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Abstract. Let a set of nodes X in the plane be n-independent, i.e., each node has a fundamental
polynomial of degree n. Assume that #X = d(n, k − 3) + 3 = (n+ 1) + n+ · · ·+ (n− k + 5) + 3

and 4 ≤ k ≤ n− 1. In this paper we prove that there are at most seven linearly independent curves
of degree less than or equal to k that pass through all the nodes of X . We provide a characterization
of the case when there are exactly seven such curves. Namely, we prove that then the set X has a

very special construction: all its nodes but three belong to a (maximal) curve of degree k − 3. Let us
mention that in a series of such results this is the third one. At the end an important application to
the bivariate polynomial interpolation is provided, which is essential also for the study of the Gasca-
Maeztu conjecture.
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1. Introduction

Denote the space of all bivariate polynomials of total degree not exceeding n by

Πn =

 ∑
i+j≤n

aijx
iyj

 .

We have that

N := Nn := dim Πn = (1/2)(n+ 1)(n+ 2).

Denote by Π the space of all bivariate polynomials.

Consider a set of s distinct nodes X = Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}. The
problem of finding a polynomial p ∈ Πn, which satisfies the conditions

(1.1) p(xi, yi) = ci, i = 1, . . . , s,

is called interpolation problem.

A polynomial p ∈ Πn is called a fundamental polynomial for a node A ∈ X if

p(A) = 1 and p
∣∣
X\{A} = 0, where p

∣∣
X means the restriction of p on X . We denote

this n-fundamental polynomial by p?A := p?A,X .
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Definition 1.1. The interpolation problem with a set of nodes Xs is called n-

poised if for any data (c1, . . . , cs) there is a unique polynomial p ∈ Πn satisfying the

interpolation conditions (1.1).

A necessary condition of poisedness is #Xs = s = N.

Next, let us consider the concept of n-independence (see [2, 4]).

Definition 1.2. A set of nodes Xs is called n-independent, if all its nodes have

n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition

of n-independence for Xs is s ≤ N .

1.1. Some properties of n-independent nodes. Let us start with the following

Lemma 1.1 (Lemma 2.2, [6]). Suppose that a set of nodes X is n-independent and

the nodes of another set Y have n-fundamental polynomials with respect to the set

Z = X ∪ Y. Then the set Z is n-independent too.

Denote the distance between the points A and B by ρ(A,B). Let us recall the

following (see [3])

Lemma 1.2. Suppose that Xs = {Ai}si=1 is an n-independent set. Then there is a

number ε > 0 such that any set X ′s = {A′i}si=1, with the property that ρ(Ai, A
′
i) <

ε, i = 1, . . . , s, is n-independent too.

Next result concerns the extensions of n-independent sets.

Lemma 1.3 (Lemma 2.1, [4]). Any n-independent set X with #X < N can be

enlarged to an n-poised set.

Denote the linear space of polynomials of total degree at most n vanishing on X by

Pn,X :=
{
p ∈ Πn : p

∣∣
X = 0

}
.

The following two propositions are well-known (see, e.g.,[4]).

Proposition 1.1. For any node set X we have that

dimPn,X = N −#Y,

where Y is a maximal n-independent subset of X .

Proposition 1.2. If a polynomial p ∈ Πn vanishes at n+ 1 points of a line `, then

we have that p
∣∣
`

= 0 and p = `r, where r ∈ Πn−1.
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A plane algebraic curve is the zero set of some bivariate polynomial of degree ≥
1. To simplify notation, we shall use the same letter, say p, to denote the polynomial

p and the curve given by the equation p(x, y) = 0.

In the sequel we will need the following

Proposition 1.3 (Prop. 1.10, [6]). Let X be a set of nodes. Then Pn,X = {0} if

and only if X has an n-poised subset.

Set d(n, k) := Nn−Nn−k = (1/2)k(2n+ 3−k). The following is a generalization

of Proposition 1.2.

Proposition 1.4 (Prop. 3.1, [9]). Let q be an algebraic curve of degree k ≤ n with

no multiple components. Then the following hold:

i) any subset of q containing more than d(n, k) nodes is n-dependent;

ii) any subset X of q containing exactly d(n, k) nodes is n-independent if and

only if the following condition holds:

(1.2) p ∈ Πn and p|X = 0 =⇒ p = qr, where r ∈ Πn−k.

Thus, according to Proposition 1.4, i), at most d(n, k) n-independent nodes can

lie in a curve q of degree k ≤ n. This motivates the following

Definition 1.3 (Def. 3.1, [9]). Given an n-independent set of nodes X with #X ≥
d(n, k). A curve of degree k ≤ n passing through d(n, k) points of X is called

maximal.

Let us bring a characterization of maximal curves:

Proposition 1.5 (Prop. 3.3, [9]). Given an n-independent set of nodes X with

#X ≥ d(n, k). Then a curve µ of degree k, k ≤ n, is a maximal curve if and only

if p ∈ Πn, p|X∩µ = 0 =⇒ p = µs, s ∈ Πn−k.

Next result concerns maximal independent sets in curves.

Proposition 1.6 (Prop. 3.5, [8]). Assume that σ is an algebraic curve of degree

k with no multiple components and Xs ⊂ σ is any n-independent node set of

cardinality s, s < d(n, k). Then the set Xs can be enlarged to a maximal n-

independent set Xd ⊂ σ of cardinality d = d(n, k).

Below a replacement of a node in an n-independent set is described such that

the set remains n-independent.
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Lemma 1.4 (Lemma 6, [5]). Assume that X is an n-independent node set and a

node A ∈ X has an n-fundamental polynomial p?A such that p?A(A′) 6= 0. Then we

can replace the node A with A′ such that the resulted set X ′ := X ∪ {A′} \ {A} is
n-independent too. In particular, such replacement can be done in the following two

cases:

i) if a node A ∈ X belongs to several components of σ, then we can replace it

with a node A′, which belongs to only one (desired) component,

ii) if a curve q is not a component of an n-fundamental polynomial p?A then we

can replace the node A with a node A′ lying in q.

Next result from Algebraic Geometry will be used in the sequel:

Theorem 1.1 (Th. 2.2, [10]). If C is a curve of degree n with no multiple components,

then through any point O not in C there pass lines which intersect C in n distinct

points.

Let us mention also that, as it follows from the proof, if a line ` through a point O

intersects C in n distinct points then any line through O, sufficiently close to `, has

the same property. Finally, let us present a well-known

Lemma 1.5. Suppose that m linearly independent polynomials vanish at the set

X . Then for any node A /∈ X there are m− 1 linearly independent polynomials, in

their linear span, vanishing at A and the set X .

2. Main results and a series of results

Let us start with the first result of a series of results:

Theorem 2.1 (Th. 1, [7]). Assume that X is an n-independent set of d(n, k−1)+2

nodes lying in a curve of degree k with k ≤ n. Then the curve is determined uniquely

by these nodes.

