АСТРОФИЗИКА

TOM 46

АВГУСТ, 2003

выпуск 3

УДК: 52-852

РЕШЕНИЕ ЗАДАЧИ МИЛНА ДЛЯ ЗАМАГНИЧЕННОЙ АТМОСФЕРЫ

П.С.ШТЕРНИН^{1,2}, Ю.Н.ГНЕДИН², Н.А.СИЛАНТЬЕВ³ Поступила 7 февраля 2003 Принята к печати 25 марта 2003

Получено численное решение задачи Милна для замагниченной полубесконечной электронной атмосферы для случая, когда магнитное поле направлено вдоль нормали к среде. Результаты вычислений углового распределения, степени линейной поляризации и позиционного угла наклона плоскости поляризации выходящего излучения представлены в таблицах для ряда значений параметра, характеризующего фарадеевское вращение плоскости поляризации, и значений степени истинного поглощения света в атмосфере g=0, 0.2 и 0.4. Предполагается, что магнитное поле $B \leq 10^6 \, \Gamma$ с, так что сечение рассеяния в оптическом диапазоне чисто томсоновское.

1. Введение. В горячих электронных атмосферах и оболочках звезд, в аккреционных дисках вблизи квазаров и ядер активных галактик при наличии магнитного поля излучение подвержено эффекту фарадеевского вращения плоскости поляризации. Угол поворота Ψ связан с параметрами среды и длиной пути прохождения света / соотношением [1]:

$$\psi = \frac{1}{2} \,\delta \tau_T \cos \theta \,, \tag{1}$$

где $\tau_T = N_e l \sigma_T$ - томсоновская оптическая толщина пути прохождения света, $\sigma_T = (8\pi/3) \dot{r}_e^2 \approx 6.65 \cdot 10^{-25} \text{ см}^2$ - томсоновское сечение рассеяния, $r_e = e^2/m_e c^2 = 2.82 \cdot 10^{-13} \text{ см}$ - классический радиус электрона, N - концентрация электронов, и θ - угол между направлением \vec{n} пучка света и магнитным полем \vec{B} . Плоскость поляризации испытывает правовинтовое вращение при $\theta < 90^\circ$, и обратное при $\theta > 90^\circ$, если смотреть вдоль направления распространения света. Параметр δ численно равен углу поворота плоскости поляризации на пути $\tau_T = 2$ вдоль магнитного поля и выражается формулой:

$$\delta = \frac{3}{4\pi} \frac{\lambda}{r_e} \frac{\omega}{\omega_B} \approx 0.8\lambda^2 (\mu m) B(G), \qquad (2)$$

Здесь, $\lambda = 2\pi c \,\omega$ - длина волны излучения, $\omega = 2\pi v$ - круговая частота света, $\omega_B = |e| B/m_e c$ - циклотронная частота вращения электрона в магнитном поле, $\omega_B/\omega \approx 0.93 \cdot 10^{-8} \lambda(\mu m) B(G)$.

В общем случае эллиптически поляризованного света фарадеевское вращение описывает поворот эллипса поляризации при прохождении света в замагниченной среде.

Для атмосфер с $\omega_B/\omega << 1$ право и лево поляризованные по кругу электромагнитные волны распространяются в среде независимо со своими фазовыми скоростями, соответствующими показателям преломления n_r и n_i . Линейно поляризованную волну можно представить как сумму право и лево поляризованных когерентных волн, и различие фазовых скоростей этих волн приводит к вращению плоскости поляризации ($\psi = 0.5(\omega/c)l(n_i - n_r)$). Для $\omega_B/\omega << 1$ сечения рассеяния всех волн совпадают с томсоновским сечением σ_T . Только этот случай мы и будем здесь рассматривать. Для оптического диапазона длин волн ($\lambda \approx 0.5\mu m$) это означает $B \le 10^6$ Гс.

Наличие фарадеевского вращения приводит к деполяризации излучения, так как к наблюдателю приходит свет с различных оптических толщин, испытавший различные повороты плоскости поляризации.

Мы рассмотрим, так называемую, задачу Милна, т.е. многократное рассеяние света в полубесконечной плоскопараллельной атмосфере, когда источники неполяризованного излучения расположены на очень большой оптической глубине от поверхности атмосферы. Кроме рассеяния света на электронах, мы будем учитывать также истинное поглощение света, степень которого обозначим через q ($q = \sigma_a/(\sigma_a + \sigma_T)$), где σ_a - сечение истинного поглощения). Задача Милна соответствует условиям в атмосферах звезд, а также прохождению света через оптически толстые звездные оболочки и аккреционные диски.

Обычно при решении задачи Милна используют принцип инвариантности Амбарцумяна [2], т.е. независимость углового распределения и поляризации выходящего излучения от добавления (или отнятия) к полубесконечной атмосфере какого-либо слоя. При этом интенсивность и поляризация выходящего излучения выражаются через, так называемые, Н-функции, удовлетворяющие нелинейному интегральному уравнению только по угловым переменным. Чандрасскаром (см. [3]) был предложен весьма эффективный метод решения этого уравнения - метод "вилки", когда последовательные приближения представляют Н-функцию с недостатком и избытком. Для замагниченных атмосфер принцип инвариантности был применен в работах [1,4,5], где получены системы нелинейных уравнений для тензорных Нфункций. К сожалению, эффективного метода решения этих весьма громоздких систем получено не было. Для наиболее интересного случая консервативной атмосферы (q=0) метод итераций сходится очень плохо. Отметим, что даже в самом простом случае першендикулярного к поверхности атмосферы магнитного поля необходимо решать систему шести нелинейных уравнений.

