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A well known theorem of relativistic hydrodynamics states that the stream-lines of an 
isentropic perfect fluid are the future-pointing timelike (FPT) curves extremizing the integral 
J = ^fds, where f is the so-called index function and s the proper time on the world line of 

the fluid particle. The integral being taken over all possible FP1 curves with regular representations 
x'=x'(s) joining the fixed end events Et, Er The purpose of this note is to show that the stream
lines of an adiabatic perfect fluid can likewise be regarded as extremizing curves of the functional 
J provided the class of admissible curves consists of those FPT curves satisfying the side condition 
u dtS=0 ,u unit 4-velocity and S specific proper entropy of the fluid, with first end point fixed 

and second end point variable.
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1. Introduction. In relativistic hydrodynamics, the class of isentropic 
perfect fluids, i.e. those for which the specific proper entropy S takes a 
value 50 independent of the space-time coordinates x1 (i = 1, 2, 3, 4) 
throughout the fluid, is of special interest since the stream-lines of such 
fluids are known to satisfy the variational principle (e.g. [1-3])

J = J/ Jg„xrxs ds -> extremum (xr=dxr/ds) (լյ 

for fixed end events.
The integral is taken over all possible future-pointing timelike (FPT) 

curves having regular representations x' = x'(s), տ^ճտ^տշ, in terms of 
proper time, i.e. curves x'(s) with a nonvanishing set of s-derivativ& x' 
equal to the unit 4-velocity u1, u'u/ = 1, and joining the fixed end events

Er The positive scalar function f entering the integrand ե the so-called 
index function of the fluid and is regarded as a known function of position 
in space-time; it is given by [2b, 3]

/=l+c"2fs+yj, (2)

where p is the pressure, r the proper material density and e the internal 
energy density; the proper energy density p of the fluid being set equal to
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P = r(1 + ?՜) (3)
An important property of the functional J is that its value is independent 

of the particular parameter chosen, a consequence of the homogeneity of the 
integrand in the variables x'. The corresponding Euler necessary condition 
for an extremum deduced from the first variation of the functional J assumes 
the form of the equation of motion of an isentropic perfect fluid

= (4)

The differential system (4) expresses the fact that the stream-lines are 
geodesics of the metric f2ds2, conformal to the metric ds2 of the space-time1.

A more general class of fluids consists of those for which the specific 
proper entropy 5 is constant only along each stream-line, constraint trans
lated into

u'diS = 0, (5)

such fluids are said adiabatic. By virtue of the equation of continuity, 
condition (5) is equivalent to the equation, stating the conservation of 
proper material density [2b]

V/(n/')=0. (6)

The equation governing the motion of an adiabatic perfect fluid can be 
written in the form [2b,3] 

ul u* «i = 0, (7)

where T is the proper temperature of the fluid.
The question which naturally arises is whether the functional J can be 

used to formulate an extremum principle such that along any FPT curve 
extremizing the integral J eq. (7) holds.

In this note we propose to show that if the class of admissible curves 
consists of those FPT curves satisfying the side condition (5), with the first 
end event fixed and the second end event variable, then the extremals of 
the functional J satisfy a differential equation which agrees with the differ
ential system (7) provided we identify the Lagrange multiplier associated 
with the constraint (5), or more precisely its s-derivative, as the proper 
temperature T divided by c2.

2. Extremum principle for the stream-lines of an adiabatic perfect 
fluid. Our problem is that of finding the necessary condition, known as the 
multiplier rule, which is imposed on the curve g of class C1 with regular

' This property of the stream-lines in the case of a perfect fluid seems to have been first established 
by Eisenhart (Trans. Amer. Math. Soc. 26, 205, 1924) using a different approach.
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representation in terms of proper time 
g:x‘= x‘(s'), st^s£s2 (* = !,...,4) (8)

in order that it furnishes an extremum to the functional

J = ds (x' = dx‘Ids), (9)

relative to neighboring admissible curves. The class of admissible curves 
consists of those FPT curves satisfying the side conditions

h(x,x) = Jg(lxlxJ =1, (10)

^2(x,x) = x‘ d,S = 0. (10')