The second result in this series is the following

Theorem 2.2 (Th. 4.2, [8]). Assume that X is an n-independent set of d(n, k−1)+1

nodes with 2 ≤ k ≤ n − 1. Then at most two different curves of degree ≤ k may

pass through all the nodes of X . Moreover, there are such two curves for the set X
if and only if all the nodes of X but one lie in a maximal curve of degree k − 1.

Next result is the following

Theorem 2.3 (Th. 3, [5]). Assume that X is an n-independent set of d(n, k−2)+2

nodes with 3 ≤ k ≤ n− 1. Then at most four linearly independent curves of degree
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≤ k may pass through all the nodes of X . Moreover, there are such four curves for

the set X if and only if all the nodes of X but two lie in a maximal curve of degree

k − 2.

Now let us present the main result of this paper:

Theorem 2.4. Assume that X is an n-independent set of d(n, k − 3) + 3 nodes

with 4 ≤ k ≤ n− 1. Then at most seven linearly independent curves of degree ≤ k

may pass through all the nodes of X . Moreover, there are such seven curves for the

set X if and only if all the nodes of X but three lie in a maximal curve of degree

k − 3.

Let us mention that the inverse implication in the “Moreover” part is straightforward.

Indeed, assume that d(n, k− 3) nodes of X are located in a curve µ of degree k− 3.

Therefore, the curve µ is maximal and the remaining three nodes of X , denoted by

A,B and C, are outside of it: A,B,C /∈ µ. Hence, in view of Proposition 1.5, we

have that

Pk,X = {p : p ∈ Πk, pX = 0} = {qµ : q ∈ Π3, q(A) = q(B) = q(C) = 0} .
Thus we get readily that dimPk,X = dim {q ∈ Π3 : q(A) = q(B) = q(C) = 0} =

dimP3,{A,B,C} = 10− 3 = 7. Note that in the last equality we use Proposition 1.1

and the fact that any three nodes are 3-independent.

We get also that it is enough to prove only the “Moreover” part. Indeed, assume

that the “Moreover” part is proved. Assume also that there are≥ 7 linearly independent

curves satisfying the hypothesis of Theorem 2.4. Then, as we showed above, we have

that dimPk,X = 7, i.e., there are exactly 7 such curves, Q.E.D.

It is worth mentioning that to prove of Theorem 2.4 we establish an interesting

version of Theorem 2.3, where we increase the number of nodes by one and decrease

the number of linearly independent curves by one:

Theorem 2.5. Assume that X is an n-independent set of d(n, k − 2) + 3 nodes

with 3 ≤ k ≤ n − 2. Then at most three linearly independent curves of degree ≤ k

may pass through all the nodes of X . Moreover, there are such three curves for the

set X if and only if all the nodes of X lie in a curve of degree k−1, or all the nodes

of X but three lie in a (maximal) curve of degree k − 2.

3. Some preliminaries

We will start the proof of Theorem 2.4 in Section 5. Since then we need to do

considerable amount of preliminary work.
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Lemma 3.1. Assume that the hypotheses of Theorem 2.4 hold and assume additionally

that there is a curve σ0 ∈ Πk−2 passing through all the nodes of X . Then all the

nodes of X but three (collinear) lie in a maximal curve µ of degree k − 3.

Proof. First note that the curve σ0 is of exact degree k−2, since it passes through

more than d(n, k−3) n-independent nodes. This implies also that σ0 has no multiple

components. Therefore, in view of Proposition 1.6, we can enlarge the set X to a

maximal n-independent set Z ⊂ σ0, by adding d(n, k−2)−d(n, k−3)−3 = n−k+1

nodes, i.e., Z = X ∪A, where A = {A0, . . . , An−k}.
In view of Lemma 1.4, i), we may suppose that the nodes from A are not

intersection points of the components of σ0.

Next, we are going to prove that these n − k + 1 nodes are collinear together

with m ≥ 3 nodes from X . To this end denote the line through the nodes A0 and

A1 by `01. Then for each i = 2 . . . , n− k, choose a line `i passing through the node

Ai, which is not a component of σ0. We require also that `i does not pass through

other nodes of A and therefore the lines are distinct.

Now suppose that σ∗ ∈ Πk vanishes on X . Consider the polynomial p = σ∗`01`2 · · · `n−k.
We have that p ∈ Πn and p vanishes on the node set Z, which is a maximal n-

independent set in the curve σ0. Therefore, we obtain that

p = σ∗`01`2 · · · `n−k = σ0r, where r ∈ Πn−k+2.

The lines `i, i = 2, . . . , n − k, are not components of σ0. Therefore, they are

components of the polynomial r. Hence we obtain that

σ∗`01 = σ0γ, where γ ∈ Π3.

Now let us verify that `01 is a component of σ0. Indeed, otherwise it is a component

of the cubic γ and we get that

σ∗ ∈ Πk, σ
∗∣∣
X = 0 =⇒ σ∗ = σβ, where β ∈ Π2.

Therefore, we obtain that dimPk,X ≤ 6, which contradicts the hypothesis.

Thus we have that

(3.1) σ0 = `01σk−3, where σk−3 ∈ Πk−3.

Now let us show that all the nodes of A belong to `01. Suppose conversely that

a node from A, say A2, does not belong to the line `01. Then in the same way as in

the case of the line `01 we get that `02 is a component of σ0. Therefore the node A0

is an intersection point of two components of σ0, i.e., `01 and `02, which contradicts

our assumption.
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Thus we get that A ⊂ `01. Note that `01 is not a component of σk−3 since then

it will be a multiple component of σ0.

Next, let us verify that when enlarging the set X ⊂ σ0 to an n-maximal set

one has to locate the added nodes outside the component σk−3. Indeed, what was

proved already implies that the only possible location of such a node in σk−3 is

an intersection point with `01. But in the latter case, by using Lemma 1.4, we

can replace the node, say A1, with one belonging only to the component σk−3,

say A′1, which is a contradiction. Indeed, again A0 is the intersection point of two

components of σ0, the line through A0, A1 and the line through A0, A
′
1.

Hence, in view of Proposition 1.6 we get that µ = σk−3 is a maximal curve for

X . Therefore, it vanishes at exactly d(n, k − 3) nodes of X . The remaining three

nodes, according to (3.1), belong to the line `01. �

The next result we prove with tools of mathematical analysis.

Proposition 3.1. Assume that p1, p2 ∈ Π, deg p2 ≤ deg p1 + 1, and p1 has no

multiple factors. Then, for sufficiently small ε, the polynomial p1 + εp2 has no

multiple factors either.

Proof. Assume by way of contradiction that there is a sequence εn such that

(3.2) p1 + εnp2 = qnr
2
n, where qn, rn ∈ Π, deg rn ≥ 1, and εn → 0.

We have that deg(p1 + εnp2) ≤ max(deg p1,deg p2), and hence

(3.3) deg qn + 2 deg rn ≤ max(deg p1,deg p2) ≤ deg p1 + 1.

We deduce from here that there is a subsequence nk such that

deg qnk
= m1 = const. and deg rnk

= m2 = const.

Without loss of generality assume that

(3.4) {εn} ≡ {εnk
}.

Thus we have that

qn =
∑

i+j≤m1

a
(n)
ij x

iyj , rn =
∑

i+j≤m2

b
(n)
ij x

iyj .

