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1. Introduction

Let D be the unit disk in the complex plane C and H(D) be the class of functions

analytic in D. The Hardy space Hp (0 < p < ∞) is the set of all f ∈ H(D) with

(see [4])

‖f‖pHp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

Let H∞ be the space of all bounded analytic functions with the supremum norm

‖f‖H∞ = supz∈D |f(z)|.
For 1 < p < ∞, the Besov space, denoted by Bp, is the space of all functions

f ∈ H(D) satisfy

‖f‖pBp = |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

Let 0 < p < ∞, −2 < q < ∞ and 0 ≤ s < ∞. The space F (p, q, s) is the space

consisting of all f ∈ H(D) such that

‖f‖pF (p,q,s) = |f(0)|p + sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdA(z) <∞,

where ϕa(z) = a−z
1−az . This space was first introduced by Zhao in [22]. F (2, 0, s)

is the Qs space (see [18]). F (2, 0, 1) is the BMOA space. F (p, α, 0) is called the

Dirichlet type space, denoted by Dpα. In particular, F (p, p− 2, 0) is the Besov space
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Bp. F (p, p, 0) is just the classical Bergman space Ap. When s > 1, from [22] we see

that F (p, p− 2, s) is equivalent to the Bloch space, denoted by B, which consisting

of all f ∈ H(D) such that ‖f‖B = |f(0)|+ supz∈D(1− |z|2)|f ′(z)| <∞.
The Volterra integral operator Tg was introduced by Pommerenke in [13]. Pommerenke

showed that Tg is bounded on H2 if and only if g ∈ BMOA, where

Tgf(z) =

∫ z

0

f(w)g′(w)dw, f ∈ H(D).

The companion operator Ig induced by g ∈ H(D) is defined by

Igf(z) =

∫ z

0

f ′(w)g(w)dw, f ∈ H(D).

The multiplication operator Mg is defined by Mgf(z) = f(z)g(z). It is easy to see

that Mgf(z) = f(0)g(0) + Igf(z) +Tgf(z). Recently, much attention has been paid

to the operators Tg and Ig.

See [1, 2], [5]-[9], [11]-[16], [20, 21] and the references therein for more study of

the operators Tg and Ig.

For any arc I ⊆ ∂D, the boundary of D, let |I| = 1
2π

∫
I
|dζ| denote the normalized

length of I and S(I) be the Carleson box defined by

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1, z/|z| ∈ I}.

Let 0 ≤ s < ∞, 0 < q < ∞ and µ be a positive Borel measure on D. Let T qs (µ) be

the space of all µ-measurable functions f such that (see, e.g., [12])

sup
I⊆∂D

1

|I|s

∫
S(I)

|f(z)|qdµ(z) <∞.

Let 0 ≤ α <∞, 0 < s <∞ and µ be a positive Borel measureon D. We say that

µ is a α-logarithmic s-Carleson measure if (see [21])

‖µ‖LCMα,s
:= sup

I⊆∂D

(log 2
|I| )

αµ(S(I))

|I|s
<∞.

When α = 0, it gives the s-Carleson measure. When α = 0, s = 1, it gives the

classical Carleson measure. µ is said to be a vanishing α-logarithmic s-Carleson

measure if (see [11])

lim
|I|→0

(log 2
|I| )

αµ(S(I))

|I|s
= 0.

The Carleson measure is very useful in the theory of function spaces and operator

theory. The famous embedding theorem say that the inclusion mapping i : Hp →
Lp(dµ) is bounded if and only if µ is a Carleson measure (see [4]). See [3] for

the study of Carleson measure for the Besov space Bp. In [5], Girela and Peláez

studied the Carleson measure for Dirichlet type spaces. Among others, under the

assumption that 0 < p < q <∞, they showed that the inclusion mapping i : Bp →
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Lq(dµ) is bounded if and only if µ is q(1 − 1
p )-logarithmic 0-Carleson measure. In

[20], Xiao proved that the inclusion mapping i : Qs → T 2
s (µ) is bounded if and

only if µ is 2-logarithmic s-Carleson measure. In [10], Liu and Lou showed that

the inclusion mapping i : L2,s → T 2
s (µ) is bounded if and only if µ is a Carleson

measure, where L2,s is the Morrey space. The main ideas and methods used in [10]

more or less are motivated by the three sections 3.2, 4.3, 6.4 of [19]. In [12], Pau

and Zhao showed that the inclusion mapping i : F (p, p− 2, s)→ T ps (µ) is bounded

if and only if µ is p-logarithmic s-Carleson measure. In [7], Li, Liu and Yuan proved

that the inclusion mapping i : Dpp−1 → T ps (µ) is bounded if and only if µ is a

(s + 1)-Carleson measure by using the Carleson embedding theorem for Bergman

spaces.

