pa(2)?) dA() < ox,

where ¢,(z) = {=. This space was first introduced by Zhao in [22]. F(2,0,s)
is the @ space (see [18]). F(2,0,1) is the BMOA space. F(p,«,0) is called the
Dirichlet type space, denoted by DE. In particular, F'(p,p —2,0) is the Besov space
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B,. F(p,p,0) is just the classical Bergman space A?. When s > 1, from [22] we see
that F'(p,p — 2, s) is equivalent to the Bloch space, denoted by B, which consisting
of all f € H(D) such that ||f|lz = |f(0)] + sup,ep(1 — [2]?)]f/(2)]| < .

The Volterra integral operator T; was introduced by Pommerenke in [I3]. Pommerenke
showed that T} is bounded on H? if and only if g € BMOA, where

T,f(2) = / Cf(w)g (w)dw, € HD).

The companion operator I, induced by g € H(D) is defined by

LiG) = [ Flgto)te.  f e HD)

The multiplication operator M, is defined by M, f(z) = f(2)g(z). It is easy to see
that M, f(z) = f(0)g(0) + I, f(z) + T, f(z). Recently, much attention has been paid
to the operators T, and I.

See [T, 2], [5]-[9], [I1]-[L6], [20, 2I] and the references therein for more study of
the operators Ty, and I,.

For any arc I C 9D, the boundary of D, let |I| = i fI |d¢| denote the normalized
length of I and S(I) be the Carleson box defined by

SU)={reD:1-|I|<|2|<1, z/|z| €l

Let 0 < s < 00,0 < ¢ < 0o and p be a positive Borel measure on I. Let T2(u) be

the space of all y-measurable functions f such that (see, e.g., [12])
1
sup o [ 15 1du(z) < .
S(I)

rcam |1®
Let 0 < a < 00,0 < s < oo and p be a positive Borel measureon D. We say that

w is a a-logarithmic s-Carleson measure if (see [21])

(log #)*u(S(I))
lullzenm,, . == sup . < oo0.
1CoD 1]

When a = 0, it gives the s-Carleson measure. When o« = 0,s = 1, it gives the
classical Carleson measure. p is said to be a vanishing a-logarithmic s-Carleson

measure if (see [I1])
- log ) w(S(D)

= 0.
I [1]*

The Carleson measure is very useful in the theory of function spaces and operator
theory. The famous embedding theorem say that the inclusion mapping i : HP —
L?(du) is bounded if and only if u is a Carleson measure (see []). See [3] for
the study of Carleson measure for the Besov space B,. In [5], Girela and Peldez
studied the Carleson measure for Dirichlet type spaces. Among others, under the

assumption that 0 < p < g < oo, they showed that the inclusion mapping i : B, —
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L%(dy) is bounded if and only if p is ¢(1 — %)—logarithmic 0-Carleson measure. In
[20], Xiao proved that the inclusion mapping i : Q, — T2(u) is bounded if and
only if p is 2-logarithmic s-Carleson measure. In [I0], Liu and Lou showed that
the inclusion mapping i : £%* — T2(u) is bounded if and only if ;1 is a Carleson
measure, where £2* is the Morrey space. The main ideas and methods used in [10]
more or less are motivated by the three sections 3.2, 4.3, 6.4 of [19]. In [12], Pau
and Zhao showed that the inclusion mapping i : F(p,p — 2,s) — TP (u) is bounded
if and only if p is p-logarithmic s-Carleson measure. In [7], Li, Liu and Yuan proved
that the inclusion mapping i : D) ; — TP(u) is bounded if and only if u is a
(s + 1)-Carleson measure by using the Carleson embedding theorem for Bergman
spaces.