In view of (3.2), by a normalization of rn, i.e., by multiplying it by a constant c

and dividing qn by c2, we may assume that

(3.5) max |b(n)ij | = 1 ∀n.

Now, let us denote Mn := max |a(n)ij |.
Case 1. Assume that (a subsequence of) Mn is bounded: Mn ≤M. Note that in

the case of the subsequence we may use again a replacement (3.4) and have that
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the whole sequence Mn is bounded. In this case, by using the Bolzano–Weierstrass

theorem, we have for a subsequence {nk} that

a
(nk)
ij → a0ij and b

(nk)
ij → b0ij , ∀i, j.

Here, we use the fact that the number of the coefficients is finite.

By setting n = nk in (3.2) and tending k →∞ we obtain that p1 = q0r
2
0, where

q0 =
∑

i+j≤m1

a0ijx
iyj , r0 =

∑
i+j≤m2

b0ijx
iyj .

This contradicts the hypothesis for p1 if deg r0 ≥ 1.

Let us verify the latter inequality. Since deg rn ≥ 1, we get from (3.3) that

deg qn ≤ deg p1 − 1. Therefore m1 ≤ deg p1 − 1 and hence deg r0 ≥ 1.

Case 2. By taking into account a replacement (3.4) it remains to consider the

case Mn → +∞.
There are numbers i0, j0, i1, j1 and a subsequence n = {nk}, such that

(3.6) |a(nk)
i0j0
| = max

i,j
|a(nk)
ij | and |b

(nk)
i1j1
| = max

i,j
|b(nk)
ij | = 1 ∀k.

Here, again we use the fact that the number of the coefficients is finite. In the last

equality we use (3.5).

Now, let us set n = nk in (3.2) and divide both sides by Mnk
to get

(3.7)
1

Mnk

p1 +
εnk

Mnk

p2 =

(
1

Mnk

qnk

)
r2nk

.

Evidently, the left hand side here tends to zero. For the right hand side we have

that the coefficients of the polynomials 1
Mnk

qnk
and rnk

are bounded by 1. As

above by using the Bolzano–Weierstrass theorem and passing to a new subsequence

{n′k} ⊂ {nk} we obtain that

1

Mn′
k

a
(n′

k)
ij → a∗ij and b

(n′
k)

ij → b∗ij , ∀i, j.

In view of (3.6) we have that

(3.8) |a∗i0j0 | = 1 and |b∗i1j1 | = 1.

Now, by setting n = n′k in (3.2) and tending k →∞ we get that 0 = q∗r
2
∗, where

q∗ =
∑

i+j≤m1

a∗ijx
iyj , r∗ =

∑
i+j≤m2

b∗ijx
iyj .

In view of (3.8) this is a contradiction. �

Remark 3.1. In the same way one can prove the following statement: Assume that

p1, p2 ∈ Π, deg p2 ≤ deg p1, and p1 is not reducible. Then, for sufficiently small ε,

the polynomial p1 + εp2 is not reducible either.
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Note that, as the example of p2 = xp1 shows, the condition deg p2 ≤ deg p1 is

essential here.

Next result will help to make the hypotheses of Theorem 2.4 more precise.

Proposition 3.2. Suppose that there are seven linearly independent polynomials

from Πk vanishing on a set X . Then, there are seven linearly independent polynomials

vanishing on a set X , each of which is of exact degree k and has no multiple

factors, or, alternatively there are three linearly independent polynomials from Πk−1

vanishing on X .

Proof. Let σi ∈ Πk, 0 ≤ i ≤ 6, be the given polynomials. We may assume that

a polynomial, say σ0, is of exact degree k. Indeed, if the degree of each of seven

polynomials is less than k then the conclusion of Proposition holds.

Therefore we may assume that all the polynomials σi, 0 ≤ i ≤ 6 are of exact

degree k. Indeed, it suffices to replace these polynomials with the seven polynomials

σ0 and σ0 + εσi, 1 ≤ i ≤ 6, for some ε 6= 0.

Next, let us prove that a polynomial, say σ0, has no multiple factors. Indeed

assume conversely that each of the seven polynomials has a multiple factor. In view

of Lemma 3.1 the multiple factors are lines with multiplicity two. Thus, we have

that

(3.9) σi = `2i qi, 0 ≤ i ≤ 6, where `i ∈ Π1, qi ∈ Πk−2.

Then we replace these polynomials with the seven polynomials σ̌i = `iqi ∈ Πk−1, 0 ≤
i ≤ 6, which clearly vanish at the node set X . Let us verify that among these latter

seven polynomials there are at least three linearly independent ones. Conversely

assume that the seven polynomials are linear combinations of two of them, say

σ̌i, i = 0, 1. Then we get readily that the seven linearly independent polynomials

in (3.9) are linear combinations of the following six polynomials:

σ̌i, xσ̌i, yσ̌i, i = 0, 1,

which is a contradiction. Indeed, assume that `i = Aix + Biy + Ci, i = 0, . . . , 6.

Then for i = 0, 1, we have that

σi = `2i qi = (Aix+Biy + Ci)σ̌i = Axσ̌i +Biyσ̌i + Ciσ̌i.

Now, assume that σ̌i = aiσ̌0 + biσ̌1, for i = 2, . . . , 6. Then we have that

σi = `2i qi = (Aix+Biy + Ci)σ̌i = (Aix+Biy + Ci)(aiσ̌0 + biσ̌1)

= aiAixσ̌0 + aiBiyσ̌0 + aiCiσ̌0 + biAixσ̌1 + biBiyσ̌1 + biCiσ̌1.
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Finally, by assuming that σ0, has no multiple factors, let us again replace the

seven polynomials σi, 0 ≤ i ≤ 6, with the seven polynomials σ0 and σ0 + εσi, 1 ≤
i ≤ 6, for a sufficiently small ε > 0. This, in view of Proposition 3.1, completes the

proof. �

Proposition 3.3. Suppose that σi, i = 0, . . . , 6, are linearly independent polynomials

of exact degree k and have no multiple factors. Then there is a polynomial in the

linear span of σi, i = 1, . . . , 6, which has no multiple factors and differs from σ0

with a factor of degree at least three.

Lemma 3.2. Let σ0, s1, s2, be linearly independent polynomials of exact degree k,

with no multiple factors. Suppose also that any linear combination of si, i = 1, 2,

differs from σ0 with a factor from Π2. Then we have that

(3.10) σ0 = σ̃0β0, s1 = σ̃0β1, s2 = σ̃0β2, where σ̃0 ∈ Πk−1, βi ∈ Π2.

Moreover, σ̃0 is uniquely determined from the first two relations here, if β0 and β1
are relatively prime.

Furthermore, if β0 has a common factor with β1 and a common factor with β2 then

the following alternative takes place: Either,

(i) βi = ``i, i = 0, 1, 2, i.e., they have a common linear factor, or

(ii) β0 and β1 + εβ2 are relatively prime ∀ε > 0.