Motivated by [5, 7, 10, 12, 20], in this paper, we study the boundedness and

compactness of the inclusion mapping from Bp into T qs (µ). More precisely, we show

that the inclusion mapping i : Bp → T qs (µ) is bounded (resp. compact) if and

only if µ is a q(1 − 1
p )-logarithmic s-Carleson measure (resp. vanishing q(1 − 1

p )-

logarithmic s-Carleson measure) under the assumption that 1 < p < q < ∞ and

0 < s <∞. Moreover, we study the boundedness, compactness and essential norm

of the operators Tg and Ig acting from Bp to F (q, q − 2, s).

In this paper, the symbol f ≈ g means that f . g . f . We say that f . g if

there exists a constant C such that f ≤ Cg.

2. Embedding from Besov spaces Bp to T qs (µ)

We need the following equivalent description of p-logarithmic s-Carleson measure,

see Lemma 2.2 in [12].

Lemma 2.1. Let 0 ≤ α < ∞, 0 < s, t < ∞ and µ be a positive Borel measure on

D. Then µ is a α-logarithmic s-Carleson measure if and only if

sup
a∈D

(
log

2

1− |a|2

)α ∫
D

(1− |a|2)t

|1− āz|s+t
dµ(z) <∞.

Moreover,

‖µ‖LCMα,s ≈ sup
a∈D

(
log

2

1− |a|2

)α ∫
D

(1− |a|2)t

|1− āz|s+t
dµ(z).

Using [23, Lemma 3.10], we can easily obtain the following result.

Lemma 2.2. Let 1 < p <∞ and w ∈ D. Set

fw(z) =

(
1

log 2
1−|w|2

)1/p

log
2

1− wz
, Fw(z) =

1− |w|2

w(1− wz)
, z ∈ D.

Then fw, Fw ∈ Bp.
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Lemma 2.3. Let 1 < p ≤ q <∞, 0 < s <∞ and µ be a positive Borel measure on

D. Suppose that f ∈ Bp and µ is a q(1− 1
p )-logarithmic s-Carleson measure. Then∫

D
|f(z)|qdµ(z) .

∫
D
|f ′(z)|p(1− |z|2)p−2+s(log

2

1− |z|2
)
q
p dA(z).

Proof. Suppose that f ∈ Bp. For any fixed q, s, let α be big enough such that

qα− s > 0 and qα+ 2− q − 2s > 0. From the proof of [12, Lemma 3.2] we have

|f(z)|q .
∫
D

|f ′(w)|q(1− |w|2)qα

|1− wz|qα+2−q

(
log

2

1− |w|2

)q
dA(w).

Since µ is a q(1 − 1
p )-logarithmic s-Carleson measure, combining with Lemma 2.1

and the fact that Bp ⊆ B, we obtain∫
D
|f(z)|qdµ(z) .

∫
D

∫
D

|f ′(w)|q(1− |w|2)qα

|1− wz|qα+2−q

(
log

2

1− |w|2

)q
dA(w)dµ(z)

.
∫
D
|f ′(w)|q(1− |w|2)q−2+s(log

2

1− |w|2
)
q
p

((
log

2

1− |w|2

)q(1− 1
p )

×

×
∫
D

(1− |w|2)s

|1− wz|2s
dµ(z)

)
dA(w) .

∫
D
|f ′(w)|p(1− |w|2)p−2+s(log

2

1− |w|2
)
q
p dA(w).

The proof is complete. �

Theorem 2.1. Let 1 < p < q <∞, 0 < s <∞ and µ be a positive Borel measure

on D. Then the inclusion mapping i : Bp → T qs (µ) is bounded if and only if µ is a

q(1− 1
p )-logarithmic s-Carleson measure.