Однако, для больших значений параметра фарадеевского вращения,

 $\delta >> 1$, метод *H*-функций позволил получить простые асимптотические решения задачи Милна и задач со степенным и экспоненциальным распределением источников в замагниченной атмосфере (см. [6]). Эти решения пригодны для случая произвольного наклона магнитного поля относительно внешней нормали \vec{N} к атмосфере. Отметим, что в отсутствие магнитного поля численные решения вышеупомянутых задач были получены в работах [7] и [8].

Для значений δ ≤ 1 и произвольном наклоне магнитного поля все метолы решения приводят к чрезвычайно громоздким формулам и вычислениям. Для магнитного поля $ar{B}$, направленного вдоль нормали $ar{N}$ к поверхности атмосферы, вычисления сильно упрошаются, т.к. задача имеет аксиальную симметрию. В работе [9] задача Милна для $\bar{B} \parallel \bar{N}$ была решена методом Монте-Карло, а в [10] - методом Feautrier. Однако результаты этих вычислений, представленные в виде графиков, иногда довольно сильно различаются. В данной работе задача Милна для $\bar{B} \parallel \bar{N}$ решена классическим методом Чандрасекара [3], использующим гауссовы квадратурные формулы для сведения интегро-дифференциального уравнения переноса к системе линейных дифференциальных уравнений. Увеличивая порядок гауссовых квадратур и сравнивая результаты, можно оценить точность получаемых решений. Мы добились точности в первых четырех значащих цифрах. Это наиболее точные решения задачи Милна к настоящему времени. В некоторых случаях наши результаты на 10-15% отличаются от менее точных расчетов в работе [10]. Весьма важно, что полученные результаты позволяют оценить гочность простых асимптотических формул работы [6].

2. Решение задачи Милна. Рассмотрим задачу Милна для случая, когда магнитное поле $ar{B}$ направлено вдоль внешней нормали $ar{N}$ к полубесконечной атмосфере. В отсутствие магнитного поля, как известно (см. [3]), задача сволится к системе связанных между собой уравнений для интенсивности $I(\tau, \mu)$ и поляризационного параметра Стокса $Q(\tau, \mu)$ (или для интенсивностей излучения, поляризованных в плоскости $(\bar{n}\bar{N})$ или в перпендикулярной плоскости, $I_{x}(\tau, \mu)$ и $I_{y}(\tau, \mu)$, соответственно; $I = I_{+} + I_{-} Q = I_{+} - I_{-}$. Здесь, $\mu = \cos v - косинус угла между направлением$ распространения света \bar{n} и нормалью \bar{N} , τ - оптическая толщина с учетом поглощения, отсчитываемая от поверхности в глубь среды. Как обычно, мы выбрали ось х системы наблюдателя, лежащей в плоскости $(\bar{n}\bar{N})$ при \bar{n} - направление на телескоп. Напомним, что классическое сещение Чандрасекара дает для выходящего излучения ($\tau = 0$) вытянутость утлового распределения $J(\mu = 1) = I(\mu = 1)/I(\mu = 0) = 3.06$ и максимальную степень поляризации при µ = 0, равную 11.71%, причем колебания электрического вектора излучения для всех µ перпендикулярны плоскости $(\bar{n}\bar{N})$, T.e. $Q(\mu) < 0$.

Наличие магнитного поля приводит к появлению параметра Стокса $U(\tau, \mu) = I_{x'} - I_{y'}$, где x' и y' - оси координат, повернутые в положительном (правовинтовом) направлении на 45° от основных x и y осей. Наличие параметра U означает, что плоскость поляризации уже не перпендикулярна к плоскости (nN). Напомним, что угол наклона X этой плоскости относительно перпендикулярной к ($\bar{n}\bar{N}$) плоскости определяется соотношением $tg(2\chi) = U/Q$. Азимутальная симметрия рассматриваемого случая $\bar{B} \parallel \bar{N}$ приводит к тому, что параметр U не дает вклада в процесс рассеяния на электроне, т.е. интегральный член уравнения переноса совпадает со случаем B=0. Параметр U в данной ситуации полностью определяется процессом фарадеевского вращения при выходе из атмосферы. Это означает, что угол X отсчитывается от плоскости осцилляций в отсутствие магнитного поля правовинтовым образом относительно луча зрения на телескоп при магнитном поле, направленном наружу из среды. При магнитном поле, направленном внутрь атмосферы, угол X отсчитывается в обратном направлении.

Система уравнений для $I(\tau, \mu)$, $Q(\tau, \mu)$ и $U(\tau, \mu)$, согласно общим формулам (см. [1,4]), имеет вид:

$$\mu \frac{d}{d\tau} I(\tau, \mu) = I(\tau, \mu) - \frac{3}{16} (1-q) \int_{-1}^{1} d\mu' \left\{ \left[\left[(3-\mu'^2) + \mu^2 (3\mu'^2 - 1) \right] I(\tau, \mu') + \right. \right. \\ \left. + \left(1 - 3\mu^2 \right) \left[(1-\mu'^2) Q(\tau, \mu') \right] \right] \right\}$$

$$\mu \frac{d}{d\tau} Q(\tau, \mu) = Q(\tau, \mu) + (1-q) \delta \mu U(\tau, \mu) - \left. - \frac{3}{16} (1-q) \left(1 - \mu^2 \right) \int_{-1}^{1} d\mu' \left[\left(1 - 3\mu'^2 \right) I(\tau, \mu') + 3 \left(1 - \mu'^2 \right) Q(\tau, \mu') \right] \right],$$

$$\mu \frac{d}{d\tau} U(\tau, \mu) = U(\tau, \mu) - (1-q) \delta \mu Q(\tau, \mu).$$
(3)

Напомним, что q - степень истинного поглощения света, τ - полная оптическая толщина с учетом поглощения, для $\vec{B} \parallel \vec{N} \cos\theta = \mu$.