Motivated by [B] [7, 10, 12} [20], in this paper, we study the boundedness and
compactness of the inclusion mapping from B,, into T (). More precisely, we show
that the inclusion mapping ¢ : B, — TJ(u) is bounded (resp. compact) if and
only if u is a ¢(1 — %)—1ogarithmic s-Carleson measure (resp. vanishing ¢(1 — 1%)—
logarithmic s-Carleson measure) under the assumption that 1 < p < ¢ < oo and
0 < s < co. Moreover, we study the boundedness, compactness and essential norm
of the operators T, and I, acting from B, to F(¢,q — 2, s).

In this paper, the symbol f =~ g means that f < g < f. We say that f < g if
there exists a constant C such that f < Cg.

2. EMBEDDING FROM BESOV SPACES B, TO T%(u)

We need the following equivalent description of p-logarithmic s-Carleson measure,

see Lemma 2.2 in [12].

Lemma 2.1. Let 0 < o < 00,0 < s,t < 00 and p be a positive Borel measure on

D. Then u is a a-logarithmic s-Carleson measure if and only if

2\ [ (1 |a2)!
I d < 00.
525(°g1|a2> T azrz) <oe

Moreover,

2 )a (1 —laf)
1(2).

= 1
s, s (1os =) [ B

Using [23, Lemma 3.10], we can easily obtain the following result.

Lemma 2.2. Let1 < p < oo and w € D. Set
1/p
1 2 1 — |w|?
w = —_— 1 5 Fw i — 9 E ]D)
Jul2) <1og 1_|2w2> 1w ) w(l —wz) ?

Then fuw, Fuw € By.
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Lemma 2.3. Let 1 < p<g<o00,0<s <00 and p be a positive Borel measure on
D. Suppose that f € B, and p is a q(1 — 7) logarithmic s-Carleson measure. Then

L r@raue) s [ 17 Gpa -1y tos =) FaAC),

Proof. Suppose that f € B,. For any fixed g, s, let o be big enough such that
ga— s >0 and qa + 2 — g — 2s > 0. From the proof of [I2] Lemma 3.2] we have

| (w)|7(1 — [w]?)2 2 \*
2)|7 < / = wz|qa+2 . log = op2 dA(w).

Since p is a q(1 — 5)—10garithmic s-Carleson measure, combining with Lemma 2.1
and the fact that B, C B, we obtain

2\ qo 2 a
[ e //|f|1wz|qaf§|q) <10g1w|2) AA(w)dp(2)
, ats 2 2\
< [ = o =) <<1°g )

(1 — |UJ|2)S ’ » 2\p—2+s 2 .
X/H)H_Mdﬂ(z)> dA(w)S/DU (w)[P(1 = |w[)P~2+ (1og1_7|w|2) dA(w).

The proof is complete. O

Theorem 2.1. Let 1 <p < g <00, 0<s <00 and p be a positive Borel measure
on D. Then the inclusion mapping i : B, — T3(p) is bounded if and only if p is a

q(1— 7) logarithmic s-Carleson measure.

Proof. First we assume that ¢ : B, — TJ(p) is bounded. For any given arc

I C oD, set a = (1—1I])n and 7 is the center point of I. It is easy to see that

1 —az|=1—|a|*~|I|, z¢€S(I).

1\
o(2) = | —=— 1 .
fa(z) <1og 71_?(1'2 ) 1 a

By Lemma 2.2, we see that f, € B,. From the boundedness of i : B, — TZ(u), we

Let

have

1
Iullsgy = sup oo / a2 l9dp(z) < 0.
By the fact that |f,(2)| = (log %) ~% when z € S(I), we get

1
(log )74~ D u(S(1))

sup < 0.