Proof. First we assume that i : Bp → T qs (µ) is bounded. For any given arc

I ⊆ ∂D, set a = (1− |I|)η and η is the center point of I. It is easy to see that

|1− az| ≈ 1− |a|2 ≈ |I|, z ∈ S(I).

Let

fa(z) =

(
1

log 2
1−|a|2

)1/p

log
2

1− az
.

By Lemma 2.2, we see that fa ∈ Bp. From the boundedness of i : Bp → T qs (µ), we

have

‖fa‖qT qs (µ)
= sup
I⊆∂D

1

|I|s

∫
S(I)

|fa(z)|qdµ(z) <∞.

By the fact that |fa(z)| ≈ (log 2
|I| )

1− 1
p when z ∈ S(I), we get

sup
I⊆∂D

(log 2
|I| )

q(1− 1
p )µ(S(I))

|I|s
<∞.

Hence µ is a q(1− 1
p )-logarithmic s-Carleson measure.
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Conversely, assume that µ is a q(1 − 1
p )-logarithmic s-Carleson measure. Let

f ∈ Bp. For any given arc I ⊆ ∂D, set w = (1 − |I|)η and η is the center point of

I. Then
1

|I|s

∫
S(I)

|f(z)|qdµ(z) .
1

|I|s

∫
S(I)

|f(z)− f(w)|qdµ(z) +
1

|I|s

∫
S(I)

|f(w)|qdµ(z)

=A+B,

where

A =
1

|I|s

∫
S(I)

|f(z)− f(w)|qdµ(z), B =
1

|I|s

∫
S(I)

|f(w)|qdµ(z).

Since

|f(w)| .
(

log
2

1− |w|2

)1− 1
p

‖f‖Bp .
(

log
2

|I|

)1− 1
p

‖f‖Bp ,

we get

B .
(log 2

|I| )
q(1− 1

p )µ(S(I))

|I|s
‖f‖qBp . ‖f‖

q
Bp
.

By Lemma 2.3, we have

A .(1− |w|2)s
∫
S(I)

∣∣∣∣∣f(z)− f(w)

(1− wz)
2s
q

∣∣∣∣∣
q

dµ(z)

.(1− |w|2)s
∫
D

∣∣∣∣∣
(
f(z)− f(w)

(1− wz)
2s
q

)′∣∣∣∣∣
p

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z).

Since(
f(z)− f(w)

(1− wz)
2s
q

)′
=
f ′(z)(1− wz)

2s
q + w( 2s

q )(f(z)− f(w))(1− wz)
2s
q −1

(1− wz)
4s
q

,

we deduce that A .W1 +W2, where

W1 = (1− |w|2)s
∫
D

|f ′(z)|p

|1− wz|
2ps
q

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z)

and

W2 = (1− |w|2)s
∫
D

|f(z)− f(w)|p

|1− wz|
2ps
q +p

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z).

Since p < q and supz∈D(1− |z|2)2s(1− pq )(log 2
1−|z|2 )

q
p <∞, we get that

W1 . ‖f‖pBp .

Let 0 < ε < min{p2 , s, 2s(1 −
p
q )}. Combining with the fact that supz∈D(1 −

|z|2)ε(log 2
1−|z|2 )

q
p <∞, we obtain

W2 = (1− |w|2)s
∫
D

|f(z)− f(w)|p

|1− wz|
2ps
q +p

(1− |z|2)p−2+s−εdA(z).
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Making the change of variable η = ϕw(z) and combining with [23, Proposition 4.2],

we have

W2 = (1− |w|2)s
∫
D

|(f ◦ ϕw)(η)− (f ◦ ϕw)(0)|p

|1− wϕw(η)|
2ps
q +p

(1− |ϕw(η)|2)p−2+s−ε

× (1− |w|2)2

|1− wη|4
dA(η)

=(1− |w|2)2s− 2ps
q −ε

∫
D
|(f ◦ ϕw)(η)− (f ◦ ϕw)(0)|p (1− |η|2)p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|(f ◦ ϕw)′(η)|p (1− |η|2)2p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|f ′(ϕw(η))|p(1− |ϕw(η)|2)p

(1− |η|2)p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|f ′(z)|p(1− |z|2)p

(1− |ϕw(z)|2)p−2+s−ε

|1− wϕw(z)|p+2s− 2ps
q −2ε

(1− |w|2)2

|1− wz|4
dA(z)

.(1− |w|2)s
∫
D
|f ′(z)|p (1− |z|2)2p−2+s−ε

|1− wz|p+
2ps
q

dA(z) . ‖f‖pBp .