Proof. Consider the polynomials σ0, s1 and s2. In view of the hypotheses and

Proposition 3.1 for sufficiently small c > 0 we have that

(3.11) (s1 + cs2)β(c) = σ0β(c),

where β(c), β(c) ∈ Π2 are relatively prime.

Then we have that β(c) is a linear or conic component of σ0. Suppose that σ0
has k such components. By considering k + 1 sufficiently small values of c we get

that there are constants c1 and c2 such that β(c1) = β(c2) =: β0.

Then we readily obtain from (3.11) that

(3.12) s1β0 = σ0β1 and s2β0 = σ0β2, where β1, β2 ∈ Π2.

In the case when β0 is relatively prime with β1 or β2 then it clearly divides σ0. By

denoting σ̃0 = σ0/β0 ∈ Πk−1, we get (3.10) from (3.12).

It remains to consider the case when β0 is a reducible conic and has a common

linear component with β1 as well as with β2. Below everywhere the letter ` denotes

a linear polynomial. Thus suppose that β0 = `0`
′
0. After a cancellation with a linear

polynomial in (3.12) two cases are possible:

Case 1. s1`0 = σ0`1 and s2`′0 = σ0`2; Case 2. s1`0 = σ0`1 and s2`0 = σ0`2.
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In Case 1 β0 = `0`
′
0 again divides σ0 and we get (3.10). In Case 2 β0 = `0 divides

σ0 and we get (3.10), where β0 therefore β1 and β2 are linear. Thus (3.10) is proved.

Note that if β0 and β1 are relatively prime then σ̃0 is uniquely determined from

the first two relations in (3.10) as the greatest common divisor of σ0 and s1.

Now, consider the “Furthermore” statement. Assume that the pairs β0, β1, and

β0, β2, have a common factor. Set β0 = ``0 and β1 = ``1. Then we have that either

β2 = ``2, or β2 = `0`3. The first case reduces to the item (i). Let us consider the

second case. It is easily seen that the polynomials β0 = ``0 and β1+εβ2 = ``1+ε`0`3

have no common factor.

Indeed, conversely suppose that ` is a common factor. Then the last equality

implies that ` = `0, or ` = `3. In the first case we get that β0 and hence, in view of

(3.10), σ0 has a double component `, while in the second case we get that β0 = β2

and hence σ0 = σ2.

Now conversely suppose that `0 is a common factor. In this case the same equality

implies that `0 = `, or `0 = `1. The first case was considered already, while the

second case implies that β0 = β1 and hence σ0 = σ1. �

Proof of Proposition 3.3. Assume by way of contradiction that any polynomial

from S := Linear span{σ1, . . . , σ6}, differs from σ0 with a factor of degree at most

two. By Lemma 3.2, for the polynomial σ0 and any two polynomials from S, the

relation (3.10) holds.

Case 1. Assume that there is a polynomial s1 ∈ S, say it is s1 = σ1, for which

the relation (3.10) holds with β1 being relatively prime with β0. Note that this

evidently takes place if β0 is linear.

Then, according to Lemma 3.2, σ̃0 is determined uniquely.

Now, let us apply Lemma 3.2 successively with the triples of polynomials σ0, σ1, σi, i =

2, . . . , 6. Then we get that

σi = σ̃0βi, i = 0, . . . , 6, where βi ∈ Π2.

Clearly the seven polynomials βi here, and consequently the seven polynomials

σi are linearly dependent, which contradicts our assumption.

Case 2. Assume that for any triple of polynomials σ0, s1 := σi, s2 := σj the

relation (3.10) holds with β0 having a common factor with βi as well as with βj .

Hence all three are of degree two.

Now, if for some triple the alternative (ii) holds then we have Case 1 with s1 :=

σi + εσj . Note that, in view of Proposition 3.1, s1 has no multiple factors if ε is

sufficiently small.

Next, suppose that the alternative (i) holds: β0 = ``0, βi = ``i, βj = ``j .
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This reduces to Case 1 since here (3.10) holds also with linear β’s:

σ0 = σ0`0, σi = σ0`i, σj = σ0`j , where σ = σ̃`. �

4. The existence of three curves of degree k − 1

Proposition 4.1. Assume that the hypotheses of Theorem 2.4 hold. Then, there

are three linearly independent curves of degree k − 1 passing through all the nodes

of the set X .

Proof. Let σ0, . . . , σ6, be the seven curves of degree ≤ k that pass through all the

nodes of the n-independent set X with #X = d(n, k − 3) + 3.

In view of Proposition 3.2 assume, without loss of generality, that each of these

polynomials is of exact degree k and has no multiple factors.

Step 1. Here we will prove that there is at least one curve of degree ≤ k − 1

passing through all the nodes of the set X .
We start by choosing two nodesB1, B2 /∈ X such that the following two conditions

are satisfied:

i) the set X ∪ {B1, B2} is n-independent;
ii) the line `0 through B1 and B2 does not pass through any node from X .

Let us verify that one can find such nodes. Indeed, in view of Lemma 1.3, we

can start by choosing some nodes Bi = B′i, i = 1, 2, satisfying the condition i).

Then, according to Lemma 1.2, for some positive ε all the nodes Bi, i = 1, 2, in

ε neighborhoods of B′i, i = 1, 2, respectively, satisfy the condition i). Finally, from

these neighborhoods we can choose the nodes Bi, i = 1, 2, satisfying the condition

ii) too.

Next we find one more node B3 ∈ `0 such that the set X ∪ {B1, B2, B3} is

n-independent. Indeed, if there is no such node then we obtain that

p ∈ Πk, p|X∪{B1,B2} = 0⇒ p|`0 = 0.

Therefore p = `0q, where q ∈ Πk−1 and, in view of the condition ii), q|X = 0. Hence,

if there is no B3 then, according to Lemma 1.5, there are five linearly independent

polynomials p ∈ Πk satisfying the condition p|X∪{B1,B2} = 0. Therefore, there are

five linearly independent q ∈ Πk−1 satisfying the condition q|X = 0.

Next, we find successively two more nodes B4, B5 ∈ `0 such that the set X ∪ B5
is n-independent, where B5 := {B1, B2, B3, B4, B5}. Indeed, if one cannot find the

node B4 or B5 then, in the same way as above, we obtain that there are four or

three linearly independent polynomials q ∈ Πk−1 satisfying the condition q|X = 0,

respectively.
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Then, in view of Lemma 1.5, there are two curves of degree ≤ k, which pass

through all the nodes of X ∪ B5. Denote one of them by σ0. We may assume that

it is of exact degree k and has no multiple factors. We may assume also that `0 is

not a component of σ0. Otherwise as above, we find a desired polynomial q.

Now, in view of Proposition 1.6, we enlarge the set X ∪ B5 to a maximal n-

independent set Z ⊂ σ0, by adding d(n, k) − (d(n, k − 3) + 3) − 5 = 3(n − k) + 1

nodes, i.e.,

Z = X ∪ B5 ∪ A, where #A = 3(n− k) + 1 = [3(n− k − 1)− 1] + 5.