Граничные условия к системе (3)-(5) обычные: $I(0, -\mu) = 0, Q(0, -\mu) = 0$ и $U(0, -\mu) = 0$, т.е. нет падающего извне излучения. Кроме того, принимается, что все параметры Стокса при $\tau \to \infty$ не имеют экспоненциально растущих членов. Следуя методу Чандрасекара [3], заменяем при помощи гауссовых квадратур интегральные члены на суммы, где параметры беругся в дискретных точках μ_i : $I_i = I(\tau, \mu_i), Q_i = Q(\tau, \mu_i)$ и $U_i = U(\tau, \mu_i)$. Точки μ_i являются корнями полинома Лежандра $P_{2n}(\mu)$. Число *n* определяет порядок квадратурной формулы Гаусса. В результате система интегродифференциальных уравнений (3)-(5) превращается в систему обыкновенных дифференциальных уравнений:

$$\mu_{i} \frac{d}{d\tau} I_{i} = I_{i} - \frac{3}{16} (1-q) \sum_{j=\pm 1}^{\pm n} a_{j} \{ [(3-\mu_{j}^{2}) + \mu_{i}^{2} (3\mu_{j}^{2} - 1)] I_{j} + (1-3\mu_{i}^{2}) (1-\mu_{j}^{2}) Q_{j} \},$$
(6)

 $\mu_{i} \frac{d}{d\tau} Q_{i} = Q_{i} + (1-q) \delta \mu_{i} U_{i} - \frac{3}{16} (1-q) (1-\mu_{i}^{2}) \sum_{j=\pm 1}^{\pm n} a_{j} [(1-3\mu_{j}^{2})I_{j} + 3(1-\mu_{j}^{2})Q_{j}], (7)$

$$\mu_i \frac{d}{d\tau} U_i = U_i - (1 - q) \delta \mu_i Q_i.$$
(8)

Здесь, μ_i - корни полинома Лежандра ($P_{2n}(\mu_i) = 0$), $\mu_{-i} = -\mu_i$, а a_i - известные веса квадратурной формулы Гаусса, $a_{-i} = a_i$.

Решение системы (6)-(8) ищем в виде:

$$I_i = g_i \exp(-k\tau), \quad Q_i = h_i \exp(-k\tau), \quad U_i = f_i \exp(-k\tau).$$
 (9)
Подстановка (9) в (6)-(8) приводит к соотношениям:

$$f_{i} = \frac{(1-q)\delta\mu_{i}}{1+k\mu_{i}}h_{i}, \quad g_{i} = \frac{\beta-\alpha\mu_{i}^{2}}{1+k\mu_{i}}, \quad h_{i} = \alpha\frac{(1-\mu_{i}^{2})(1+k\mu_{i})}{(1+k\mu_{i})^{2}+[(1-q)\delta\mu_{i}]^{2}}.$$
 (10)

Для нахождения чисел α и β из уравнений (6) и (7) получается однородная система алгебраических уравнений. Условие разрешимости этой системы - равенство нулю определителя приводит к характеристическому уравнению для нахождения собственных чисел k. Из получающейся однородной системы второго порядка мы можем определить только отношение α/β , так что одно из чисел α или β остается неизвестным. Это число находится из условия заданности потока F излучения, выходящего из атмосферы.

В результате мы получили значения углового распределения

$$I(\mu) = I(0, \mu)/I(0, 0), \qquad (11)$$

степени полярязации

$$p(\mu) = \frac{\sqrt{Q^2(0,\mu) + U^2(0,\mu)}}{I(0,\mu)},$$
(12)

и угла наклона χ(μ) колебаний электрического вектора излучения относительно плоскости, перпендикулярной плоскости ($\bar{n}\bar{N}$):

$$tg(2\chi) = \frac{U(0,\mu)}{Q(0,\mu)}.$$
 (13)

В таблицах 1-6 эти величины представлены для ряда значений параметров δ и q.

3. Заключение. Приведем краткий анализ полученных результатов и их качественное объяснение. Прежде всего видно, что поляризация излучения $p(\mu)$ с ростом параметра δ приобретает все более пикообразный вид, с максимумом при $\mu = 0$, т.е. в направлении, перпендикулярном магнитному полю. Это проявление деполяризации излучения из-за

п.с.штернин и др.