ICOD 1]

Hence p is a ¢(1 — %)—1ogarithmic s-Carleson measure.
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Conversely, assume that p is a ¢(1 — %)—logarithmic s-Carleson measure. Let
f € B,. For any given arc I C 9D, set w = (1 — |I|)n and 7 is the center point of
I. Then

1 1
I qa <_ - 9 NI
7 [ ) Sy [ 1G) = st + e [ st
—A+B,
where
A= [ e - sw)ldnz), B= o [ fw)du(e).
111° Jsn 171* Jsr)
Since
2 \'"» 2\ 7
)5 (los =) Il < (g 7)1l
we get
(log )72 u(S (1))
B<—1 e A%, S IS, .
By Lemma 2.3, we have
1(2) = fw)|’
A S —|w?)? d
-ty [ R )
) = f)\'| _ 2
<(1 — |w[?)® 1 —|z]2)P—2+5(1 dA(z
( |>/D<(1_wz)2;> (1= 222+ log ) FA()

2s

(1—-wz)e
we deduce that A < Wy + Wy, where
s f/ —2+s 2 <
wi= (1= o) [ O preog ) Faac)
D |1 —wz| « =2
and

a

2 a
= |Z|2)PdA(z).

W2 _ (1 _ |w|2)( |f< ) ( )|p( _ |Z|2)p—2+s(10g

D |1 —wz|2pg+p

2\2s(1—

Since p < ¢q and sup,cp(1 — |2[?) (log P \2)p < 00, we get that

Wi S 1 f1l, -

Let 0 < e < min{%,s,2s(1 — £)}. Combining with the fact that sup,ep(1 —

|2]%)¢ (log ﬁ)% < 00, we obtain

1f(2) = fw)]?

282 4p

Wa = (1—|uwl*)® (1= [2)P=# 7 dA(z).
D |1 —wz| «
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Making the change of variable n = ¢,,(2) and combining with [23 Proposition 4.2],

we have
° V) — (f o) (0)|P —24s5—¢
oy [ W El U 2Oy g 22+
|1—w</J ()| *7
(1= Ju?)?
X mdA( )
_ 2\p—2+4s5—¢
:(1— \w| 2 /‘ Ong —(fogow)(O)V)l(l |nL422s2p525dA(n)
_w’,] q
_ 2\2p—2+s—e
<1 fuwP) (o purmr L dam)
< L — 2o
s_2os Ll ]
S P [ a1 = IS g
D |1 — @ |P2e e

2ps — |ow(z 2\p—2+s—e _ w2 2
S(l_ ‘w|2>257775/ ‘f/<Z)|p(1—|Z|2>p (1 |90 ( )l ) i (1 |7| ) dA(Z)

11— Wy (2)[PH2e— 5 —2¢ |1 —wz]*

Z 2p—2+4s—e
sa-lwpy [ 7Pt L CHIIY

|1 —wzPt e
Therefore,
1
sup / F)du(=) S 1715,
IcaD |1l S(I)
which implies the desired result. The proof is complete. O

We say that the inclusion mapping i : B, — TZ(u) is compact if

1
lim — w(2)]9du(z) =0
/S()If() u(z)

n—o00 ‘IIS

whenever I C 0D and {f,} is a bounded sequence in B, that converges to 0

uniformly on compact subsets of D.

Theorem 2.2. Let 1 < p < g < 00, 0 < s < co. Let u be a nonnegative Borel
measure on D such that point evaluation is a bounded functional on T2 (). Then
the inclusion mapping i : B, — Td(u) is compact if and only if u is a vanishing

q(1— 7) logarithmic s-Carleson measure.

Proof. First we assume that ¢ : B, — TJ(u) is compact. Let {I}} be a sequence

arcs with limg_, o [Ix| = 0. Set ax, = (1 — |Ix|)nk, where 7 is the midpoint of arc

Ik. Take
1/p
1 2
Z)=|——— lo .
fk( ) <10g1_|ik|2> gl—ajz
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We see that fr, € B, and {f} converges to 0 uniformly on compact subsets of D

when k£ — co. Then we get

5 \2(1-3)
(logm) n(SUk)) 1
S | IR o
[T |* k| Js(n

as k — oo, which implies that p is a vanishing ¢(1 —

%)—logarithmic s-Carleson
measure.
Conversely, assume that y is a vanishing ¢(1— %)—logarithmic s-Carleson measure.