Let us start with the description of the choice of 3(n − k − 1) − 1 nodes of A.
By using Proposition 3.3 we find a curve σ in the linear span of σi, i = 1, . . . , 6,

which has no multiple factors and differs from σ0 with a factor of degree at least

three: σ = γr, σ0 = γ0r, with d := deg γ = deg γ0 ≥ 3 and r ∈ Πk−d. We have that

γ0 and σ are relatively prime.

Below we are using Theorem 1.1 with respect to the curve C := γ0. Choose a point

O /∈ γ0 ∪ σ. Since O /∈ σ0 no line through the point O will be a component of σ0.

Consider a line `1 through O which intersects C at distinct points not belonging to

`0∪σ. Let A1, A2 and A3, be three of those intersection points. By using a continuity

argument we may assume that the lines `i, i = 2, . . . , n−k−1, pass through O and

are enough close to `1 so that each of them intersects C at distinct points, which do

not belong to `0∪σ.We assume also that `i∩(X ∪B5) = ∅, i = 1, . . . , n−k−1. As in

the case of the line `1 let A3i−2, A3i−1 and A3i, be three of those intersection points

belonging to γ0∩`i, i = 2, . . . , n−k+1. Finally, let us dismiss an intersection point,

say A1, and denote the desired set of the remaining 3(n − k − 1) − 1 intersection

nodes {Ai} by A(−1).

Let us prove that the set Y := X ∪ B5 ∪ A(−1) is n-independent.

We have that the set A(−1) is a subset of Berzolari-Radon construction of degree

n − k − 1. Hence it is (n − k − 1)-independent. Now suppose that p?A,A(−1) is a

fundamental polynomial of a node A ∈ A(−1) of degree n − k − 1. Then the

polynomial σ`0p?A,A(−1) is an n-fundamental polynomial of the node A for the set

Y. Here we use the fact that no node from A(−1) belongs to `0 or σ. Thus, according

to Lemma 1.1, the set Y is n-independent.

Finally, in view of Proposition 1.6, we enlarge the set Y ⊂ σ0 with a set A5

of the last 5 nodes to a maximal n-independent set Z ⊂ σ0. Thus we have that

Z := Y ∪ A5 and A = A(−1) ∪ A5.

Now suppose that σ∗ ∈ Πk vanishes on X and A5. According to Lemma 1.5 there

are 2 = 7−5 such polynomials. Hence we may assume that σ∗ 6= σ0. Then consider
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the polynomial p = σ∗`0`1 · · · `n−k−1.We have that p ∈ Πn vanishes on the maximal

n-independent set Z ⊂ σ0. Therefore, we have that p = σ∗`0`1 · · · `n−k−1 =

σ0s, where s ∈ Πn−k.

The lines `i, i = 1, . . . , n − k − 1, are not components of σ0 since they pass

through O /∈ σ0. Therefore, they are components of the polynomial s. Thus we

obtain

σ∗`0 = σ0`, where ` ∈ Π1.

Since σ∗ 6= σ0 therefore `0 6= `.Whence `0 is a component of σ0 : σ0 = `0q0, where q0 ∈
Πk−1. As above we get that q0 vanishes on X .

Step 2. Here we will prove that there are three linearly independent curves of

degree ≤ k − 1 passing through all the nodes of the set X .
We find a line `0 and collinear nodes B1, . . . , B4 ∈ `0, in the same way as in

the Step 1, such that `0 ∩ X = ∅ and the set X ∪ B4 is n-independent, where

B4 := {B1, B2, B3, B4}.
Next, in view of Proposition 1.5, there are three linearly independent curves

of degree at most k, which pass through all the nodes of the set X ∪ B4. Denote

these curves by σ0, σ
′
0, σ
′′
0 . If a curve here, say σ0, is of degree ≤ k − 1 and has

no multiple components then instead of given triple of curves we consider the

curves `1σ0, `2σ0, `3σ0, where the lines `i are chosen such that these three curves

are linearly independent and have no multiple factors.

Next, if a curve σ0, σ′0, σ′′0 , has a multiple factor then by throwing away the

excessed factor we are in the situation considered in the previous paragraph. Hence,

we may consider only the case when each of theses three polynomials is of exact

degree k and has no multiple components.

Now consider the curve σ0. In view of Proposition 1.6 we enlarge the set X ∪B4
to a maximal n-independent set Z ⊂ σ0, by adding d(n, k)− (d(n, k− 3) + 3)− 4 =

3(n− k) + 2 nodes, i.e.,

Z = X ∪ B4 ∪ A, where #A = 3(n− k) + 2 = [3(n− k − 1)− 1] + 1 + 5.

We find the set of 3(n− k − 1)− 1 points from A in the same way as in Step 1

and denote it again by A(−1). Then, in the same way as in Step 1, we prove the

independence of the set Y := X ∪ B4 ∪ A(−1).

Next, in view of Theorem 1.1, we choose a node Ã1 ∈ `1 such that Ã1 ∈ σ0 \ q0,
where q0 is the polynomial of degree ≤ k− 1 vanishing on X , found in Step 1. Note

that the line `1 is not a component of q0 since `1 ∩ X = ∅.
Then consider the case when Ã1 ∈ A(−1), i.e., Ã1 coincides with one of the

nodes A2, A3 ∈ A(−1) ∩ `1, say Ã1 = A2. In this case instead of A(−1) we would
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start with the set A(−1)′ = A(−1) ∪ {A1} \ {A2} and we will have already that

Ã1 /∈ A(−1)′.

Since `0 is not a component of σ0 therefore the set F := `0 ∩ σ0 is a finite set

and we could suppose beforehand that `1 ∩ F = ∅. This will ensure that Ã1 /∈ `0.
Also we have that Ã1 6= O since O /∈ σ0.

Now let us prove the independence of the set Ỹ := Y ∪ {Ã1}. For this end, in

view of Lemma 1.1, it suffices to find a fundamental polynomial of the node Ã1

with respect to the set Ỹ. We readily verify that p?
Ã1,Ỹ

= q0`0`2 · · · `n−k−1`′`′′,
where `′ and `′′ are lines different from `1 and pass through the nodes A2 and A3,

respectively.

Finally, according to Proposition 1.6, let us enlarge the set Ỹ ⊂ σ0 with the

set of last 5 nodes, denoted by A5, to a maximal n-independent set. Thus the set

Z := Ỹ ∪ A5 is a maximal n-independent set in σ0.

Now suppose that σ∗ ∈ Πk vanishes on X and the 5 nodes of A5. According to

Lemma 1.5 there are at least two such polynomials. Hence we may assume that

σ∗ 6= σ0. Then consider the polynomial p = σ∗`0`1 · · · `n−k−1.We have that p ∈ Πn

and p vanishes on the node set Z, which is a maximal n-independent set in the

curve σ0. Therefore, we have that

p = σ∗`0`1 · · · `n−k−1 = σ0s, where s ∈ Πn−k.

The lines `i, i = 1, . . . , n− k− 1, are not components of σ0. Therefore, they are

components of the polynomial s. Thus we get that σ∗`0 = σ0`, where ` ∈ Π1. Since

σ∗ 6= σ0 therefore `0 6= `. Hence `0 is a component of σ0 :

σ0 = `0qk−1, where qk−1 ∈ Πk−1.

