АСТРОФИЗИКА

TOM 48

ФЕВРАЛЬ, 2005

ВЫПУСК 1

УДК: 524.3:520.34

РЕЗУЛЬТАТЫ АНАЛИЗА ФОТОЭЛЕКТРИЧЕСКИХ КРИВЫХ БЛЕСКА V448 ЛЕБЕДЯ С УЧЕТОМ ГЕОМЕТРИИ РОША

М.И.КУМСИАШВИЛИ¹, Н.Т.КОЧИАШВИЛИ¹, Г.ДЖУРАШЕВИЧ² Поступила 3 августа 2004 Принята к печати 15 ноября 2004

В статье проанализированы трехшветные фотоэлектрические UBV кривые блеска тесной двойной системы V448 Лебедя, полученные в Абастуманской астрофизической обсерватории с помощью нового кода Джурашевича. Вместе с тем, в последнее время в литературе появилось новое отношение масс компонентов, которое является фундаментальным параметром при определении абсолютных элементов системы. Полученные нами параметры значительно отличаются от ранее опубликованных вследствие применения нового значения отношения масс компонентов. Положение компонентов V448 Лебедя на диаграмме масса - logg показывает, что система, подобно XZ Сер и V382 Суg, находится в фазе после быстрого обмена масс.

1. Введение. Анализ фотоэлектрических наблюдений V448 Лебедя, проведенных в Абастуманской астрофизической обсерватории [1-3], и сравнение результатов этих фотоэлектрических наблюдений со спектральными данными других авторов [4] привели нас к заключению о необходимости обработки нашего наблюдательного материала современными неклассическими методами, которые интенсивно развивались в последние годы. Кроме того, в последнее время было уточнено значение отношения масс компонентов [5], которое является фундаментальным параметром при определении абсолютных элементов системы.

Анализ фотоэлектрических наблюдений привел нас к выводу о возможности существования протяженной полупрозрачной оболочки вокруг главной звезды [1]. В работе [4] мы показали, что наиболышее влияние газовые потоки оказывают на кривую блеска в фазовом интервале 0°.5-1°.0. Аналогичное заключение было сделано на основе спектроскопических данных других авторов, которые указывают на сложный характер перетекания газовых потоков в системе V448 Лебедя [6,7].

Мы решили проанализировать наши кривые блеска с помощью метода Джурашевича. Этот метод представляет собой обратную задачу решения кривых блеска для модели Роша с двумя горячими участками, расположенными в противоположных сторонах массивного компонента. Такое допущение вполне приемлемо как по нашим фотометрическим данным, так и по спектральным данным других авторов. 2. Описание методики. Для анализа асимметричных кривых блеска мы использовали новую версию [8] кода Джурашевича [9], основанную на модели Роша и принципах Вильсона и Девиннея [10]. Анализ кривых блеска был сделан с использованием метода обратной задачи [11], основанного на модифицированном алгоритме Маркардта [12]. Оптимальные модельные параметры получаются минимизацией $\sum (O-C)^2$, где O-Cразница между наблюдаемой (*LCO*) и синтетической (*LCC*) кривыми блеска для данной орбитальной фазы. Минимизация Σ осуществляется методом последовательных приближений модельных параметров. Некоторые из этих параметров могут быть определены априори независимым путем, тогда как остальные находятся решением обратной задачи. Таким образом, метод обратной задачи дяет нам оценки параметров системы и их стандартные ошибки.

Согласно этому методу, размер звезды в указанной модели определяется с помощью коэффициентов заполнения критических полостей Роша $F_{h,c}$ главного и вторичного компонентов соответственно, которые показывают, до какой степени компоненты системы заполняют свои соответствующие критические полости. Индексы h и c относятся к горячему и холодному компонентам. В случае синхронного вращения компонентов эти коэффициенты выражаются через отношение полярных радиусов звезд $R_{h,c}$ к соответствующим полярным радиусам критических полостей Роша, т.е. $F_{h,c} = R_{h,c}/R_{Rochence}$.

При анализе кривых блеска мы избегали несколько спорную практику образования нормальных точек и включали все наблюдения. Для достижения блее надежных оценок модельных параметров в программе анализа кривых блеска мы применяли достаточно плотную координатную сетку, имеющую 72 х 144 = 10368 индивидуальных элементарных ячеек для одной звезды. Интенсивность и угловое распределение излучения индивидуальных ячеек определяются с помощью звездной эффективной температуры, потемнения диска к краю, гравитационного потемнения и эффекта отражения в системе.