Therefore,

sup
I⊆∂D

1

|I|s

∫
S(I)

|f(z)|qdµ(z) . ‖f‖pBp ,

which implies the desired result. The proof is complete. �

We say that the inclusion mapping i : Bp → T qs (µ) is compact if

lim
n→∞

1

|I|s

∫
S(I)

|fn(z)|qdµ(z) = 0

whenever I ⊆ ∂D and {fn} is a bounded sequence in Bp that converges to 0

uniformly on compact subsets of D.

Theorem 2.2. Let 1 < p < q < ∞, 0 < s < ∞. Let µ be a nonnegative Borel

measure on D such that point evaluation is a bounded functional on T qs (µ). Then

the inclusion mapping i : Bp → T qs (µ) is compact if and only if µ is a vanishing

q(1− 1
p )-logarithmic s-Carleson measure.

Proof. First we assume that i : Bp → T qs (µ) is compact. Let {Ik} be a sequence

arcs with limk→∞ |Ik| = 0. Set ak = (1 − |Ik|)ηk, where ηk is the midpoint of arc

Ik. Take

fk(z) =

(
1

log 2
1−|ak|2

)1/p

log
2

1− akz
.
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We see that fk ∈ Bp and {fk} converges to 0 uniformly on compact subsets of D
when k →∞. Then we get(

log 2
|Ik|

)q(1− 1
p )

µ(S(Ik))

|Ik|s
.

1

|Ik|s

∫
S(Ik)

|fk(z)|qdµ(z)→ 0,

as k → ∞, which implies that µ is a vanishing q(1 − 1
p )-logarithmic s-Carleson

measure.

Conversely, assume that µ is a vanishing q(1− 1
p )-logarithmic s-Carleson measure.

From [12] we see that

‖µ− µr‖LCM
q(1− 1

p
),s
→ 0, r → 1.

Here µr(z) = µ(z) for |z| < r and µr(z) = 0 for r ≤ |z| < 1. Let ‖fk‖Bp . 1 and

{fk} converge to 0 uniformly on compact subsets of D. Then
1

|I|s

∫
S(I)

|fk(z)|qdµ(z) .
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) +
1

|I|s

∫
S(I)

|fk(z)|qd(µ− µr)(z)

.
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) + ‖µ− µr‖LCM
q(1− 1

p
),s
‖fk‖qBp

.
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) + ‖µ− µr‖LCM
q(1− 1

p
),s
.

Letting k →∞ and then r → 1, we have limk→∞ ‖fk‖T qs (µ) = 0. Therefore i : Bp →
T qs (µ) is compact. �

3. The operators Tg and Ig from Bp to F (q, q − 2, s)

In this section, we consider the boundedness, compactness and essential norm of

operators Tg and Ig from Bp to F (q, q − 2, s). Before we state our results in this

section, let us recall some definitions.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and T : X → Y be a bounded

linear operator. The essential norm of T : X → Y is defined by

‖T‖e,X→Y = inf
K
{‖T −K‖X→Y : K is compact from X to Y }.

Let Φ be a closed subspace of X. Given f ∈ X, the distance from f to Φ, denoted

by distX(f,Φ), is defined by distX(f,Φ) = infg∈Φ ‖f − g‖X .

Suppose that 0 ≤ α <∞, 0 < q, s <∞. The space FL(q, q − 2, s, α) is the space

consisting of all f ∈ H(D) such that

‖f‖qL = sup
a∈D

(
log

2

1− |a|2

)α ∫
D
|f ′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z) <∞.

It is easy to check that FL(q, q−2, s, α) is a Banach space under the norm ‖f‖qFL(q,q−2,s,α)

= |f(0)|q + ‖f‖qL when q ≥ 1. When α = 0, FL(q, q − 2, s, 0) is just the space
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F (q, q−2, s). Let F 0
L(q, q−2, s, α) denote the space of all f ∈ FL(q, q−2, s, α) such

that

lim
|a|→1

(
log

2

1− |a|2

)α ∫
D
|f ′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z) = 0.