In the same way for the curves σ′0 and σ′′0 we get σ′0 = `0q
′
k−1, where q

′
k−1 ∈ Πk−1,

and σ′′0 = `0q
′′
k−1, where q

′′
k−1 ∈ Πk−1.

Obviously the curves qk−1, q′k−1, q
′′
k−1, are linearly independent. �

5. Proofs of Theorems 2.4 and 2.5

Proof of Theorem 2.5. Assume by way of contradiction that there are four curves

passing through all the nodes of the set X . Then, according to Theorem 2.3, all the

nodes of X but three belong to a maximal curve µ of degree k − 2. The curve µ is

maximal and the remaining three nodes of X , denoted by A,B and C, are outside

of it: A,B,C /∈ µ. Hence we have that

Pk,X = {p : p ∈ Πk, p|X = 0} = {qµ : q ∈ Π2, q(A) = q(B) = q(C) = 0} .
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Thus we get readily that dimPk,X = dim {q ∈ Π2 : q(A) = q(B) = q(C) = 0} =

dimP2,{A,B,C} = 6−3 = 3, which contradicts our assumption. Note that in the last

equality we use Proposition 1.1 and the fact that any three nodes are 2-independent.

Now, let us verify the part “if”. By assuming that there is a curve σ of degree

k − 1 passing through the nodes of X we find readily three linearly independent

curves of degree ≤ k : σ, xσ, yσ, passing through X . While if we assume that all

the nodes of X but three lie in a curve µ of degree k − 2 then above evaluation

shows that dimPk,X = 3.

Finally, let us verify the part “only if”. Denote the three curves passing through

all the nodes of X by σ0, σ′0, σ′′0 . If one of them is of degree k−1 then the conclusion

of Theorem is satisfied and we are done. Thus, we may assume that each curve is

of degree k and has no multiple components. Now consider the curve σ0.

By using Proposition 1.6 let us enlarge the set X to a maximal n-independent

set Z ⊂ σ0. Since #Z = d(n, k), we need to add a set of d(n, k)− (d(n, k−2)+3) =

2(n− k) + 2 nodes, denoted by

A := {A1, . . . , A2(n−k)+2}.

Thus we have that Z := X ∪ A. In view of Lemma 1.4, i), we require that each

node of A may belong only to one component of the curve σ0.

Case 1, n = k + 2, A := {A1, . . . , A6}.
Consider 5 nodes from A and a conic β∗ passing through them. Denote the sixth

node by A∗. We have three polynomials from Πk vanishing on X . By using Lemma

1.5 we get two linearly independent curves of degree at most k, that pass through all

the nodes of X and the node A∗ ∈ A. Thus we may consider a such curve σ∗ ∈ Πk

by assuming that σ∗ 6= σ0. Now, notice that the polynomial σ∗ β∗ of degree n

vanishes at all the nodes of Z ⊂ σ0. Consequently, according to Proposition 1.4, σ0
divides this polynomial:

(5.1) σ∗ β∗ = σ0 β, β ∈ Π2.

We have that β∗ 6= β since σ∗ 6= σ0. Hence if β∗ is irreducible then it divides

σ0. Now suppose that β∗ is reducible: β∗ = `1`2, where `i ∈ Π1. Then we have

that both lines `1, `2, cannot divide β, hence either `1`2 or only one of them is a

component of σ0.

Let us consider the latter case. Suppose that the line `1 is a component of σ0
and `2 is a component of β. Then we get from (5.1) that

(5.2) σ∗ `1 = σ0 `, where ` ∈ Π1.
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Now, we have that σ0 = `1q, where deg q = k − 1. Then we get from (5.2) that

σ∗ = `q. From the last two equalities we conclude that X ⊂ q∪{E}, where E = `1∩`.
Therefore all the nodes of X , except possibly E, belong to the curve q. Here q is

a component of σ0 of degree k − 1 and E belongs to its line component `1.

We briefly express the above conditions by saying that the line component `1 of

σ0 satisfies (−1)-node condition for X .
At the end we will see that if this property holds for all three given curves

σ0, σ
′
0, σ
′′
0 , then we can readily complete the proof of Theorem.

Therefore, from now on we may assume that the equality (5.1) implies that

deg β∗ = 2 and β∗ is a component of σ0. Thus we obtain also that β∗ is determined

uniquely by the 5 nodes from A.
Next, we are going to prove that there is a conic passing through all the six

nodes of A. Assume conversely that there is no such conic. Denote by βi the conic

passing through the five nodes of A \ {Ai}, i = 1, 2.

We have that these two conics are different components of σ0. First assume that

one of these two conics, say, β1, is irreducible. Then consider a common node of β1
and β2, say, A3. It is easily seen that A3 belongs to two different components of

σ0, which contradicts our assumption. Indeed, one is β1 and another is β2 if it is

irreducible or a line component of β2 if it is reducible.

Now, assume that both β1 and β2 are reducible: β1 = `1`
′
1, β2 = `2`

′
2.Without

loss of generality assume that

(5.3) `1 6= `2, `1 6= `′2.

We have that `1 passes through at least one of the common nodes A3, . . . , A6, say

A3. Then A3 belongs either to `2 or to `′2. In both cases, in view of (5.3), we have

that A3 belongs to two different line components of σ0, which is a contradiction.

Thus we proved that A ⊂ β0, where β0 ∈ Π2.

Next let us show that β0 divides σ0. Consider a polynomial σ ∈ Πk that vanishes

on X and σ 6= σ0. Notice that the following polynomial σ β0 of degree k + 2 = n

vanishes at all the d(n, k) nodes of Z ⊂ σ0. Consequently, according to Proposition

1.4, σ0 divides this polynomial:

(5.4) σ β0 = σ0β, β ∈ Π2.

This is a type (5.1) equality which, as we mentioned above, implies that deg β0 = 2

and β0 is a component of σ0, i.e., σ = β0q, q ∈ Πk−2. We conclude also that β0 is

uniquely determined by any 5 nodes from A.
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Thus to enlarge the set X ⊂ σ0 to a maximal n-independent set Z = X ∪ A we

have to add all the six nodes of A to the conic β0. Let us verify that the added

nodes cannot belong to the component q. Indeed, suppose conversely that a node

belongs to β0 ∩ q. Then, in view of Lemma 1.4, we can move the node to q \ β0
such that the resulted set is also n-independent. This is a contradiction, since now

the six nodes do not belong to a conic. Indeed, the five nodes determine a unique

conic and the sixth node is outside of it. Thus the factor q ∈ Πk−2 to which one

can not add a new independent node is merely maximal with respect to X . This
means that q passes through exactly d(n, k) nodes of X .

Case 2, n ≥ k + 3.

Consider a subset of A of cardinality 4 and denote it by A4. Denote also by

Ā := A \ A4. We have that #Ā = 2(n− k)− 2.