Для отношения масс компонентов мы использовали новое пересмотренное значение $q = m_c/m_b = 0.555$, определенное Харрисом и др. [5] из решения кривых лучевых скоростей. Исходя из спектрального типа О 9.5 температура горячего компонента была принята равной $T_b = 30000$ К.

Следуя фон Цейпелю [13] и Раферту и Твигту [14], за коэффициенты гравитационного потемнения были приняты $\beta_{h,c} = 0.25$, соответственно звездной температуре. Эти значения соответствуют закону фон Цейпеля для полностью излучающих оболочек. Следовательно, для альбедо компонентов по тому же критерию мы приняли значения $A_{h,c} = 1.0$, соответствующие полному переизлучению.

Чтобы избежать возможного отрицательного влияния неправильной оценки коэффициентов потемнения диска к краю на другие параметры в обратной задаче, в настоящей работе были использованы нелинейные законы потемнения диска к краю. Согласно Ван Хамме [15], чьи таблицы мы использовали, в этой программе применялось приближение квадратного корня для звезд горячее 8000° К.

Эти приближения могут быть записаны в следующей форме:

$$I_{\lambda}(\mu) = I_{\lambda}(1) \left(1 - c_{\lambda}(1-\mu) - d_{\lambda} \left(1 - \sqrt{\mu} \right) \right), \qquad (1)$$

где c_{λ} и d_{λ} представляют собой удельные коэффициенты квадратного корня потемнения к краю в соответствующей полосе пропускания и $\mu = \cos \gamma$. $I_{\lambda}(1)$ - удельная интенсивность в этой полосе пропускания в центре звездного диска, а γ - угол между лучом зрения и направлением выходящего потока. Величины коэффициентов потемнения к краю в каждом приближении получаются из современных значений эффективной температуры звезды T_{λ} и ускорения силы тяжести на поверхности звезды logg с помощью билинейной интерполяции [16] по таблицам Ван Хамме [15].

Мы ожидали, что взаимные приливные эффекты синхронизируют вращательные и орбитальные периоды звезд системы. Поэтому в обратной задаче мы приняли $f_{h,c} = \omega_{h,c}/\omega_k = 1.0$ для коэффициентов несинхронного вращения, где $f_{h,c}$ - отношение угловой скорости вращения $\omega_{h,c}$ к скорости кеплеровского орбитального обращения ω_k . Представленные здесь результаты были получены в приближении черного тела для излучения компонентов системы.

Итерационный процесс оптимизации сходится очень быстро к полуразделенной конфигурации. После предварительного анализа кривых блеска мы получаем более холодный вторичный компонент, заполняющий свою критическую полость Роша, и более горячий главный компонент, находящийся довольно глубоко в своей критической полости Роша. Из-за незначительной асимметрии кривых блеска и небольшого различия в высотах последовательных максимумов логично предположить о существовании активного горячего участка в экваториальной области более массивного главного компонента. Этот участок, вероятно, является результатом падения газовой струи, с помощью которой осуществляется перенос материи со вторичного компонента через точку Лагранжа L, на главный. В нашей программе эта активная область аппроксимируется круглым пятном с температурным контрастом относительно окружающей фотосферы $A_s = T_s/T_s$, угловым радиусом θ_{SI} , долготой λ_s и широтой φ₅ центра пятна. Долгота λ₅ отсчитывается по часовой стрелке от оси X, линии, соединяющей центры звезд, в пределах 0° - 360°, если смотреть с "северного" полюса. Широта Ф_S отсчитывается от 0° на экваторе звезды (орбитальная плоскость) до +90° к "северному" (+Z) и до -90°

к "южному" (-Z) полюсу.

После достижения первой сходимости мы включаем в итерационны процесс оптимизации также свободные параметры, относящиеся пятнам. Так как с газовой динамикой в системе сталкиваемся в основно в орбитальной плоскости, можно допустить, что широта горячего участи пятна $\varphi_S \approx 0^\circ$, что уменьшает число свободных параметров в обратно задаче анализа кривых блеска.