Таблица 1

ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ *p*(µ)%, УГЛА НАКЛОНА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ х° И УГЛОВОГО РАСПРЕДЕ-ЛЕНИЯ *J*(µ) ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ *q* = 0

		-										
		5 =	0		1			2			3	1
μ	P	χ	J	p	X	J	p	χ	J	P	χ	J
0	11.71	0	1	11.56	0	1	11.26	0	1	10.98	0	1
0.05	8.997	0	1.1433	8.865	1.29	1.1437	8.497	2.537	1.1441	8.141	3.748	1.1442
0.10	7.467	0	1.2627	7.268	2.40	1.2635	6.842	4.650	1.2640	6.425	6.760	1.2642
015	6 323	0	1.3742	6.098	3.38	1.3752	5.633	6.439	1.3758	5.183	9.213	1.3760
0.20	5 4 3 0		1.4815	5.176	4.25	1.4827	4.693	7.962	1.4833	4.234	11.22	1.4832
0.25	4.682	0	1.5862	4.424	5.03	1.5875	3.939	9.267	1.5880	3.491	12.88	1.5877
0.30	4.052	Ō	1.6891	3.795	5.72	1.6905	3.322	10.39	1.6907	2.896	14.26	1.6902
0.35	3.511	0	1.7907	3.259	6.35	1.7920	2.809	11.37	1.7920	2.414	15.43	1.7912
0.40	3.040	0	1.8912	2.798	6.91	1.8926	2.377	12.23	1.8923	2.016	16.41	1.8911
0.45	2.625	0	1.9910	2.397	7.42	1.9923	2.008	12.98	1.9916	1.684	17.26	1.9901
0.50	2.257	0	2.0901	2.045	7.89	2.0913	1.692	13.65	2.0903	1.404	18.00	2.0885
0.55	1.927	0	2.1887	1.733	8.31	2.1898	1.417	14.24	2.1884	1.166	18.64	2.1862
0.60	1.630	0	2.2869	1.455	8.70	2.2879	1.178	14.78	2.2859	0.960	19.20	2.2834
0.65	1.360	0	2.3847	1.206	9.06	2.3855	0.967	15.26	2.3831	0.783	19.70	2.3802
0.70	1.115	0	2.4822	0.982	9.39	2.4829	0.780	15.69	2.4800	0.627	20.14	2.4766
0.75	0.890	0	2.5795	0.779	9.70	2.5799	0.613	16.08	2.5765	0.490	20.53	2.5728
0.80	0.683	0	2.6765	0.595	9.98	2.6767	0.465	16.44	2.6728	0.369	20.89	2.6687
0.85	0.493	0	2.7733	0.426	10.24	2.7733	0.331	16.77	2.7688	0.262	21.21	2.7643
0.90	0.316	0	2.8700	0.272	10.49	2.8697	0.210	17.07	2.8646	0.165	21.51	2.8597
0.95	0.152	0	2.9665	0.131	10.72	2.9659	0.100	17.35	2.9603	0.078	21.77	2.9550
1	.0	0	3.0628	0	10.95	3.0620	0	17.60	3.0558	0	22.02	3.0500

Таблица 2

ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ *p*(μ)%, УГЛА НАКЛОНА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ χ° И УГЛОВОГО РАСПРЕДЕ-ЛЕНИЯ *J*(μ) ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ *q*=0

		δ = 4	1.00	5			6			7		
μ	P	χ	J	P	χ	J	P	χ	J	P	χ	J
0	10.75	0	1	10.56	0	1	10.40	0	1	10.28	0	1
0.05	7.802	4.913	1.1446	7.550	6.078	1.1447	7.336	7.218	1.1446	7.141	8.331	1.1445
0.10	6.020	8.724	1.2646	5.712	10.64	1.2646	5.434	12.43	1.2644	5.175	14.11	1.2642
0.15	4.751	11.71	1.3762	4.418	14.06	1.3761	4.120	16.17	1.3758	3.848	18.06	1.3755
0.20	3.805	14.06	1.4834	3.477	16.64	1.4831	3.190	18.88	1.4826	2.936	20.82	1.4822
0.25	3.083	15.94	1.5876	2.776	18.62	1.5872	2.515	·20.89	1.5866	2.291	22.81	1.5860
0.30	2.520	17.45	1.6899	2.243	20.17	1.6893	2.012	22.42	1.6885	1.818	24.29	1.6879
0.35	2.074	18.69	1.7907	1.828	21.41	1.7899	1.627	23.62	1.7890	1.462	25.43	1.7882
0.40	1.713	19.71	1.8903	1.499	22.41	1.8894	1.326	24.57	1.8883	1.186	26.33	1.8874
0.45	1.418	20.57	1.9891	1.232	23.24	1.9880	1.085	25.35	1.9867	0.967	27.06	1.9857

Таблица 2 (окончание)

1	2	3	4	5	6	7	8	9	10	11	12	13
0.50	1.173	21.30	2.0871	1.014	23.94	2.0858	0.890	26.00	2.0844	0.790	27.66	2.0833
0.55	0.968	21.93	2.1846	0.832	24.53	2.1831	0.728	26.55	2.1815	0.645	28.16	2.1803
0.60	0.793	22.48	2.2815	0.679	25.03	2.2799	0.592	27.01	2.2781	0.524	28.59	2.2768
0.65	0.643	22.95	2.3780	0.549	25.47	2.3762	0.478	27.41	2.3743	0.422	28.95	2.3728
0.70	0.513	23.37	2.4742	0.437	25.85	2.4722	0.379	27.76	2.4701	0.334	29.27	2.4685
0.75	0.399	23.74	2.5700	0.339	26.19	2.5679	0.294	28.06	2.5657	0.259	29.55	2.5639
0.80	0.300	24.07	2.6656	0.254	26.49	2.6633	0.220	28.33	2.6609	0.194	29.79	2.6591
0.85	0.212	24.37	2.7610	0.179	26.76	2.7585	0.155	28.57	2.7559	0.136	30.01	2.7540
0.90	0.133	24.64	2.8561	0.113	27.00	2.8534	0.097	28.79	2.8507	0.085	30.20	2.8486
0.95	0.063	24.88	2.9511	0.053	27.22	2.9482	0.046	28.98	2.9454	0.040	30.38	2.9432
1	0	25.10	3.0459	0	27.41	3.0428	0	29.16	3.0398	0	30.53	3.0375