From [I2] we see that

| = porll Lo — 0,7 — 1.

a(l—3).s
Here pi,(2) = p(z) for |z| < r and p,(z) = 0 for » < 2] < 1. Let || fx||, < 1 and

{fr} converge to 0 uniformly on compact subsets of D. Then

1 1 1
= [ @) S o [ @)+ [ @ ) )
15 Jsn 15 Jsn s Jsn
1
S o [ AR + = rllon,,_y, 1A,
1] S(I) )
1
S [ R () + = wlion,,
11* Js(r) T

Letting k — oo and then r — 1, we have limy oo || f&[|79(,) = 0. Therefore i : B, —

T9(u) is compact. O

3. THE OPERATORS Ty AND I, FROM B, TO F(q,q —2,s)

In this section, we consider the boundedness, compactness and essential norm of
operators T, and I, from B, to F(q,q — 2,s). Before we state our results in this
section, let us recall some definitions.

Let (X, - ||x) and (Y,]| - |ly) be Banach spaces and T : X — Y be a bounded

linear operator. The essential norm of T : X — Y is defined by

1T

e XY = ir}1{f{||T — K||x>y : K is compact from X to Y'}.

Let @ be a closed subspace of X. Given f € X, the distance from f to ®, denoted
by distx (f, ®), is defined by distx (f, ®) = infyea || f — gl x-

Suppose that 0 < a < 00,0 < ¢g,s < co. The space Fp(¢q,q — 2, s, ) is the space
consisting of all f € H(D) such that

191, =sup (108 =z ) 1710 = P20 = pul)Praac) < .

It is easy to check that Fr,(q,q—2, s, «) is a Banach space under the norm ||f||‘pr(q 4—2,5,0)

= [£(0)|7 + || f]|? when ¢ > 1. When a = 0, F(q,q — 2,s,0) is just the space
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—2,5). Let F?(q,q—2,s,a) denote the space of all f € Fr(q,q—2,s,a) such
L

i (log =) [ 17/~ )20~ a2 dA) =

la]—1

By Lemma 2.1 we easily obtain the following equivalent characterization of the

space Fr(q,q — 2,5, ).

Lemma 3.1. Let 0 < a < 00,0 < ¢q,8 < co. Then f € Fr(q,q — 2,s,a) if and

only if

log %)
sup (os ) [ 1@ -y aa) < o
S(I)

rcon |

Moreover,

/1% 7(1% ﬁ‘) / [/ (2)]7(1 = |2*) T2 dA(z)
_ /A sup z — |z A(z).
Frlaa=2s0) “rcop 11T Jsay

Lemma 3.2. Let 0 < oo < 00,0 < ¢, s < 0. If g € Fr.(q,q — 2,s,a), then

lim sup

i ((10g 1—2II2> Lo - pryeta - |90a(z)|2)sdA(z)> :

~ diStFL(q,q—Q,s,oz) (97 Fg(q, q— 27 S, a)) ~ lim sup ||g - gT”FL(q,q—Z,s,a)-

r—1—

Here g,(2) = g(rz), 0 <r <1,z € D.

Proof. For any given g € Fp(q,q — 2,5, ), then g, € F?(q,q — 2, s, ) and

||gT||FL(q,q—2,S,O¢) S/ ||g||FL(q,q—2,s,oc)'

Let 6 € (0,1). We choose a € (0, 6) Then @, (z) lies in a compact subset of D. So

lim, 1 sup_¢p |9’ (pa (2 )) —1rg'(req(2))| = 0. Making a change of variables, we have
lim sup <10g 2> /Ig )11 =) (1 — [pa(2)*) dA(2)
r—1 I |<5 1 — | ‘

X

i sup (log =) [ 10(0u(2)) — a0~ 42l 21 AC)

