АСТРОФИЗИКА

TOM 46

АВГУСТ, 2003

ВЫПУСК 3

УДК: 524.333

МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ И СОБСТВЕННЫЕ ЦВЕТА КЛАССИЧЕСКИХ ЦЕФЕИД ГАЛАКТИКИ, БМО И ММО

Г.В.АБРАМЯН Поступила 7 марта 2003 Принята к печати 3 июня 2003

На основе выборок классических цефеид Галактики, БМО и ММО, с применением новых методов получены закон межзвездного поглощения для классических цефеид: R_{μ} : R_{μ} : R

1. Введение. В настоящее время для построения шкалы космических расстояний самыми точными индикаторами считаются классические цефеиды (КЦ). В частности, расстояния этих объектов использовались для определения постоянной Хаббла в одном из основных проектов Космического телескопа Хаббла (Hubble Space Telescope Key Project-HSTKP) [1]. В НЅТКР, для калибровки расстояний сравнительно близлежащих галактик, использованы откалиброванные с помощью цефеид. Большого Магелланова Облака (БМО) КЦ - члены этих галактик. В свою очередь, для цефеид обоих МО в последнее время, в рамках эксперимента микролинзирования (The Optical Gravitational Lensing Experiment-OGLE), Удальским и др. [2] получен общирный наблюдательный материал в полосах BVI и произведена калибровка соотношения период-светимость (PL) на основе этих данных. Кроме того, Джерен и др. [3,4] квазигеометрическим инфракрасным методом Эванса-Барнеса [5] определяли расстояния 34 КЦ Галактики и по этим данным производили калибровку соотношений PL для цефеид Галактики и БМО. Согласно результатам наших анализов обе упомянутые калибровки, являющиеся последним словом в области исследований КЦ, между собой имеют определенное расхождение. Отметим также, что для немногим более 260 КЦ Галактики экспериментом HIPPARCOS [6] измерены тригонометрические параллаксы и на их основе произведен ряд калибровок нуль-пункта соотношения PL [7-11], также имеющих определенные расхождения друг с другом и с наземными данными.

Начатая нами данной работой серия статей преследует цель, основываясь на результатах наблюдений КЦ в экспериментах HIPPARCOS, OGLE и работ Джерена и др. [3,4], разработать возможно высокоточную единую калибровку соотношений PL и применить их для вычисления расстояний галактик HSTKP.

В частности, данная работа посвящена детальному исследованию межзвездного поглощения и собственных цветов КЦ Галактики, БМО и ММО. на основе вышеуказанных новейших наблюдательных данных.

2. Основные характеристики выборок КЦ. С целью определения собственных цветов и отношений *R* общего поглощения к селективному для КЦ Галактики, БМО и ММО, на основе литературных данных, для каждой галактики в отдельности были составлены выборки КЦ. Выборка КЦ Галактики насчитывает 422 объекта, большинство из которых входит в каталог Бердникова [12]. Несколько КЦ были отобраны из списка Гроновагена [13], из электронного каталога Ферни и др. [14] и из ряда других общеизвестных работ по КЦ Галактики. 412 КЦ этой выборки входят в каталог Бердникова [12], 397 - в каталог Ферни и др. [14], 236 - в список Гроновагена [13], 260 - в сводный каталог HIPPARCOS [6]. В наших дальнейших анализах используются средние по интенсивности величины в стандартных полосах BV системы UBV Джонсона, I - Крона-Казинса, ЈНК - системы Картера. Для 110 КЦ данной выборки имеются средние по интенсивности величины во всех шести полосах BVIJHK, 111 - в BVIJH, 116 - в BVIJ, 342 - в BVI, 348 - в VI, 419 - в BV, 348 - в I, 422 - в V и 419 - в В.

КЦ галактической выборки по типам распределены следующим образом: 380 КЦ типа DCEP, то есть эти КЦ пульсируют в фундаментальной моде (FU KЦ), 41 - типа DCEPS - пульсируют в первом обертоне (FO KЦ), 1 - во втором обертоне (SO KЦ).

Выборки КЦ БМО и ММО построены на основе КЦ эксперимента OGLE, после исключения из них повторяющихся объектов. Общее количество объектов выборки КЦ БМО - 1152, из них 719 типа FU и 433 типа FO. Выборка КЦ ММО содержит 1793 объекта, из которых 1233 типа FU и 560 типа FO.

3. Определение закона межзвездного поглощения света КЦ. Для определения расстояний КЦ, кроме PL-соотношения $M_{\lambda} = \alpha_{\lambda} + \beta_{\lambda} \log P$, требуются также избытки цветов КЦ и закон межзвездного поглощения. Модуль расстояния КЦ можно получить также и другим способом методом функции Везенхайт W, введенной впервые в обращение ван ден Бергом [15]. Хотя величина W свободна от межзвездного поглощения и для определения расстояний КЦ₋ не требуются избытки цветов, тем не менее, и в этом случае необходим закон межзвездного поглощения,

МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ

для определения которого нами предлагается новый, так называемый метод совместного определения. Суть предлагаемого метода заключается в следующем: определить отдельные параметры межзвездного поглощения по отдельным выборкам КЦ разных галактик, в зависимости от того, где существуют благоприятные условия для определения данного параметра.