Таблица З

ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ *p*(μ)%, УТЛА НАКЛОНА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ χ[°] И УГЛОВОГО РАСПРЕДЕ-ЛЕНИЯ *J*(μ) ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ *q*=0

(nd	1-17-	$\delta = 8$	North State		9	-	17.0	10		100		
μ	P	χ	J	p	χ	J	р	X	J	p	χ	J
0	10.17	0	1	10.08	0	1	10.01	0	1	9.173	0	1
0.05	6.959	9.413	1.1444	6.787	10.46	1.1444	6.622	11.48	1.1444	1.540	37.72	1.1441
0.10	4.931	15.67	1.2641	4.702	17.11	1.2640	4.487	18.46	1.2639	0.706	40.44	1.2631
0.15	3.601	19.76	1.3753	3.377	21.28	1.3751	3.174	22.63	1.3749	0.430	41.37	1.3734
0.20	2.713	22.51	1.4819	2.516	23.99	1.4816	2.342	25.29	1.4814	0.294	41.83	1.4792
0.25	2.097	24.45	1.5856	1.931	25.86	1.5853	1.786	27.08	1.5850	0.215	42.11	1.5821
0.30	1.654	25.87	1.6874	1.515	27.21	1.6869	1.396	28.36	1.6866	0.164	42.29	1.6830
0.35	1.324	26.95	1.7876	1.208	28.23	1.7871	1.109	29.32	1.7867	0.128	42.42	1.7824
0.40	1.070	27.79	1.8867	0.974	29.02	1.8861	0.892	30.06 [.]	1.8856	0.102	42.52	1.8807
0.45	0.870	28.47	1.9849	0.790	29.65	1.9843	0.723	30.65	1.9837	0.082	42.60	1.9781
0.50	0.710	29.02	2.0824	0.643	30.16	2.0817	0.588	31.13	2.0810	0.066	42.66	2.0747
0.55	0.578	29.49	2.1793	0.523	30.59	2.1785	0.478	31.53	2.1778	0.053	42.71	2.1708
0.60	0.469	29.88	2.2757	0.424	30.95	2.2748	0.387	31.86	2.2740	0.043	42.75	2.2664
0.65	0.377	30.21	2.3716	0.341	31.26	2.3707	0.310	32.14	2.3699	0.034	42.78	2.3615
0.70	0.299	30.50	2.4673	0.270	31.52	2.4662	0.246	32.39	2.4653	0.027	42.81	2.4564
0.75	0.231	30.75	2.5625	0.209	31.76	2.5614	0.190	32.60	2.5605	0.021	42.83	2.5509
0.80	0.173	30.98	2.6576	0.156	31.96	2.6564	0.142	32.79	2.6554	0.015	42.86	2.6451
0.85	0.121	31.17	2.7524	0.109	32.14	2.7511	0.099	32.95	2.7500	0.011	42.88	2.7391
0.90	0.076	31.35	2.8470	0.068	32.30	2.8456	0.062	33.10	2.8445	0.007	42.89	2.8329
0.95	0.036	31.51	2.9414	0.032	32.44	2.9399	0.029	33.23	2.9387	0.003	42.91	2.9265
1	0	31.65	3.0356	0	32.57	3.0341	0	33.35	3.0328	0	42.92	3.0200

фарадеевского вращения, т.к. выходящее из среды излучение состоит из потоков света, испытавших различные фарадеевские повороты плоскости поляризации. Одновременно, с ростом δ, увеличивается и угол поворота χ плоскости поляризации выходящего излучения относительно плоскости поляризации в отсутствие магнитного поля, т.е. относительно перпендикулярной к ($\bar{n}\bar{N}$) плоскости. В пределе $\delta \to \infty$ угол $\chi \to 45^{\circ}$. Такое поведение угла поворота χ можно качественно объяснить следующим образом. Выходящее излучение в основном идет из внешнего слоя атмосферы с $\tau/\mu = 1$. Параметр Стокса $U(\mu)$, согласно уравнению (5), приобретает значение – $Q(\mu)(1-q)\delta\mu\tau/\mu$, что приводит к величине отношения $U(\mu)/Q(\mu) - (1-q)\delta\mu$. Таким образом, угол поворота χ определяется соотношением:

$$tg(2\chi) \sim (1-q)\delta\mu.$$
⁽¹⁴⁾

При $(1-q)\delta\mu >> 1$ угол поворота χ действительно стремится к предельному значению 45°.

