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It is shown that the equation of motion Du. / Ds = (e I me2) F, natural generalization to 
curved space-time of the Heaviside-Lorentz law of ponderomotive force, is equivalent to the metric 
independent and covariant Van Dantzig's equations of motion dxJ dy p,j = 0 or Lj>, = 0 where p, 
is the conjugate momentum 4-vector and v a vector determined by the condition p,v‘ = 1, only 
with respect to holonomie coordinates. With respect to an anholonomic system, the Heaviside- 
Lorentz equation is a particular case of VD equations valid for a privileged class of anholonomic 
frames, those consisting of orthogonal unit vectors.
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1. Introduction. Kottler [1], Cartan [2] and later Van Dantzig [3], 
quite independently of one another, concluded on the natural invariance of 
Maxwell's equations under arbitrary transformations of the space-time coor­
dinates. Adopting the point of view that the fundamental laws of physics, 
not only of electromagnetism, must be formulated in a form independent of 
the metric of space-time, Van Dantzig was the first to develop a relativistic 
theory of electromagnetism, thermodynamics and thermo-hydrodynamics in­
dependent of metrical geometry. In his article entitled "Electromagnetism 
independent of metrical geometry III. Mass and motion" [3b] he showed 
that the equations of dynamics can also be written in a form which is 
covariant under all holonomic coordinate transformations and independent of 
any metric or linear connection, and presented a beautiful interpretation of 
these equations in terms of the Lie derivative. Van Dantzig applied his new 
results to the motion of a charged test particle of mass m, charge e, and 
4-veIocity u‘ moving in a given gravitational field (g^) and electromagnetic 
field (/\), and recovered the usual general relativistic equations of motion, 
natural generalization to curved space-time of the Heaviside-Lorentz (HL) 
law of ponderomotive force,

^L = -^FJlU', (1)
Ds me1

where D/Ds indicates the absolute derivative with respect to proper time s 
along the world line of the particle. The question which naturally arises is
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whether or not we would reach the same conclusion if, instead of an 
holonomic coordinate system {x'} (z = 1,2,3,4) with basis vectors {ez} tangent 
to the parameter curves x* = const (A#/՜), we use an orthogonal frame of 
basis vectors {e5}(o = 1,2,3,4), one of the vectors (say e^) being timelike 
and the other three {ea}(a = 1,2,3) spacelike, which are not the tangents 
to the parameter curves of any system of allowable coordinates. Such a 
system of orthogonal basis vectors, called by Schouten [4] an anholonomic 
coordinate system, constitutes, as pointed out by Synge [5] and Pirani [6], 
a much more natural and convenient device for ascribing a physical signifi­
cance to the components of a tensor than the natural basis vectors {«/}. In 
physical terms, e* is interpreted as the 4-velocity of an observer at a given 
event and the triad {e?} forms the reference frame used by the observer at 
the event in question. Physical quantities measured by the observer are then 
just the tetrad components of the corresponding tensor field.

As emphasized by Schouten, "if any mathematical expression with respect 
to holonomic coordinates is transformed with respect to an anholonomic 
system, correction terms appear, all containing the object of anholonomity." 
We shall see that, with respect to an "anholonomic coordinate system", the 
HL equation of motion is a particular case of Van Dantzig’s general theory.

In sec.II, we briefly recall Van Dantzig's derivation of his new form of the 
equations of dynamics. In sec.III, we give the mathematical prerequisites for 
the tetrad formulation of the equations of dynamics. We show that the 
anholonomic VD and HL equations of motion do agree with each other only 
and only if the anholonomic frame consists of mutually orthogonal unit vectors.