Таблица

Величина	<i>U</i> -фильтр	В-фильтр	<i>V</i> -фильтр
n	545	545	545
$\sum (O-C)^2$	1.6165	0 5687	0.7550
σ	0.0545	0.0323	0.7350
$q = m_c/m_s$	0.555	0.0525	0.0572
T,	30000		
$\beta_{k} = \beta_{c}$	0.25		V.S. T. OTTO A DOUBT , SAN
$A_{h} = A_{r}$	1.00	The second second s	er fail innuseeit
$f_h = f_c$	1.00	PART TROUBLE IN	the manufacture with
Ası	2.04±0.05	2.03±0.04	2.02+0.05
0 ₅₁	30.7±0.8	30.5±0.6	30.8±0.8
ASI	267.9±2.5	268.3±1.8	268.8+2.3
φ _{s1}	0.0	0.0	0.0
A _{S2}	1.54±0.02	1.54±0.02	1.55±0.02
052	60.0±1.5	58.8±1.0	59.1±1.2
~S2	100.5±1.8	100.0±1.2	99.2±1.6
Ψ <i>S</i> 2	0.0	0.0	0.0
F	21060±174	21355±130	21307±178
F	0.370±0.004	0.367±0.002	0.368±0.003
1	1.000±0.005	1.000±0.003	1.000±0.003
C.	09./11.9	· 89.5±6.8	89.9±7.7
d.	-0.098	-0.134	-0.130
c.	-0.038	0.078	0.615
d	0.644	-0.080	-0.105
Ω,	7 211	0./1/	0.679
Ω	2 980	7.270	7.253
R,	0.150	2.960	2.980
R	0.308	0.308	0.149
$L_{\star}/(L_{\star}+L)$	0.370	0 336	0.308
$M_{\star}[M_{\odot}]$	25.26±0.03	0.550	0.320
$M_c[M_{\odot}]$	14.02±0.03	TT T ONE O	and B martin
$R_{h}[R_{\odot}]$	7.47±0.08	Salar Barner	
$R_c[R_{\odot}]$	16.42±0.03	and the manager -	A COLORED W
logg	4.09±0.03	A CONTRACTOR	The Advertise of the
logg	3.15±0.03	and the manual	
M bol	-6.73±0.04	ALL ALL ON THE TAX	A second second
IN bol	-6.95±0.06	T STOROLU - 17	Loss Constanting
$a_{arb}[R_{\odot}]$	49.87±0.04	in later of the	

АБСОЛЮТНЫЕ ПАРАМЕТРЫ V448 Суд

Примечания к табл.1. *n* - число наблюдений, $\Sigma(O-C)^2$ - окончательные суммы квадратов разностей между наблюдемыми и синтетическими кривыми блеска, σ - стандартное отклонение наблюдений, $q = m_c/m_a$ - отношение масс компонентов, T - температуры более горячего главного и более холодного вторичного компонентов, β - $f = f_c$ - коэффициенты гравитационного потемнения, альбедо и коэффициенты несиохронного врашения более горячего главного и более холодного компонентов соответственно, $A_{1,n} = T_{s1,s2}/T_a$ - температуры коэффициенты пятен, $\theta_{51,52}$; $\lambda_{51,52}$ и $\varphi_{51,52}$ - угловые размеры горячих пятен, их долготы и широты (в градусах дуги). - коэффициенты заполнения для критических полостей Роша компонентов, *i* - наклонение орбиты (в градусах дуги), $\alpha_{a,c}$ - нелинейные коэффициенты потемнения диска компонентов, $R_{a,c}$ - полярные раднусы звезд в единицах расстояния между центрами компонентов, $L_a/(L_a + L_c)$ - светимость более горячей звезды (включая пятна), $M_{a,c}[M_{0}]$, $R_{a}[R_{0}]$ - массы и средние раднусы звезд в солнечных солнечские величны зфорективного ускорения грамсти звезд, $M_{a,c}$ - абсолютные болометрические величны компонентов V448 Лебедя и $a_{a,c}[R_{0}]$ - большая полуось орбиты в единицах солнечного радиуса.