Фарадеевское вращение определяется только наличием свободных электронов на пути излучения, т.е. томсоновской оптической толщиной $\tau_T = (1-q)\tau$. При $q \rightarrow 1$ внешний слой атмосферы с $\tau = 1$ содержит слишком мало электронов ($\tau_T \rightarrow 0$), чтобы фарадеевское вращение влияло на расположение плоскости поляризации выходящего излучения. В этом случае в уравнениях переноса (4) и (5) можно пренебречь параметром $U(\tau, \mu)$, и система (3)-(5) превращается в обычные уравнения переноса в отсутствие магнитного поля. Эти качественные рассуждения и оценки носят общий характер, не связанный со спецификой задачи Милна. Таким образом, для любых сильно поглощающих атмосфер ($q \rightarrow 1$) фарадеевское вращение несущественно. Для сильно поглощающих атмосфер задача Милна становится неинтересной, т.к. главную роль играет распределение источников теплового излучения, пропорциональное распределению поглощающих частиц. Как известно, излучение, выходящее из сильно поглощающих атмосфер, практически не поляризовано.

Поляризация, даже в отсутствие магнитного поля, слабо изменяет утловое распределение выходящего излучения. Так, задача Милна с учетом поляризации (уравнения (3) и (4)) дает вытянутость J(0) = 3.06, а решение уравнения (3) с отброшенным $Q(\tau, \mu)$ – членом (уравнение только для нтенсивности с релеевской индикатрисой рассеяния) приводит к J(0) = 3.02, т.е. угловые распределения практически совпадают (см. табл.6).

Фарадеевское вращение приводит к деполяризации излучения для всех направлений распространения, кроме перпендикулярного к магнитному полю. Поэтому, с увеличением параметра δ , вклад поляризационных членов в формирование углового распределения становится все более малым. Уравнение (3) превращается в отдельное уравнение только для интенсивности с релеевской индикатрисой. Наши таблицы показывают постепенное приближение углового распределения к этому предельному виду (см. колонки 3-5 в табл.6) при увеличении параметра фарадеевского вращения δ .

440

Таблица 4

ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ *p*(μ)%, УГЛА НАКЛОНА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ χ[°] И УГЛОВОГО РАСПРЕДЕ-ЛЕНИЯ *J*(μ) ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ *q* = 0.2

		$\delta = 1$		1.23	5	1000		- 10	114		50		
μ	P	χ	J	p	X	J	p	X	J	p	χ	J	
0	25.05	0	I	20.12	0	• 1	18.96	0	1	17.65	0	1	
0.05	22.95	1.188	1.1240	17.73	5.774	1.1248	15.67	11.01	1.1251	7.022	31.24	1.1270	
0.10	21.53	2.475	1.2337	15.44	11.42	1.2348	11.95	19.69	1.2357	3.491	37.32	1.2386	
0.15	20.28	3.868	1.3424	13.09	16.56	1.3436	8.877	25.61	1.3450	2.171	39.53	1.3480	
0.20	19.07	5.368	1.4542	10.85	20.96	1.4551	6.650	29.56	1.4567	1.499	40.67	1.4594	
0.25	17.85	6.973	1.5715	8.866	24.61	1.5716	5.068	32.27	1.5732	1.095	41.35	1.5752	
0.30	16.59	8.681	1.6963	7.190	27.57	1.6949	3.922	34.20	1.6962	0.828	41.81	1.6975	
0.35	15.27	10.49	1.8305	5.805	29.97	1.8269	3.070	35.64	1.8277	0.639	42.14	1.8279	
0.40	13.91	12.38	1.9761	4.671	31.92	1.9696	2.420	36.75	1.9694	0.499	42.38	1.9784	
0.45	12.50	14.35	2.1355	3.745	33.53	2.1249	1.913	37.62	2.1236	0.393	42.58	2.1211	
0.50	11.06	16.38	2.3112	2.986	34.86	2.2955	1.512	38.33	2.2928	0.309	42.73	2.2885	
0.55	9.605	18.47	2.5065	2.363	35.98	2.4843	1.189	38.91	2.4798	0.243	42.86	2.4734	
0.60	8.171	20.58	2.7253	1.850	36.93	2.6951	0.927	39.40	2.6883	0.189	42.96	2.6795	
0.65	6.779	22.69	2.9723	1.426	37.75	2.9323	0.713	39.81	2.9229	0.145	43.05	2.9111	
0.70	5.456	24.80	3.2537	1.077	38.45	3.2017	0.538	40.16	3.1891	0.109	43.13	3.1738	
0.75	4.226	26.87	3.5773	0.790	39.06	3.5108	0.394	40.47	3.4943	0.080	43.19	3.4750	
0.80	3.108	28.89	3.9534	0.555	39.60	3.8694	0.277	40.74	3.8483	0.056	43.25	3.8240	
0.85	2.120	30.84	4.3958	0.364	40.07	4.2907	0.182	40.98	4.2640	0.037	43.30	4.2339	
0.90	1.270	32.72	4.9235	0.211	40.50	4.7928	0.105	41.19	4.7594	0.021	43.35	4.7224	
0.95	0.563	34.51	5.5636	0.091	40.88	5.4018	0.046	41.38	5.3603	0.009	43.39	5.3147	
1	0	36.21	6.3553	0	41.22	6.1556	0	41.55	6.1043	0	43.42	6.0485	

Таблица 5

ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ *p*(μ)%, УГЛА НАКЛОНА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ χ[°] И УГЛОВОГО РАСПРЕДЕ-ЛЕНИЯ *J*(μ) ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ *q* = 0.4