By Lemma 2.1 we easily obtain the following equivalent characterization of the

space FL(q, q − 2, s, α).

Lemma 3.1. Let 0 ≤ α < ∞, 0 < q, s < ∞. Then f ∈ FL(q, q − 2, s, α) if and

only if

sup
I⊆∂D

(
log 2
|I|

)α
|I|s

∫
S(I)

|f ′(z)|q(1− |z|2)q−2+sdA(z) <∞.

Moreover,

‖f‖qFL(q,q−2,s,α) ≈ sup
I⊆∂D

(
log 2
|I|

)α
|I|s

∫
S(I)

|f ′(z)|q(1− |z|2)q−2+sdA(z).

Lemma 3.2. Let 0 ≤ α <∞, 0 < q, s <∞. If g ∈ FL(q, q − 2, s, α), then

lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

≈ distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) ≈ lim sup

r→1−
‖g − gr‖FL(q,q−2,s,α).

Here gr(z) = g(rz), 0 < r < 1, z ∈ D.

Proof. For any given g ∈ FL(q, q − 2, s, α), then gr ∈ F 0
L(q, q − 2, s, α) and

‖gr‖FL(q,q−2,s,α) . ‖g‖FL(q,q−2,s,α).

Let δ ∈ (0, 1). We choose a ∈ (0, δ). Then ϕa(z) lies in a compact subset of D. So
limr→1 supz∈D |g′(ϕa(z))− rg′(rϕa(z))| = 0. Making a change of variables, we have

lim
r→1

sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

= lim
r→1

sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(σa(z))− g′r(σa(z))|q(1− |z|2)q+s−2|ϕ′a(z)|qdA(z)

= lim
r→1

sup
|a|≤δ

sup
z∈D
|g′(ϕa(z))− g′r(ϕa(z))|q

(
log

2

1− |a|2

)α
×

×
∫
D

(1− |z|2)q+s−2|ϕ′a(z)|qdA(z) = 0.

By the definition of distance, we obtain

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) = inf

f∈F 0
L(q,q−2,s,α)

‖g − f‖FL(q,q−2,s,α)

≤ lim
r→1
‖g − gr‖FL(q,q−2,s,α)
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= lim
r→1

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

+ lim
r→1

(
sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

.

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

+ lim
r→1

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

.

Let ψr,a(z) = ϕra ◦ rϕa(z). Then ψr,a is an analytic self-map of D and ψr,a(0) = 0.

Making a change variable of z = ϕa(z) and applying the Littlewood’s subordination

theorem (see Theorem 1.7 of [4]), we have(
log

2

1− |a|2

)α ∫
D
|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

=

(
log

2

1− |a|2

)α ∫
D
|g′r(ϕa(z))|q(1− |ϕa(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra ◦ ψr,a(z)|q(1− |ϕra ◦ ψr,a(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra ◦ ψr,a(z)|q(1− |ϕra ◦ ψr,a(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra(z)|q(1− |ϕra(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕra(z)|2)sdA(z).

Since δ is arbitrary, we get

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α))

. lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

.

On the other hand, for any g ∈ FL(q, q − 2, s, q(1− 1
p )),

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) = inf

f∈F 0
L(q,q−2,s,α)

‖g − f‖FL(q,q−2,s,α)

& lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

,

implies the desired result. �
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Lemma 3.3. Let 1 < p < q < ∞, 0 < s < ∞. If 0 < r < 1 and g ∈ FL(q, q −
2, s, q(1− 1

p )), then Tgr : Bp → F (q, q − 2, s) is compact.

Proof. Given {fk} ⊂ Bp such that {fk} converges to zero uniformly on any

compact subset of D and supk ‖fk‖Bp ≤ 1. For each a ∈ D,

‖Tgrfk‖
q
F (q,q−2,s) = sup

a∈D

∫
D
|fk(z)|q|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q
sup
a∈D

∫
D
|fk(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q

∫
D
|fk(z)|q(1− |z|2)q−2dA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q

∫
D
|f ′k(z)|q(1− |z|2)q−2dA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q
‖fk‖qBp

∫
D

1dA(z).