There are three linearly independent polynomials σ0, σ′0, σ′′0 ∈ Πk, vanishing on

X . Now suppose that σ∗ ∈ Πk vanishes on X and at an arbitrary node A∗ ∈
Ā, which will be specified below. According to Lemma 1.5 there are two such

polynomials. Hence we may assume that σ∗ 6= σ0. We call the node A∗ associated

with σ∗.

We associate another node A′ ∈ Ā with the set A4 and denote by β′ a conic that

passes through A′ and the four nodes of A4.

For any line component ` of σ0 denote by r` ∈ Πk−1 for which

(5.5) σ0 = `r`.

Assume that a line component ` of the curve σ0, passes through exactly m nodes

from X , at which r` does not vanish. Then we obtain from (5.5) that r` ∈ Πk−1

vanishes at the all nodes of the set X except m nodes, which belong to `.

Note that if for a line ` we have that m ≤ 1, then the line component ` of σ0
satisfies the (−1)-node condition for X .

Therefore we may suppose that m ≥ 2 for all lines `, meaning that the following

condition takes place:

(C) Any line component of the curve σ0, passes through at least two nodes from

X , at which r` does not vanish.
Later, in Section 5.1, by using the condition (C), we divide the set of nodes Ā

into n− k − 2 pairs such that the lines `1, . . . , `n−k−2, through them, respectively,

are not components of σ0. The remaining two nodes denoted by A∗ and A′, are

associated with the curve σ∗ and A4, respectively.

Now, let us continue the proof by assuming that the above-described division of

Ā is established.
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Notice that the following polynomial σ∗ β′ `1 . . . `n−k−2 of degree n vanishes at

all the d(n, k) nodes of Z ⊂ σ0. Consequently, according to Proposition 1.4, σ0
divides this polynomial:

(5.6) σ∗ β′ `1 . . . `n−k−2 = σ0 r, r ∈ Πn−k.

The distinct lines `1, . . . , `n−k−2 do not divide the polynomial σ0 ∈ Πk, therefore,

all they have to divide r. Hence, we get from (5.6) that σ∗ β′ = σ0 β, where β ∈ Π2.

Then, we have that β′ 6= β since σ∗ 6= σ0. Now, in the same way as in Case 1 we

obtain that σ0 = β′q where q ∈ Πk−2.

Next, we are going to prove that there is a conic passing through all the nodes

of A. Assume by way of contradiction that there is no such conic. Then, in view of

Proposition 1.3, we have that there is a set of six nodes, say A6 := {A1, . . . , A6} ⊂
A, that does not lie in a conic.

Now, let us choose three noncollinear nodes in A6, say A1, A2, A3, and consider

the following sets of four nodes:

A1, A2, A3, A4; A1, A2, A3, A5; A1, A2, A3, A6.

Then, consider these three sets with the respective associated nodes:

(5.7) A1, A2, A3, A4, A
′; A1, A2, A3, A5, A

′′; A1, A2, A3, A6, A
′′′.

We have that the three conics through these sets are components of σ0. Since A6

does not lie in a conic we obtain that these three conics cannot coincide. Hence

there are two different conics, say the conics β′ and β′′, passing through the first

two sets in (5.7), respectively.

First assume that one of these two conics, say, β′, is irreducible. Then consider a

common node, say, A1. It is easily seen that A1 belongs to two different components

of σ0, which contradicts our assumption. Indeed, one is β′ and another is β′′, if it

is irreducible too, or a line component of β′′, if it is reducible.

Next, assume that both β′ and β′′ are reducible: β′ = `1`
′
1, β′′ = `2`

′
2.Without

loss of generality assume that

(5.8) `1 6= `2, `1 6= `′2.

Note that `1 passes through at least one of the common nodes A1, A2, A3, say A1.

Indeed, if `1 passes through only A′ and A4 then we obtain that `′1 passes through

the three noncolinear nodes A1, A2, A3. Now, we have that A1 belongs either to `2
or `′2. In both cases, in view of (5.8), we have that A1 belongs to two different line

components of σ0, which is a contradiction.
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Thus we proved that A ⊂ β0, where β0 ∈ Π2. Next, in the same way as in Case

1, we show that β0 divides σ0 : σ0 = β0q, q ∈ Πk−2. Also we have that β0 is

uniquely determined by the nodes of A \ {A}, ∀A ∈ A.
Indeed, assume conversely that β0 is not uniquely determined by the nodes from

A \ {A0}, where A0 ∈ A. Therefore there are infinitely many conics β0 passing

through the nodes of A \ {A0}. Recall that for (any) A0 one can find a curve,

denoted by σ∗, of degree at most k, that passes through all the nodes of X and is

different from σ0. Then, as in Case 1, we readily get σ∗β0 = σ0β, where β ∈ Π2. This

implies that β0 is a component of σ0. Therefore σ0 has infinitely many components,

which is a contradiction.

Thus to enlarge the set X ⊂ σ0 to a maximal n-independent set Z = X ∪ A we

have to add all the nodes of A to the conic β0. Let us verify that the added nodes do

not belong to the component q. Suppose conversely that a node A0 ∈ A belongs to

β0 ∩ q. Then, in view of Lemma 1.4, let us move A0 to q \ β0 such that the resulted

set A remains n-independent. This is a contradiction, since now the nodes of A do

not belong to a conic. Indeed, the nodes A \ {A0} determine a unique conic and

the moved node is outside of it. Therfore, the factor r ∈ Πk−2 to which one cannot

add a new independent node is merely maximal with respect to X . Hence, r passes
through exactly d(n, k) nodes of X .

At the end, before establishing the division of the set Ā, it remains to consider

the case when the division may be not possible for all three curves σ0, σ′0, σ′′0 , i.e., the

case when the condition (C) does not hold. Then, we obtain three curves q, q′, q′′,

which are components of degree k− 1 of the curves σ0, σ′0, σ′′0 , respectively, passing

through all the nodes of X except possibly one.

Assume that q, q′, q′′, pass through all the nodes of X except E,E′, E′′, respectively.

First assume that two of these three nodes are different, say E 6= E′.We have that q

and q′ pass through all the nodes of the set Y := X \{E,E′}, #Y = d(n, k−3)+1.

If q = q′ then we have that E = E′, contradicting our assumption. If q 6= q′ then,

according to Theorem 2.2, all the nodes of Y except one belong to a (maximal)

curve µ of degree k − 2. Thus all the nodes of X except three belong to µ.

It remains to consider the case E = E′ = E′′. Then we have that q, q′, q′′, pass

through all the nodes of the set Y := X \ {E}, #Y = d(n, k − 2) + 2. We get from

Theorem 2.1 that q = q′ = q′′ =: q.

Next, in view of the condition (C), we get that σ = `q, σ′ = `′q, σ′′ = `′′, where

`, `′`′′ ∈ Π1. This contradicts the linear independence of σ, σ′σ′′, since we have that

E ∈ ` ∩ `′ ∩ `′′. �
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Proof of Theorem 2.4. It is easily seen that Theorem 2.4 follows from Proposition

4.1, Theorem 2.5 and Lemma 3.1. �

5.1. The division of the set Ā. Next let us establish the above mentioned

division of the node set Ā := A \ A4 in the case n ≥ k + 3. Note that this is

the case when we need the division.