-		δ = 1	12.24		5			10	915	50		
μ	p	χ	J	P	χ	J	P	χ	J	P	χ	J
0	39.89	0	1	33.20	0	1	31.45	0	1	29.49	0	1
0.05	38.30	0.911	1.1055	31.28	4.499	1.1062	28.50	8.75	1.1066	15.00	28.51	1.1087
0.10	37.00	1.924	1.2046	28.93	9.228	1.2054	23.90	16.74	1.2063	7.819	36.17	1.2105
0.15	35.64	3.043	1.3081	25.98	13.92	1.3085	19.02	23.09	1.3100	4.902	39.11	1.3150
0.20	34.13	4.276	1.4198	22.65	18.33	1.4195	14.82	27.81	1.4213	3.379	40.63	1.4265
0.25	32.44	5.633	1.5431	19.24	22.32	1.5413	11.49	31.29	1.5432	2.454	41.55	1.5479
0.30	30.55	7.124	1.6810	16.00	25.81	1.6769	8.933	33.88	1.6785	1.838	.42.17	1.6824
0.35	28.46	8.762	1.8370	13.09	28.81	1.8297	6.958	35.85	1.8306	1.401	42.61	1.8332
0.40	26.16	10.56	2.0157	10.56	31.36	2.0038	5.421	37.39	2.0036	1.077	42.95	2.0045
0.45	23.68	12.52	2.2223	8.407	33.53	2.2046	4.213	38.62	2.2027	0.830	43.21	2.2013
0.50	21.04	14.65	2.4643	6.604	35.38	2.4387	3.254	39.61	2.4346	0.638	43.41	2.4302
0.55	18.27	16.94	2.7509	5.110	36.95	2.7155	2.489	40.44	2.7084	0.486	43.58	2.7002

Таблица 5 (окончание)

1	2	3	4	5	6	7	8	9	10	11	12	13
0.60	15.45	19.40	3.0956	3.883	38.31	3.0474	1.876	41.13	3.0364	0.366	43.72	3.0236
0.65	12.63	22.00	3.5168	2.883	39.48	3.4525	1.386	41.72	3.4365	0.270	43.84	3.4177
0.70	9.908	24.71	4.0422	2.078	40.50	3.9573	0.995	42.23	3.9349	0.194	43.95	3.9085
0.75	7.377	27.49	4.7137	1.438	41.39	4.6022	0.687	42.67	4.5718	0.134	44.04	4.5359
0.80	5.123	30.29	5.5996	0.940	42.18	5.4541	0.449	43.05	5.4132	0.088	44.12	5.3652
0.85	3.221	33.06	6.8179	0.562	42.88	6.6284	0.268	43.39	6.5742	0.052	44.18	6.5107
0.90	1.723	35.75	8.5928	0.289	43.50	8.3468	0.138	43.69	8.2758	0.027	44.25	8.1930
0.95	0.650	38.33	11.407	0.106	44.06	11.094	0.050	43.97	11.004	0.010	44.30	10.899
1	0	40.76	16.531	0	44.56	16.170	0	44.21	16.075	0	44.35	15.962

Таблица б

НЕКОТОРЫЕ РЕШЕНИЯ ЗАДАЧИ МИЛНА В ОТСУТСТВИЕ МАГНИТНОГО ПОЛЯ. ПЕРВЫЕ ДВЕ КОЛОНКИ ПРЕДСТАВЛЯЮТ ЧАНДРАСЕКАРОВСКИЕ ЗНАЧЕНИЯ СТЕПЕНИ ПОЛЯРИЗАЦИИ $p(\mu)$ %, И УГЛОВОГО РАСПРЕДЕЛЕНИЯ $J(\mu)$ ДЛЯ ВЫХОДЯЩЕГО ИЗЛУЧЕНИЯ ПРИ q = 0. ТРЕТЬЯ, ЧЕТВЕРТАЯ И ПЯТАЯ КОЛОНКИ ОПИСЫВАЮТ УГЛОВОЕ РАСПРЕДЕЛЕНИЕ ИЗЛУЧЕНИЯ, ПОЛУЧЕННОЕ ИЗ РЕШЕНИЯ УРАВНЕНИЯ ТОЛЬКО ДЛЯ ИНТЕНСИВНОСТИ С РЕЛЕЕВСКОЙ ИНДИКАТРИСОЙ ПРИ q = 0, 0.2 И 0.4, СООТВЕТСТВЕННО. ПОСЛЕДУЮЩИЕ КОЛОНКИ ПРЕДСТАВЛЯЮТ НАШЕ РЕШЕНИЕ ЗАДАЧИ МИЛНА ПРИ q = 0.2 И 0.4