By the dominated convergence theorem, we get

lim
k→∞

‖Tgrfk‖
q
F (q,q−2,s) . lim

k→∞

∫
D
|fk(z)|q(1− |z|2)q−2dA(z)

.
∫
D

lim
k→∞

|fk(z)|q(1− |z|2)q−2dA(z) = 0,

as desired. The proof is complete. �

The following result is very useful to study the essential norm of operators on

some analytic function spaces, see [17].

Lemma 3.4. Let X,Y be two Banach spaces of analytic functions on D. Suppose

that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform

convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {fn} in X

such that {fn} converges to zero uniformly on every compact set of D, then the

sequence {Tfn} converges to zero in the norm of Y .
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Theorem 3.1. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). Then Tg : Bp →
F (q, q − 2, s) is bounded if and only if g ∈ FL(q, q − 2, s, q(1− 1

p )).

Proof. Suppose that f ∈ Bp and g ∈ FL(q, q−2, s, q(1− 1
p )). From Lemma 3.2 we

see that dµg(z) = |g′(z)|q(1− |z|2)q−2+sdA(z) is a q(1− 1
p )-logarithmic s-Carleson

measure. By Theorem 1, for any I ⊆ ∂D we deduce that
1

|I|s

∫
S(I)

|(Tgf)′(z)|q(1− |z|2)q−2+sdA(z)

=
1

|I|s

∫
S(I)

|f(z)|q|g′(z)|q(1− |z|2)q−2+s+ q
p dA(z)

=
1

|I|s

∫
S(I)

|f(z)|qdµg(z) . ‖f‖qBp‖g‖
q
FL(q,q−2,s) <∞,

which implies that Tg : Bp → F (q, q − 2, s) is bounded by Lemma 3.1 again.

Conversely, suppose that Tg : Bp → F (q, q − 2, s) is bounded. For any I ⊆ ∂D,
let a = (1−|I|)ζ, where ζ is the center of I. Then 1−|a| ≈ |1−az| ≈ |I|, z ∈ S(I).

Let fa be defined as in Lemma 2.2. We have(
log 2
|I|

)q(1− 1
p )

|I|s

∫
S(I)

|g′(z)|q(1− |z|2)q−2+sdA(z)

.
1

|I|s

∫
S(I)

|fa(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z)

.
1

|I|s

∫
S(I)

|(Tgfa)′(z)|q(1− |z|2)q−2+sdA(z)

.‖Tgfa‖qF (q,q−2,s) <∞,

which implies that g ∈ FL(q, q − 2, s, q(1− 1
p )) by Lemma 3.1. �

Theorem 3.2. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). Then Ig : Bp →
F (q, q − 2, s) is bounded if and only if g ∈ H∞.

Proof. Let f ∈ Bp and g ∈ H∞. By the fact that Bp ⊂ B, we get∫
D
|(Igf)′(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

=

∫
D
|f ′(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

=‖g‖qH∞‖f‖
q−p
B

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) . ‖g‖qH∞‖f‖

q
Bp

<∞,

which implies that Ig : Bp → F (q, q − 2, s) is bounded.

Conversely, assume that Ig : Bp → F (q, q − 2, s) is bounded. For a ∈ D and

r > 0, let D(a, r) = {z ∈ D : β(a, z) < r} denote the Bergman metric disk centered

at a with radius r. Here β(a, z) is the Bergman metric between z and a. For any
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w ∈ D, let Fw be defined as in Lemma 2.2. Using the subharmonic property of |g|q

and the fact that (see [23])

(1− |w|2)2

|1− w̄z|4
≈ 1

(1− |z|2)2
≈ 1

(1− |w|2)2
≈ 1

|D(w, r)|
, z ∈ D(w, r),

where |D(w, r)| denotes the area of the Bergman disk D(w, r), we have

∞ >‖IgFw‖qF (q,q−2,s)

& sup
a∈D

∫
D
|F ′w(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

&
∫
D
|F ′w(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕw(z)|2

)s
dA(z)

&
∫
D(w,r)

|g(z)|q(1− |z|2)−2
(
1− |ϕw(z)|2

)s
dA(z)

&
1

(1− |w|2)2

∫
D(w,r)

|g(z)|qdA(z) & |g(w)|q,

which implies

∞ > ‖IgFw‖qF (q,q−2,s) & ‖g‖
q
H∞ ,

as desired. The proof is complete. �

Remark. Let 1 < p < q <∞, 0 < s <∞ and g ∈ H(D). From the fact that

Mgf(z) = f(0)g(0) + Igf(z) + Tgf(z),

we see that Mg : Bp → F (q, q − 2, s) is bounded if and only if

g ∈ FL(q, q − 2, s, q(1− 1

p
)) ∩H∞.