Curves satisfying differential side conditions of the form (10) are said 
differentially admissible.We further suppose that the matrix ||^ |, A = 1,2 
has rank 2 along g. A variational problem of this kind is designated in the 
calculus of variations as a parametric problem of Lagrange, a special case 
of the problem of Bolza whose theory in Riemannian space has been first 
discussed by Hestenes [4]. It should be noted that the equality constraint 
(10) not only specifies the parameter to be used but it also expresses the 
timelike character of the curves admitted to competition. A regular repre
sentation of g in terms of an arbitrary parameter 9, with 0(s) > 0, would 
yield an inequality constraint [5]. It remains to specify under which end 
conditions the functional J is to be extremized. In order that g be a 
"normal” extremizing curve, we have to treat an extremum problem with 
variable end point, i.e. the admissible curves neighboring g cannot have both 
their end points fixed respectively at the initial and final end points of g 
as it is the case for the variational principle satisfied by the stream-lines of 
an isentropic perfect fluid. The definition of normality will be given when 
discussing the so called multiplier rule. For variable-endpoint problems this 
term refers to both the Euler necessary condition and the transversality 
condition. If we consider our problem as a non-parametric problem in the 
space of coordinates (s, x1) the above conditions follow from the corre
sponding conditions in non-parametric form [4,6a]. Adopting Morse's for
mulation of end conditions [6a, b], let us denote points near the initial and 
final end points of the extremal g: x1 = x'(s), regarded as a curve in the 
space (s, x), by (sA,xu')> A = l, 2. Without loss of generality we may 
assume that the class of terminally admissible curves neighboring g consists 
of those FPT curves whose end points (sA,xu) are respectively given by 

?=0, x'1=xn(s1)=fl;? = S2(Q1,...,or), x/2=x%1։...,ar)(lsr<;4+l)(ll)

For values of (o) near (0). It assumed that the functions appearing in 
(11) are of class C2 and that for (o) = (0) they give the end point of g, 
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i.e. s2(0) =s2, x'2(0) = x'(s2) = P2
We see that while (s^x11) has the prescribed value corresponding to the 

initial end value of g(sj = 0, ^), the end condition leaves the value of s2 
undetermined in order to comply with the relativistic demand of the path 
dependence՜ of proper time.

It follows from the non-parametric theory (e.g. [7-9]) that if g affords 
an extremum to the functional J there exists a constant Xo and two 
functions X^(s), /4=1, 2 not all identically zero if Xq = 0; such that g 
satisfies the Euler-Lagrange (EL) equations

(a) P^-^-F^O, (4) *1(x,x)-l = 7^x/x>-l = 0, (n)

(c) *2(x,x) = x/a,5 = 0,

where
F = *o filguiW + -1)+M»)fa • d3)

Moreover the following transversality relation holds
(/- x'Fil)ds2+ F^dx՝2 = 0. (14)

Taking into account the very useful identity

F+X1(s) = x/F?, (15)

which follows from the relation F(x, kx, Xb X2) = X[F(x, x, Xb X2)+ XJ, the 
transversality equation reduces to

-klds2+F^dx12 = 0, (14՛)

where (s, x, x) must be taken on g at the second end point of g. ds1 and 
dx12 are the differentials of the functions appearing in (11) evaluated at 
(ct) = (0), and (14') is regarded as an identity in these differentials. If there 
are no nontrivial multipliers Xq, XA(s) (A= 1, 2) with Xq = 0 the admissible 
curve is called normal, otherwise abnormal. In the normal case we can 
always replace a nontrivial set of multipliers by 1, X^(s)/X0 or realize the 
same end by simply setting Xo = 1. The multipliers Xq = 1, X^(s) are then 
unique. A geometrical interpretation of normality has been given by Morse 
and Myers [7]. The importance of this property resides in the fact that if 
the admissible curve C is normal there are always neighboring curves be
longing to the set of admissible curves sb that the extremum problem is 
never trivial [8]. It is readily proved that under arbitrary transformations of 
space-time coordinates Pt in eq. (12) will transform as the covariant com
ponent of a 4-vector and the first member of the identity (14) will be an 
invariant provided the multipliers Xq, X^ belonging to g՛ are invariants. 
Lagrange multipliers are often treated inadequately in the physical literature. 
In particular the function F-with Xq arbitrarily chosen as unity is simply 
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presented without a proof to exclude the abnormal case.
Making use of formula (15), the EL equation (12a) and the transversality 

condition (14) can be written explicitly as
Xo ful Vt u։- \odt Uiu‘)+ V£ ut+ i.x(s)ui+ i^spi S = 0 (16) 

and
- kl(s2)ds2+ [Xo f+ ^x(s)Ui+ X2(s)3, dx'2 = 0 (17)

where u' = x1 is the unit 4-velocity and the subscript 2 indicates that 
(s, x, x) in the functions appearing in the square bracket is to be taken on 
g at its second end point Multiplying eq. (17) by uf and noting that 
ul V£ ut = 0, u'u, being constant (=1), we obtain

X։(s) = 0 or X] (s) = const. (18)

Further useful informations on Xj and X2 will come from the transversality 
condition.