Относительно хорошее согласие с наблюдениями было достигнуто в предположении наличия значительного по размерам горячего участка на поверхности более массивной (горячей) звезды $(A_{S1} = T_{S1}/T_k \sim 2, \theta_{S1} \sim 31^{\circ}$ и $\lambda_{S1} \sim 268^{\circ}$). Степень согласия с наблюдениями можно улучшить допущением дополнительной активной области на поверхности более массивной (горячей) звезды. Оптимальное решение обратной задачи (см. табл.1) дает эту дополнительную активную область в виде горячего участка в экваториальной зоне звезды $(A_{S2} = T_{S2}/T_{hot} \sim 1.55, \theta_{S2} \sim 59^{\circ}$ и $\lambda_{S2} \sim 100^{\circ}$). Этот участок расположен в том месте на поверхности звезды, которое почти противоположно первому. Физическая природа этого дополнительного участка не ясна.

Следует сказать, что модель с аккреционным диском вокруг главного компонента [17] также может быть использована при интерпретации наблюдаемых кривых блеска системы. Эта модель также требует двух активных горячих участков, расположенных на противоположных боковых сторонах диска. Но здесь мы опять сталкиваемся с проблемой правдоподобности указанной модели с физической точки зрения.

3. Результаты анализа кривых блеска. Параметры, полученные из анализа кривых блеска, приведены в табл.1. Первые три строки таблицы дают число наблюдений *n*, окончательные суммы квадратов разностей наблюдаемых (*LCO*) и синтетических (*LCC*) кривых блеска

 $\sum_{i=1}^{n} (O_i - C_i)^2$ и стандартные отклонения этих разностей $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (O_i - C_i)^2}{(n-1)}}$

В табл.1 даны также характеристики пяна (температурный коэффициент пятна $A_s = T_s/T_{hot}$, угловой радиус θ_s и долгота λ_s). Определение этих параметров основано на одновременной подгонке к имеющимся кривым блеска в фотометрических полосах U, B, V.

Наконец, в табл.1 мы представляем некоторые абсолютные параметры двойной звезды V448 Суд. Они были получены из отношения масс

М.И.КУМСИАШВИЛИ И ДР.

компонентов $q = m_{cool}/m_{hor} = 0.555$. Погрешности оценок параметров появляются из-за применения нелинейного метода наименьших квадратов, на котором основан метод обратной задачи. Наши оценки погрешностей этих параметров выведены из формальных погрешностей, возникающих

Рис.1. Наблюденные и синтетические кривые блеска тесной двойной системы V448 Суд.

из-за использования нелинейного метода анализа кривых блеска, и из различий индивидуальных U-, B- и V- решений. С учетом погрешностей исходных параметров модели, которые рассматриваются как фиксированные в методе обратной задачи, действительные погрешности параметров будут определенно больше (приблизительно в 2-3 раза). Основной вклад вносят значительные погрешности в определении эффективной температуры главного компонента на основе его спектрального типа. Поэтому погрешность температуры вторичного компонента значительно больше табличных значений, полученных в предположении, что температура главного компонента является точной. Учтены также погрешности определения звездных радиусов (через коэффициенты заполнения), погрешности же масс не учитываются, хотя они, конечно, вносят вклад в действительные планки погрешностей оценок параметров могут оказаться больше величин, данных в табл.1.

Если сравнить полученные величины фундаментальных параметров системы ($M_{hor} \sim 25 M_{\odot}$ и $M_{cool} \sim 14 M_{\odot}$ при q = 0.555) с ранее опубликованными значениями, то можно заметить значительные различия, которые являются результатом применения различных значений отношения масс компонентов.

На рис.1 показана оптимальная подгонка синтетических кривых блеска (*LCC*), полученных решением обратной задачи для индивидуальных кривых блеска, к наблюдательным (*LCO*). Даны также конечные разности (*O-C*) между наблюдаемыми и оптимальными синтетическими кривыми блеска. Кривые блеска нормированы относительно светимости в орбитальной фазе 0.25.

4. Модель системы V448 Cyg. На рис.2 дано изображение модели Роша для системы V448 Cyg, полученное с помощью параметров, определенных из анализа кривых блеска. Этот рисунок дает представление о

Рис.2. Модель V448 Суд в орбитальной фазе 0.70.

том, как могла бы выглядеть тесная двойная система в орбитальной фазе 0.70.

Как видно, модель достаточно сложна. Дело в том, что поведение кривой блеска в максимумах не удается хорошо описать без предположения о наличии горячих пятен, расположенных на противоположных сторонах главного компонента. Более горячий и меньший по размеру участок можно интерпретировать как результат падения газового потока со звезды, заполняющей полость Роша. Другой горячий участок на противоположной стороне звезды с меньшей температурой и большим размером, вероятно, возникает из-за какого-то перераспределения энергии на поверхности звезды.