	q = 0)	0	0.2	0.4	0	.2	0	.4
μ	p	J	J	J	J	p	J	p	J
0	11.71	1	1	1	1	28.63	1	44.54	1
0.05	8.979	1.1460	1.1469	1.1301	1.1122	26.49	1.1236	42.93	1.1052
0.10	7.448	1.2644	1.2647	1.2407	1.2133	25.04	1.2333	41.59	1.2045
0.15	6.311	1.3755	1.3746	1.3496	1.3173	23.80	1.3424	40.21	1.3085
0.20	5.410	1.4826	1.4801	1.4606	1.4284	22.62	1.4549	38.72	1.4212
0.25	4.667	1.5871	1.5828	1.5761	1.5495	21.47	1.5732	37.09	1.5459
0.30	4.041	1.6898	1.6835	1.6981	1.6836	20.30	1.6994	35.30	1.6858
0.35	3.502	1.7913	1.7829	1.8282	1.8340	19.11	1.8355	33.37	1.8445
0.40	3.033	1.8918	1.8810	1.9684	2.0047	17.88	1.9836	31.29	2.0265
0.45	2.619	1.9915	1.9783	2.1208	2.2009	16.61	2.1459	29.08	2.2375
0.50	2.252	2.0906	2.0773	2.2878	2.4290	15.29	2.3254	26.75	2.4849
0.55	1.923	2.1892	2.1709	2.4723	2.6981	13.93	2.5252	24.32	2.7783
0.60	1.627	2.2873	2.2665	2.6778	3.0202	12.52	2.7493	21.79	3.1315
0.65	1.358	2.3851	2.3616	2.9088	3.4128	11.08	3.0029	19.19	3.5635
0.70	1.112	2.4826	2.4564	3.1709	3.9017	9.588	3.2920	16.52	4.1023
0.75	0.888	2.5798	2.5508	3.4712	4.5267	8.062	3.6249	13.81	4.7909
0.80	0.682	2.6768	2.6450	3.8193	5.3529	6.503	4.0122	11.07	5.6988
0.85	0.492	2.7736	2.7389	4.2281	6.4945	4.913	4.4680	8.302	6.9457
0.90	0.316	2.8703	2.8327	4.7151	8.1718	3.297	5.0119	5.528	8.7577
0.95	0.152	2.9667	2.9263	5.3059	10.872	1.658	5.6714	2.758	11.619
1	0	3.0631	3.0197	6.0376	15.932	0	6.4868	0	16.786

Вклад поляризационных членов Q и U при вычислении самой поляризации выходящего из атмосферы излучения гораздо заметнее, чем их влияние на формирование углового распределения. Так, вычисление степени поляризации с использованием известной интенсивности излучения дает вместо 11.71% величину 9.37%. Это означает, что разность 11.71% - 9.37% = 2.34% (20% полной поляризации) создается поляризационными членами. Фарадеевское вращение, как видно из таблиц, сильно уменьшает поляризацию и при $\delta >> 1$ вклад поляризационных членов в степень поляризации стремится к нулю. При этом и сама интенсивность излучения несколько изменяется по сравнению со случаем отсутствия магнитного поля и определяется скалярным уравнением переноса с релеевской индикатрисой (сравниваем вторую и третью колонки в табл.6). Поэтому в максимуме поляризации ($\mu = 0$) получается не 9.37%, а несколько меньшее значение, 9.14%. Именно к этой предельной величине стремятся наши значения p(0) при $\delta \rightarrow \infty$ (см. табл.1-3).

Простые асимптотические формулы работы [6] для ряда стандартных задач теории переноса излучения соответствуют приближению, когда интенсивность излучения определяется из уравнения переноса с релеевской индикатрисой, а поляризация учитывается как результат однократного рассеяния известного потока излучения и его трансформации фарадеевским вращением. Они дают несколько завышенные значения поляризации. Сравнение расчетов по этим формулам с полученными точными расчетами показывает, что для q = 0 уже для $\delta = 10$ асимптотические формулы приводят к значениям поляризации с ошибкой $\approx 10\%$. Для $\delta = 5$ ошибка больше $\approx 20\%$.

Существенным достоинством этих простых формул является аналитическое описание поляризации для произвольного расположения магнитного поля в атмосфере.

- ¹ Санкт-Петербургский государственный политехнический университет, Россия
- ² Главная астрономическая обсерватория Российской академии наук,
- Санкт-Пстербург, Пулково, Россия
- ³ Instituto Nacional de Astrofísica, Optica y Electronica, M'exico

П.С.ШТЕРНИН И ДР.

THE SOLUTION OF THE MILNE PROBLEM FOR MAGNETIZED ATMOSPHERE

P.S.SHTERNIN^{1,2}, Y.N.GNEDIN², N.A.SILANT'EV³

The numerical solution of the Milne problem for semi-infinite planeparallel magnetized electron atmosphere is obtained. It is assumed that magnetic field is directed along the normal to the atmosphere. The angular dependence, the polarization degree and positional angle of outgoing radiation are presented in the tables for various values of the Faraday rotation parameter and the degree of absorption q=0, 0.2 and 0.4. We assume that magnetic field $B \le 10^6$ G when all scattering cross-sections for the optical radiation are equal to the Thomson value.

Key words: Radiative transfer:atmospheres

ЛИТЕРАТУРА

- 1. А.З.Долгинов, Ю.Н.Гнедин, Н.А.Силантьев, "Распространение и поляризация излучения в космической среде", Наука, М., 1979.
- 2. В.А.Амбарцумян, Астрон. ж., 19, 1, 1942.
- 3. С. Чандрасекар, "Перенос лучистой энергии", Гостехиздат, М., 1950.
- 4. N.A.Silant'ev, Astrophys. Space. Sci., 82, 363, 1982.
- 5. N.A.Silant'ev, J. Quant. Spectrosc. Radiat. Transfer., 52, 207, 1994.
- 6. N.A.Silant'ev, Astron. Astrophys., 383, 326, 2002.
- 7. В.М.Лоскутов, В.В.Соболев, Астрофизика, 15, 241, 1979.
- 8. Н.А. Силантьев, Астрон. ж., 57, 587, 1980.
- 9. E.Agol, O.Blaes, Mon. Notic. Roy. Astron. Soc., 282, 965, 1996.
- E.Agol, O.Blaes, C.Ionescu-Zanetti, Mon. Notic. Roy. Astron. Soc., 293, 1, 1998.