2. Van Dantzig's new form of dynamical equations. For purposes 
of reference, we briefly recall Van Dantzig's formulation of the equations of 
motion of a material particle. Let dA be the action-differential assumed to be 
positive homogeneous of degree unity in the differentials dx' (/=1, 2, 3, 4). 
By variation of J d A = J p։dx‘, where

3dA
A = T ,/■ > 3dr 

one obtains the equation of motion
(2)

dpt- ddA
ax'

= 0. (3)
Following Euler's condition, the pt are homogeneous of degree zero in the 
dx‘, hence

3dA 
ax'

= (a//>y)dxy, (4)
and eq. (3) is therefore equivalent to

2 dxJ âfy pt] = 0. (5)
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Now if we put

we have

Pi*1 = 1, (7)
from which it results that

(ay p^+p/dj v1 =0. (8)

Thus the Lie derivative of pl with respect to v‘ is given by

L»Pi Zj p,+ pj di v1 = 2 vJ 3y pty. (9)

From (9) we see that the equation of motion (5) can be written in the form 
^vA=0, (10)

which expresses the fact that the conjugate momentum 4-vector is constant, 
in the sense of the Lie derivative, during the motion under the condition 
that v‘ be defined by (7).

Van Dantzig applied the above general results to the relativistic motion 
of a mass point particle in an external electromagnetic field, neglecting the 
emission of radiation. The relativistic action-differential is

d A = mcds+ — <pz dx‘, 
c

where
ds = ylgIJdx'dxJ

(ID

(12)
is the Riemannian line-element of general relativity and <pz the 4-potential. 
From eq (2) it follows that

e pt = mcui+-(pi, 
c

i dx' u = —— . 
■ ds (13)

The Riemannian connection being symmetrical, eq (5) can be written with 
covariant derivatives. Hence

U1 V; P/ = U‘ V,. Pj (14)

Substitution of (13) in (14) yields
mc-^Uj+^u' Vfipj = mcu‘ Vj ui+^u‘ vjWi ■ (15)

Because = 1, the term in u‘ V j u։ vanishes and we recover the usual 
relativistic equation of motion

A„y=^(v^-v,.y)-^,, (.6)
with

Fj, = V J<Vi - V/qj; = 3 j(fi - dj(pj . (17)
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3. The anholonomic equations of motion. Let us introduce a field 
of anholonomic frames consisting of orthogonal vectors ea (a,/= 1,2.3,4), 
with ej timelike and eg (a = 1,2,3) spacelike, and the reciprocal system e° , 
we have

S„b = Sÿ«î eb > e'âeJ =5'j՝ e'°e‘ = S5 ’ ( 18)

The Lorentz indices are raised and lowered by gab or gsa according to 

eal = g°beLb (resp. ea = gSbe‘b ).
The anholonomic components of a tensor, for example, 7)' are

TSb=efelTj (19)

and from (18) it follows that
T] = e'sefrsb. (20)

Equations with respect to a tetrad frame nearly always contain correction 
terms with the object of anholonomity [4]

<21> 

for instance

eïetdUvi]=db^âvb^bz * ■ <22)

The covariant derivative of a vector with respect to an anholonomic coor­
dinate system is defined by

Vru5=e&V .o'=drv°, (23)
O b 1 J D DC

where

ds=e^dt (24)

is the Pfaffian derivative, and

Yl֊a^eJbe<^Je‘a- (25)

The transformation law of linear connections, associated with a change of 
natural basis vectors, remaining valid for an anholonomic system, we have

(26)
From this it follows that

%/=rL֊֊n?. (27)

Remark: Note that with Schouten's notation TSr -Tr- = 2Qr_c. ab ba ha
With reference to eq (23), one finds that the tetrad components of the LH 
equation of motion (1) are

%
Ds

dUr 7 7
ds ab c

= ~^2FbaU՞ 
me2 ba (28)
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Likewise, with reference to (22), the tetrad components of VD equation of 
motion (5) are

d^b Pa֊ds p^dx3 = 0. (29)

dx՞Substitution of ua = —^~ and p- = mcu3+ — tps in eq (29) gives 

dub e -r i -
~dT = ^7 " d^b J + £V<Pc +Q-baC U°Uc ■ (30)