Since the curve g : x1 = x'(s) joining the points

?(0) = 0 х'1(0) = х'(51)=Л; 52(0),x/2(0) = x/(s2) = P2 (19) 

in (s, x) space furnishes an extremum for the integral J on the class of 
admissible curves with end conditions (11), it will furnish an extremum com
pared to differentially admissible neighboring curves with end points (О,Д) 
and (s2(o),P2). The transversality condition with dx12 =0 then yields

X1(s2)=0. (20)

Accordingly, as a consequence of the homogeneity of F and of the 
transversality condition, we see that if g is to extremize the functional J the 
multiplier Xj associated with g must be constant and equal to zero. Sub
stitution of X։ = 0 in eqs (16) and (17) gives

Xq jul V (Uj— Xq3£ fig/ — UjUl)+ X2(s)3, S — 0, (21)

. [Xo/+X2(s)3/5]2dx/2=O. (22)

Comparison of the EL equation (21) with eq. (7) defining the stream
lines of an adiabatic perfect fluid shows that Xo must be different ftom zero, 
i.e. the extremal g must be normal, if-these two equations are to coincide. 
Let us show that this is indeed the case for our extremum problem with 
variable end point. Substitution of Xo = 0 in eqs (21) and (22) gives 
respectively

i2(s)d։S = 0 (i = l,...,4), (23)

Ms^^x'2 =0, (24).

where the subscript q attached to s2 or x/2 means differentiation with 
respect to aq and evaluation at a = 0.
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These equations require that X2 be constant and equal to zero.
Accordingly if Xo = 0 then X2 = X։ = 0, but the multiplier rule assures that 

values for these multipliers exist that are not all zero; hence if there is an 
extremizing curve g it must be normal and we can set Xq = 1. This conclusion 
remains valid in the special case where just one of the space-time coordinates 
x12 (i=l, 2, 3, 4), say x4z, is left undetermined while the space coordinates 
xa2 (a = 1,2,3) are set equal to the space coordinates x“(s2) of the final end 
point P2 of g, provided we assume 34 5 different from zero. If the admissible 
curves neighboring g have their final end events (xJ2(ct) x42(ct)) fixed at P2, 
it turns out that Xo can have the value zero. Indeed, one easily verifies that 
the multiplier rule ensures the existence of an abnormal set of multipliers 
Xo = 0, Xj = 0 and X2 = const # 0. Returning to eq. (21) and setting Xo = 1 
the EL equation now reads

= 0 • (25)

This agrees with eq. (7) provided we identify X2(s) with T/c2 . The 
multiplier X2 or more exactly its s-derivative X2 thus acquires a physical 
significance.

3. Conclusion. Although the respective stream-lines of an adiabatic and 
isentropic perfect fluid extremize the same functional J, the timelike curves 
admitted to competition satisfy different side and end conditions so that 
we have to deal with different variational principles. For an adiabatic perfect 
fluid, the class of admissible curves consists of those timelike curves along 
which the specific proper entropy S is constant and whose second end 
points are undetermined. Translating these constraints into equations, we 
have seen that the derivation of the equation of motion from a variational 
principle requires the use of the transversality condition. This condition 
furnishes further informations on the multipliers not obtainable from the 
Euler equations. For instance', without the use of this condition, one 
cannot prove that the multiplier associated with the constraint specifying 
the timelike nature of the 4-velocity, -Ju'u,- = 1, is a constant equal to zero; 
the only information furnished by the Euler equation is the constancy of 
the corresponding multiplier.
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ОБ ОДНОЙ ТЕОРЕМЕ РЕЛЯТИВИСТСКОЙ 
ГИДРОДИНАМИКИ

Р.А.КРИКОРЯН

Хорошо известная теорема релятивистской гидродинамики гласит, 
что линиями тока изоэнтропической идеальной жидкости являются 
направленные к будущему временоподобные (йДигеротйгщ ЬшеНке, РРТ) 
кривые, сообщающие экстремум интегралу 7 = , где / - так
называемая индекс-функция, ах- соответствующее время на мировой 
линии частицы. Интеграл берется по всевозможным РРТ кривым с 
регулярными представлениями х' = х։(х), соединяющими фиксированные 
конечные события £,, Ег Цель данной заметки показать, что линии 
тока адиабатической идеальной жидкости могут подобным образом 
рассматриваться как кривые, сообщающие экстремум функционалу 7 
при условии, что класс допустимых кривых состоит из РРТ кривых, 
которые удовлетворяют условиям и‘ д/ 5 = 0 , где и1 - единичная 
4-скорость, а 5 - соответствующая удельная энтропия жидкости, когда 
первая конечная точка фиксирована, а вторая - переменна.
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