T—)ll |<5

2 «
lim sup sup g’ (¢a(2)) — g (pa())]" (logz) x
7’—)1| |<5 2€D ]. — ‘a|

/D (1~ [22)77 2|l () [7dA(2) = 0

By the definition of distance, we obtain

<

. 0 o .
dlStFL(Q»‘I—ZS,Oz) (97 FL(Q? q— 27 S, Oé)) - fEFB(;f}Jf;Q,S,a) ||g - f”FL((Iyq—Q’S»O‘)

}1_}1’1} Hg - g’I‘HFL(q7q—2,57a)
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= lm (@ufa (10g12|a|2)a/ﬂ)|9’(2)—gi(Z)Iq(l—lzIQ)q_z(l—Iwa(2)|2)SdA(z)>
+ lim <.i“£’5 (e 7=2) [ o)~ @i - =7y - |¢a<z>|2>SdA<z>>;
(i‘ﬁfa (ls=2) [ @i -2 - |¢a<z>|2>3dA<z>>
4 lm <|i“§’5 (e =) [l = =220~ feulo) )SdA(z))

Let 9r,4(2) = @rq © 7pq(2). Then ¢, , is an analytic self-map of D and ;. ,(0) = 0.

Q=

Q=

A

Q=

Making a change variable of z = ¢,(z) and applying the Littlewood’s subordination

theorem (see Theorem 1.7 of [4]), we have

<1°g 22> @1 = 1221720~ [ dA)
7)) [ el = a0~ ) 2dAC)

/Ig © Pra © Yra(2)|1(L = [@ra © Yra(2)[*)1(1 — [2[*)*"2dA(2)

190 6 0 a1 = ra 0 ra (I 272 AC)

/ 190 Gra (11— [pra(2)P)I(L - |2)2dA(2)

IN

/Dm( YL~ 22072 (1 pra(2) 2) dA(2).

IN
/\/\/_\/\/\
o
Oq

E
(V]
\/\/v\/\/

Since § is arbitrary, we get

diStFL(q,qfls a) (gv FE(Q’ - 2 S, Oé))

< nmsup((log ) [l @122 - feuts) >SdA<z>)1/q.

|a]—1

On the other hand, for any g € Fr.(q,q — 2, s,q(1 — %))7

. 0 _ 3 _
dlStFL(q,q—Q,s,oc) (ga FL(q7 q— 27 S, O[)) - fGFg(;Eszls,oz) ||g f”FL(q,q—Q,s,oz)

Z hﬁilip((bg ) /Ig )1 |Z|2)q_2(1—Isoa(Z)Iz)“"dA(Z)>1/q,

implies the desired result. O
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Lemma 3.3. Let 1 <p<g<o0,0<s<o0. IfO<r<1andgé€ Fr(qg,q—
2,8,q(1 — %)), then T,, : B, — F(q,q — 2, s) is compact.

Proof. Given {f;} C B, such that {fx} converges to zero uniformly on any
compact subset of D and supy, || fx||B, < 1. For each a € D,

1T, il -2, = S0P / (gL (@I = [2P)72(1 = fpa(2)[2)*dA(2)

g1l

( 2,5,¢(1- 1)) ’

~ L q;;(l_S)q sug/ |fk 1 — \z| )q 2( _ |%0a(2)|2)6d14(z)
(log ’ 2T2) . q @€

||g||FL (¢,9—2 s,tI(I**)

(log 13 Q)q( (1-

lol,

(4:9-2,5,4(1= %)) 2
T /|fk "1 o)A ()
e )

q
”g”FL(q,qu,s,q(lf%))
~ a(1=3)
(log 13r2> (1 —r2)a

By the dominated convergence theorem, we get

/|fk (L — [2)72dA(2)

~

~

I£ells, [ 104C).

1T, Sl ga S Jim [ R0 = )72dA()
< / lim [fi(2)|7(1 — |2)7"2dA(z) = 0
Dk—>oo

as desired. The proof is complete. ([
The following result is very useful to study the essential norm of operators on

some analytic function spaces, see [17].