Следует отметить, что полученные значения ускорения силы тяжести хорошо согласуются с данными других авторов [5].

5. Заключение. По полученным данным мы попытались определить место компонентов V448 Лебедя на диаграмме масса logg (рис.3), на которой нанесены также эволюционные треки (сплошные линии) и изохроны (штрихованные линии) для одиночных звезд из работы Шеллера и др. [18]. Положения на диаграмме главного (квадратик) и вторичного (треугольник) компонентов показывают, что V448 Лебедя, как и другие подобные системы (XZ Сер, V382 Суg) находится в фазе после быстрого обмена масс.

Рис.3. Положение компонентов V448 Лебедя на диаграмме масса - log g.

Качественно система V448 Суд является результатом быстрого обмена масс в позднем случае А или раннем случае В, когда происходит значительно более медленное перетекание вещества со вторичного компонента на главный.

- ¹ Грузинская национальная астрофизическая обсерватория им. академика Е.К.Харадзе, e-mail: mzcherkez@yahoo.com, dianoz@yahoo.com
- ² Астрономическая обсерватория, Белград, Сербия, e-mail: gdjurasevic@aob.bg.ac.yu

RESULTS OF AN ANALYSIS OF PHOTOELECTRIC LIGHT CURVES OF V448 CYG TAKING INTO ACCOUNT THE ROCHE GEOMETRY

M.I.KUMSIASHVILI¹, N.T.KOCHIASHVILI¹, G.DJURAŠEVIČ²

Three-colour photoelectric UBV light curves of the close binary system V448 Cyg obtained at the Abastumani Astrophysical Observatory are analyzed by a new version of the Djuraševic code. Having used a revised value of the mass ratio of the components of the system, we obtained new values of the absolute elements of the system V448 Cyg, which are significantly different from the previous ones. The location of the components of V448 Cyg in the mass - logg plane shows that the binary system like XZ Cep and V382 Cyg is in the stage after rapid mass transfer.

Key words: (stars:) binaries: close: individual: V448 Cyg

ЛИТЕРАТУРА

- 1. М.И.Кумсиашвили, Кандидатская диссертация, Тбилиси, 1969.
- 2. М.И.Кумсиашвили, Н.Т.Кочиашвили, Бюлл. Абастуманской астрофиз. обсерв., 76, 2003.
- 3. М.И.Кумсиашвили, Н.Т.Кочиашвили, Астрофизика, 46, 249, 2003.
- 4. М.И.Кумсиашвили, Н.Т.Кочиашвили, Бюлл. Абастуманской астрофиз. обсерв., (в печати).
- 5. T.J.Harries, R.W.Hilditch, G.Hill, Mon. Notic. Roy. Astron. Soc., 285, 277, 1997.
- 6. Л.В.Глазунова, В.Г.Каретников, С.В.Куценко, Астрон. ж., 63, 702, 1986.

- 7. Г.В.Волкова, Л.В.Глазунова, А.Е.Тарасов, Астрон. ж., 70, 91, 1993.
- 8. G. Djurašević, M. Zakirov, A. Hojaev, G. Arzumanyants, Astron. Astrophys. Suppl. Ser., 131, 17, 1998.
- 9. G.Djurašević, Astrophys. Space Sci., 196, 241, 1992.
- 10. R.E. Wilson, E.J. Devinney, Astrophys. J., 166, 605, 1971.
- 11. G.Djurašević, Astrophys. Space Sci., 197, 17, 1992.
- 12. D.W.Marquardt, J. Soc. Ind. Appl. Math., 11, No2, 431, 1963.
- 13. H.Von Zeipel, Mon. Notic. Roy. Astron. Soc., 84, 702, 1924.
- 14. J.B. Rafert, L.W. Twigg, Mon. Notic. Roy. Astron. Soc., 139, 78, 1980.
- 15. W. Van Hamme, Astron. J., 106, 2096, 1993.
- W.H.Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, Second Edition, Cambridge Univ. Press, New York, 120, 1992.
- 17. G. Djurašević, Astrophys. Space Sci., 240, 317, 1996.
- 18. G.Schaller, D.Schaerer, G.Meynet, A.Maeder, Astron. Astrophys. Suppl. Ser., 96, 269, 1992.