Theorem 3.3. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). If Tg : Bp →
F (q, q − 2, s) is bounded, then

‖Tg‖e,Bp→F (q,q−2,s) ≈ distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

Proof. Let {ak} be a sequence in D such that limk→∞ |ak| = 1. For each k, set

fak(z) =

(
1

log 2
1−|ak|2

)1/p

log
2

1− akz
.

Then {fak} is bounded in Bp and {fak} converges to zero uniformly on every

compact subset of D. For any given compact operator K : Bp → F (q, q − 2, s), by
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Lemma 3.4 we have limk→∞ ‖Kfak‖F (q,q−2,s) = 0. So

‖Tg −K‖ & lim sup
k→∞

‖(Tg −K)fak‖F (q,q−2,s)

& lim sup
k→∞

(
‖Tgfak‖F (q,q−2,s) − ‖Kfak‖F (q,q−2,s)

)
= lim sup

k→∞
‖Tgfak‖F (q,q−2,s)

≥ lim sup
k→∞

(∫
D
|fak(z)|q|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

& lim sup
|ak|→1

((
log

2

1− |ak|2

)q(1− 1
p ) ∫

D
|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

.

Hence

‖Tg‖e,Bp→F (q,q−2,s)

& lim sup
k→∞

((
log

2

1− |ak|2

)q(1− 1
p ) ∫

D
|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

.

By Lemma 3.2 and the arbitrariness of {ak}, we get that

‖Tg‖e,Bp→F (q,q−2,s) & distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

On the other hand, by Lemma 3.3, Tgr : Bp → F (q, q − 2, s) is compact. Then

‖Tg‖e,Bp→F (q,q−2,s) ≤ ‖Tg − Tgr‖ = ‖Tg−gr‖ ≈ ‖g − gr‖FL(q,q−2,s,q(1− 1
p )).

Using Lemma 3.2 again, we get

‖Tg‖e,Bp→F (q,q−2,s) . lim sup
r→1−

‖g − gr‖FL(q,q−2,s,q(1− 1
p ))

≈ distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

The proof is complete. �

By the well-known result that T : X → Y is compact if and only if ‖T‖e,X→Y =

0, we get the following result by Theorem 3.3 directly.

Corollary 3.1. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D), then Tg : Bp →
F (q, q − 2, s) is compact if and only if

g ∈ F 0
L(q, q − 2, s, q(1− 1

p
)).

Theorem 3.4. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D) such that

Ig : Bp → F (q, q − 2, s) is bounded, then

‖Ig‖e,Bp→F (q,q−2,s) ≈ ‖g‖H∞ .
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Proof. Let {ak} and K be defined as in the proof of Theorem 3.3. Set

Fak(z) =
1− |ak|2

ak(1− akz)
, z ∈ D.

By Lemma 2.2 we see that Fak ∈ Bp. By Lemma 3.4 we get limk→∞ ‖KFak‖F (q,q−2,s) =

0. Hence,

‖Ig −K‖ & lim sup
k→∞

‖(Ig −K)Fak‖F (q,q−2,s)

& lim sup
k→∞

(
‖IgFak‖F (q,q−2,s) − ‖KFak‖F (q,q−2,s)

)
= lim sup

k→∞
‖IgFak‖F (q,q−2,s),

which implies

‖Ig‖e,Bp→F (q,q−2,s) & lim sup
k→∞

‖IgFak‖F (q,q−2,s).

Similarly to the proof of Theorem 3.2 we get that ‖IgFak‖F (q,q−2,s) & |g(ak)|, which
implies that

‖Ig‖e,Bp→F (q,q−2,s) & ‖g‖H∞ .

On the other hand, by Theorem 3.2 we obtain

‖Ig‖e,Bp→F (q,q−2,s) = inf
K
‖Ig −K‖ ≤ ‖Ig‖ . ‖g‖H∞ .

The proof is complete. �

From Theorem 3.4 we get the following result.

Corollary 3.2. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D), then Ig : Bp →
F (q, q − 2, s) is compact if and only if g = 0.
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