Lemma 3.4. Let X,Y be two Banach spaces of analytic functions on D. Suppose
that

(1) The point evaluation functionals on'Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T: X =Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {f,} in X
such that {f,} converges to zero uniformly on every compact set of D, then the

sequence {T f,} converges to zero in the norm of Y.
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Theorem 3.1. Let 1 <p<g<o0, 0<s<ooandge HD). Then T, : B, —
F(q,q —2,3s) is bounded if and only if g € Fr,(q,q — 2,s,q(1 — %))

Proof. Suppose that f € B, and g € Fr(¢,¢—2,s, q(l—%)). From Lemma 3.2 we
see that dug(2) = |¢/(2)]%(1 — |2|*)T2T*dA(z) is a q(1 — %)—logarithmic s-Carleson
measure. By Theorem 1, for any I C 0D we deduce that

1 ,
o [ @y - Py dac)
11° Js

1 q| a4 (N9(1 — —2+s+1
=T /S(I)lf(z)l 9" (2)|9(1 = |2*)17* T2 dA(2)

1
=7 oy W) S 1S, Il g2 < 0

which implies that T, : B, — F(q,q — 2, s) is bounded by Lemma 3.1 again.

Conversely, suppose that T, : B, — F'(¢,q — 2, s) is bounded. For any I C 0D,
let a = (1—|I|)¢, where ( is the center of I. Then 1 —|a| = |1 —az| = |I], z € S(I).
Let f, be defined as in Lemma 2.2. We have

(log %)q(l_%)

lzq_ZQq—2+s P
T [, P A

L NG (2)]9(1 = |2]2)2T3dA(2
S o, Fel G = 2

S(

1 / q _ 22 q—2+s 2
ST g 1Tl G = 1224 C)

§||Tgfa||qF’(q7q—2,s) < 00,

which implies that g € F1.(q,q — 2, s,q(1 — %)) by Lemma 3.1. O

Theorem 3.2. Let 1 < p< ¢g<o00,0<s< o0 and g€ HD). Then I, : B, —
F(q,q —2,s) is bounded if and only if g € H™.

Proof. Let f € B, and g € H*. By the fact that B, C B, we get
L= 122 (1= leu()P)” 44
= [P~ 21 (1~ fpu(2)) dAC)

=H9H%w||f\|qsfp/mIf’(Z)\p(l = |21*)P2dA2) S llgllgr 1 11, < oo,

which implies that I, : B, — F(q,q — 2, s) is bounded.
Conversely, assume that I, : B, — F(g,q — 2,s) is bounded. For ¢ € D and
r >0, let D(a,r) = {z € D: f(a,z) < r} denote the Bergman metric disk centered

at a with radius r. Here f(a, z) is the Bergman metric between z and a. For any
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w € D, let F,, be defined as in Lemma 2.2. Using the subharmonic property of |g|?
and the fact that (see [23])

(1—JwP)? _ 1 - 1 1
-zt T (1= [2)? T (1= [wP)? T D)’

z € D(w, ),

where |D(w, )| denotes the area of the Bergman disk D(w, r), we have
o8 >HIngHZIIJ(q,q_27s)
zsup [ |FL@IIgI( - 22)7 (1= [pa()P)" dA)
a€D JD
2 [ 1Pl = P72 (1 = fou:)) dA()
2 [ 1 (1~ ul) aAC)

1 q q
S e / AR Z gl

which implies
o0 > ”IngH%(q,q_z,s) 2 ”9”3{00,

as desired. The proof is complete. ([

Remark. Let 1 <p < ¢<o00,0< s<ooand g € H(D). From the fact that

My f(z) = £(0)9(0) + I, f(2) + Ty f(2),

we see that My : B, — F(q,q — 2, s) is bounded if and only if
1 o0
gEFL<qaq_27S?Q(1_5))mH .