From eq (30) it follows that the simple expression F֊b- = 3?<p3 - 33<p? is not 
acceptable as a definition of Fb- when employing a tetrad frame and must 
be replaced by

Fba = db^a ֊ + %g'<f>c , (31)

in agreement with Corum's remark [7]. Eq (30) may now be written 
duT e - - -

(32)

The equation of motion (29), as in the holonomic case, can be expressed 
in terms of the Lie derivative. With respect to an anholonomic coordinate 
system, one can prove that the Lie derivative Lvws of a covariant vector 
w3 is given by [4]

Lvw3 = vbdbws-vbdswb+QbS‘vbw3+d3^bwb). (33)

Putting va = dx°/dA. so that p.va = 1, we see that eq (29) is equivalent to 
a

LvPa s V4 3j p3- vb ds Pb+Qb/ Vbp3 = 0. (34)

From eq (34) it is clear that, when a transformation from a system of 
natural basis vectors {ej to a tetrad frame {es} is performed, the vanishing 
of vb(db Pg-dg p^ is not sufficient to ensure the constancy of p3 in the sense 
of the Lie derivative.

The familiar language of physics may be introduced by defining the 
physical electric and magnetic fields £g and Zfa, measured by the observer 
with 4-velocity e* , by the invariants [5]

^.1^^-, Fsi - &IF,. (35)

The first three components of eqs (28) and (30) may thus be exhibited in 
the form

=-^-[£-«5+e֊F?Wi5-Z/?]+r3-Uf«5 , (36)
ds me

ueu‘ • (37)
ds me

Eqs (36) and (37) arc seen to have the same form as in special relativity 
with an added term representing the influence of anholonomity on the 
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description of the motion of the charged particle relative to the reference 
frame {e5}. The component w4 = dx^/ds may be inteipreted in physical 
terms as the ratio of the elapsed time registered by the observer's clock 
between two adjacent events x1 and x'+ dx1 in the history of the particle to 
the corresponding time ds registered by the clock carried by the particle.

To pursue further the comparision of eqs (28) and (32) we have to 
substitute in eq (28) the relation connecting F֊j and Q.^-c. According to
eq (27), in a Riemannian space we have [4,8]

ab
C

fl b (38)

c
ä b

where are the Christoffel symbols of the metric g-&

_ r =^g'd^âgjb + db ^dâ-dd Sâb J- 
a b i (39)

When the tetrad {e֊} is orthonormal

Sab = ’kJ = dia8(-‘ ’ (40)

the Christoffel symbols in eq (38) vanish.
Substituting (38) in (30) and using (39) we get

^S'du-cS 3d֊ g^ba' ucu° ■ (41)
os me 2

This agrees with the anholonomic VD equation of motion (32) only if 
the tetrad frame {e?} consists of orthonormal vectors. On account of this, 
it is not quite correct to say that the formulation of dynamics in the ordinary 
general relativity theory is equivalent to D.Van Dantzig's naturally covariant 
and metric independent approach.
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О ТЕТРАДНОЙ ФОРМУЛИРОВКЕ УРАВНЕНИЯ 
ДВИЖЕНИЯ В ОБЩЕЙ ТЕОРИИ

ОТНОСИТЕЛЬНОСТИ

Р.А.КРИКОРЯН

Показано, что уравнение движения Duj/Ds = (plmc^Fjjuf, которое 
является естественным обобщением закона Хевисайда-Лоренца о повде- 
ромоторной силе на случай искривленного пространства-времени, 
эквивалентно независимому от метрики, ковариантному уравнению 
движения Ван Данцинга dxJ Э[у = 0, или Ц,р, = 0 (где р, - сопряженный 
4-вектор импульса и v - вектор, определяемый условием ptv' = 1) лишь 
относительно голономных координат. При неголономных системах урав­
нение Хевисайда-Лоренца является частным случаем уравнения Ван 
Данцинга лишь для избранного класса таких систем, образуемых взаимно 
ортогональными единичными векторами.
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