Recall that each node of A belongs only to one component of the curve σ0. By

using induction on m one can prove easily the following

Lemma 5.1 (Proof of Th. 3, [5]). Suppose that a finite set of lines L and 2m nodes

lying in these lines are given. Suppose also that no node is an intersetion point of

two lines. Then one can divide the node set into m pairs such that no pair belongs

to the same line from L if and only if each line from L contains no more than m

nodes.

Thus the above mentioned division of the node set Ā into n − k − 2 pairs is

possible if and only if no n − k − 1 nodes of Ā0 := Ā \ {A∗, A′} are located in a

line component of σ0, where the nodes A∗ and A′ are the nodes associated with the

curve σ∗ and A4, respectively. Observe also that we may associate any two nodes

A∗ and A′ of A with σ∗ and A4,

Now notice that, in view of #Ā = 2(n − k − 1), there can be at most two

undesirable line components for the set Ā, i.e., lines containing at least n − k − 1

nodes from it. In this case a node from each line we assign as associated and leave

in the two lines ≤ n− k − 2 nodes.

Then assume that we have one undesirable line component for the set Ā, containing
≤ n−k nodes from it. In this case two nodes from this line we nominate as associated

and leave in the line ≤ n− k − 2 nodes.

Finally consider the case of one undesirable line component ` of σ0 with m ≥
n− k + 1 nodes. We have that

σ0 = `r`, where r` ∈ Πk−1.

Now we are going to move m − n + k nodes, one by one, from ` to the other

component r` such that the set Z := X ∪A remains n-independent. Again, in view

of Lemma 1.4, i), we require that each moved node belongs only to one component

of the curve σ0.

To establish each described movement, in view of Lemma 1.4, ii), it suffices

to prove that during this process each node A ∈ ` ∩ A, has no n-fundamental

polynomial for which the curve r` is a component. Suppose conversely that

(5.9) p?A = r`s, s ∈ Πn−k+1.
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Now, we have that s vanishes at ≥ n − k nodes in ` ∩ A \ {A}. Indeed, the nodes

of the set A in the line ` do not belong to another component. Therefore, r` does

not vanish at these nodes and hence, in view of (5.9), s vanishes. According to the

condition (C) r` does not vanish also at least at two nodes from `∩X , and hence s

vanishes there too. Thus the number of zeroes of s in the line ` is greater or equal

to n−k+ 2 and s together with p?A vanishes at the whole line `, including the node

A, which is a contradiction.

It remains to note that there will be no more undesirable lines, except `, in

the resulted set A, after the described movement of the nodes, since we finish by

keeping exactly n−k nodes in `∩A and outside of it there are only n−k−2 nodes.

6. An application to bivariate interpolation

A GCn set X in the plane is an n-poised set of nodes, where the fundamental

polynomial of each node is a product of n linear factors. The Gasca–Maeztu conjecture

states that any GCn-set possesses a subset of n+ 1 collinear nodes.

Recall that a node A ∈ X uses a line ` means that ` is a factor of the fundamental

polynomial, i.e., p?A = `r for some r ∈ Πn−1.

It was proved by Carnicer and Gasca in [1], that any line passing through exactly

2 nodes of a GCn set X can be used at most by one node from X . Next, it was

proved in [8] that any used line passing through exactly 3 nodes of an n-poised set

X can be used either by exactly one or three nodes from X . In [5] was proved that

a line ` passing through exactly 4 nodes can be used at most by six nodes from X .
Moreover, if it is used by at least four nodes then it is used by exactly six nodes

from X .
Below we consider the case of lines passing through exactly 5 nodes.

Corollary 6.1. Let X be an n-poised set of nodes and ` be a line which passes

through exactly 5 nodes. Then ` can be used at most by ten nodes from X . Moreover,

if ` is used by at least seven nodes from X then it is used by exactly ten nodes from

X . Furthermore, if it is used by ten nodes, then they form a 3-poised set. In the

latter case, if X is a GCn set then the ten nodes form a GC3 set too.

Proof. Assume that `∩X = {A1, . . . , A5} =: A. Assume also that the seven nodes

in B := {B1, . . . , B7} ∈ X use the line ` : p?Bi
= ` qi, i = 1, . . . , 7, where qi ∈ Πn−1.

The polynomials q1, . . . , q7, vanish at N − 12 nodes of the set X ′ := X \ (A∪B).

Hence through these N−12 = d(n, n−4)+3 nodes pass seven linearly independent

curves of degree n − 1. By Theorem 2.4 there exists a maximal curve µ of degree

n−4 passing through N−15 nodes of X ′ and the remaining three nodes denoted by
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C1, C2, C3, are outside of it. Now, according to Proposition 1.5, the nodes C1, C2, C3,

use µ : p?Ci
= µri, ri ∈ Π4, i = 1, 2, 3.

These polynomials ri have to vanish at the five nodes of A ⊂ `. Hence ri =

`γi, i = 1, 2, 3, with γi ∈ Π3. Therefore, the nodes C1, C2, C3, use the line ` :

p?Ci
= µ`γi, i = 1, 2, 3. Hence if seven nodes in B ⊂ X use the line ` then there

exist three more nodes C1, C2, C3 ∈ X using it and all the nodes of Y := X \ (A ∪
B ∪ {C1, C2, C3}) lie in a maximal curve µ of degree n− 4 :

(6.1) Y ⊂ µ.

Next, let us show that there is no eleventh node using `. Assume conversely that

except of the ten nodes in S := {B1, . . . , B7, C1, C2, C3}, there is an eleventh node

D using `. Of course we have that D ∈ Y.
Then we have that the seven nodes B1, . . . , B6 and D are using ` therefore,

as was proved above, there exist three more nodes E1, E2, E3 ∈ X (which may

coincide or not with B7 or C1, C2, C3) using it and all the nodes of Y ′ := X \ (A∪
{B1, . . . , B6, D,E1, E2, E3}) lie in a maximal curve µ′ of degree n− 4.

We have also that

(6.2) p?D = µ′q′, q′ ∈ Π4.

Now, notice that both the curves µ and µ′ pass through all the nodes of the set

Z := X \ (A ∪ B ∪ {C1, C2, C3, D,E1, E2, E3}) with #Z ≥ N − 19.

Then, we get from Theorem 2.1, with k = n− 5, that N − 19 = d(n, n− 5) + 2

nodes determine the curve of degree n− 4 passing through them uniquely. Thus µ

and µ′ coincide.

Therefore, in view of (6.1) and (6.2), p?D vanishes at all the nodes of Y, which is

a contradiction since D ∈ Y.
Now, let us verify the “Moreover” statement. Suppose ten nodes in S ⊂ X use

the line `. Then, as we obtained earlier, the nodes Y := X \ (A∪ S) are located in

a maximal curve µ of degree n− 4. Therefore the fundamental polynomial of each

A ∈ S uses µ and hence ` :

p?A = µ`qA, where qA ∈ Π3.

It is easily seen that qA is a 3-fundamental polynomial of A ∈ S. �
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