Theorem 3.3. Let 1 < p<g<o00,0<s<ooandg e HD). If T, : B, —
F(q,q—2,s) is bounded, then

. 1
||Tg e,Bp,—F(q,q—2,s) ~ dlStFL(q,q—Q,s,q(l—%))(g7 FE((L q— 27 S, q(l - 5)))

Proof. Let {a;} be a sequence in D such that limg_, o |ax| = 1. For each k, set

1 v 2
0 (2) = | ——— lo —.
Jar(2) <log 1_|?1k|2> gl—akz

Then {fq,} is bounded in B, and {f,,} converges to zero uniformly on every

compact subset of D. For any given compact operator K : B, — F(q,q — 2, s), by
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Lemma 3.4 we have limy_oo || K fa, | P(g,q—2,5) = 0. So

HTQ - K” Z liIICIlSIlp H(Tg - K)fak ”F(q,qu,s)
—00

21im sup (1T, faur lpaq 2.0 = 1K for (a2 )
k—o0

:hinsup 1Ty far I F(q0—2.5)

Q=

- limsup ( [ 1@l @0~ 272 - soak<z>|2>8dA<z>)

k—o0

a(1-2)
s ( (o572 ) 7 [ 0w () A
lag|—1 — |ax|

Hence

Q=

HTg”e,BpHF(q,q*2 s)

-3)
zng;sogp«log — |2) [ @0 = R0 = o (O )SdA(z))

By Lemma 3.2 and the arbitrariness of {ax}, we get that

Q=

1
—F(q,9—2,5) ~ dlStFL(qq 2,5,q(1—% ))(ngg(q7q_27S7q(1_};)))

On the other hand, by Lemma 3.3, T, : B, — F(q,q — 2, s) is compact. Then

1 Tylle. 8, r(a.0-2.9) < 1Ty = T, |l = [ Tg—g, | = 19 = 9rll 7 (g.q-2.5,a01- 1))

Using Lemma 3.2 again, we get

e,Bp—F(q,9—2,s) 5 hmbup ”g gr ||FL(q,q 2 5,q(1—1))
r—1-

) 1
~ dlstFL(qu_zyqu(l_%))(g,Fg(q,q —2,5,q(1 - 5)))

The proof is complete. O
By the well-known result that T : X — Y is compact if and only if ||T||e x>y =
0, we get the following result by Theorem 3.3 directly.

Corollary 3.1. Let 1 <p < g < oo and 0 < s < 0. If g € HD), then T, : B, —
F(q,q—2,s) is compact if and only if

1
g€ F)(q,q—2,8,q(1— 5))'

Theorem 3.4. Let 1 < p < g < 0o and 0 < s < o0. If g € H(D) such that
I, : B, — F(q,q—2,5) is bounded, then

I glle,B,—F(a.qa-2.5) = l9ll7ee-
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Proof. Let {a;} and K be defined as in the proof of Theorem 3.3. Set
1-— |ak\2

— Tkl 2 eD.
w—a2)

Fa, (Z) =

By Lemma 2.2 we see that F,, € B,. By Lemma 3.4 we get limy o0 || K Fy, || p(q,q—2,5) =

0. Hence,
”Ig - KH 2 liin sup H(Ig - K)Fak ||F(q,q—2,5)
— 00
> liin sup ([ g Fu, | F(g,a-2,5) = 1K FallFg,9-2.5))
— 00
= lim sup HIgFak HF(q,q—Q,s)a
k—o0
which implies
”Ig”e,BP—)F(q,q—?,S) Z hin sup HIgFak ||F(q,q—2,s)-
— 00

Similarly to the proof of Theorem 3.2 we get that ||I,Fy,, || r(q,q—2,5) & |9(ax)|, which
implies that

1 glle,B,~F(g.9-2,5) 2 N9l m=.

On the other hand, by Theorem 3.2 we obtain

Hglle,B,—F(aa-2.5) = i [[1g = K| < Ll S gl rr==-

The proof is complete. U
From Theorem 3.4 we get the following result.

Corollary 3.2. Let 1 <p<g<oo and 0 < s < o0. If g € H(D), then I, : B, —
F(q,q —2,5) is compact if and only if g = 0.
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