Перед тем, как излагать суть данного метода, коротко остановимся на известном методе цветовых разностей [16], который для КЦ впервые был применен в работе Бердникова и др. [17]. Незначительно видоизменив приведенную в [17] связь двух показателей цветов, можно написать:

$$(\langle V \rangle - \langle m_{\lambda} \rangle) = E + F \log P + R_{V-m_{\lambda}} (\langle B \rangle - \langle V \rangle) + GR_G , \qquad (1)$$

где $R_{V-m} = R_V - R_m$, R_G - расстояние КЦ от центра галактики, а E, Fи G - постоянные величины. Последний член в (1) добавляется для учета возможного воздействия градиента металличности на собственные цвета. Выражение (1) выполняется для любых выборок КЦ, пульсирующих в одной моде, независимо от величин их периодов. Из этого выражения следует, что между любыми двумя наблюдаемыми показателями цвета КЦ существует прямолинейная зависимость, которая и используется для определения разностей $R_{V-m} = R_V - R_m$. Построив зависимость величин R_{V-m} от обратной длины волны $1/\lambda$ и экстраполируя график этой зависимости до пересечения с линией $1/\lambda = 0$ ($\lambda = \infty$), можно определить R_V . При этом предполагается, что при $\lambda \to \infty$, $R_m \to 0$.

Таким образом, метод цветовых разностей позволяет напрямую из наблюдательных данных определить разности $R_{V-m_{\lambda}} = R_V - R_{m_{\lambda}}$, то есть получить одно уравнение с двумя неизвестными. Фактическое отсутствие второго уравнения в методе цветовых разностей дополняется экстраполяцией полученных разностей для случая $\lambda = \infty$.

Однако, на самом деле, существует возможность получения второго уравнения прямо из наблюдательных данных. Эту возможность предоставляют выражения типа:

$$DM = W - A_{m_{\lambda}} - B_{m_{\lambda}} \log P = \langle m_{\lambda} \rangle - R_{\lambda} (\langle V \rangle - \langle m_{\lambda} \rangle) - A_{m_{\lambda}} - B_{m_{\lambda}} \log P , \qquad (2)$$

где A_m, и B_m - нуль-пункт и наклон PL-соотношения

$$M_W = A_m + B_m \log P \,. \tag{3}$$

Постоянный коэффициент R_{λ} в формуле (2) выражается соотношением $R_{\lambda} = R_V / (R_V - R_{m_{\lambda}}) = I / (I - R_{m_{\lambda}} / R_V)$, которое и предлагается нами в качестве второго уравнения. Чтобы исключить необходимость знания входящих в (2) расстояний, для получения второго уравнения можно применить выборку FU KЦ БМО. С довольно высокой точностью можно утверждать, что KЦ БМО находятся от нас на одинаковых расстояниях. Составляя и решая систему уравнений типа (2) для величин V и I FU KЦ БМО, с высокой точностью, прямо из наблюдательных данных, можно определить величину

 $R_{\nu}/(R_{\nu}-R_{I})$. Комбинация последней с величиной $R_{\nu-I}=R_{\nu}-R_{I}$, полученной методом цветовых разностей, позволяет вывести закон межзвездного поглощения для КЦ прямо из наблюдательных данных, в чем и заключается смысл предлагаемого нами метода совместного определения. Понятно, что применение метода совместного определения предполагает идентичность законов межзвездного поглощения для Галактики и БМО. Так или иначе, мы вынуждены предполагать универсальность закона межзвездного поглощения. В противном случае вообще невозможно построить шкалу космических расстояний на основе КЦ.

Отметим также, что получение первого уравнения с помощью КЦ БМО невозможно из-за малости общего поглощения света КЦ БМО, а составление второго уравнения с помошью КЦ Галактики нецелесообразно из-за нехватки количества КЦ с известными высокоточными расстояниями. Кроме того, отметим, что использование КЦ ММО для составления второго уравнения также нецелесообразно из-за относительно большой толщины этой галактики по лучу зрения. Этими соображениями и мотивируется необходимость применения предлагаемого нами метода совместного определения.

В методе цветовых разностей необходимо иметь входящие в формулу (1) галактоцентрические расстояния, которые нами определялись следующим образом. Из выборки Джерена и др. [4] были отобраны 25 КЦ Галактики, уверенно отнесенных к типу FU, и для них составлялись уравнения типа (2) для полос V и I. Применение к полученной таким образом избыточной системе метода наименьших квадратов привело к следующему решению:

 $DM = 2.324(\pm 0.200) + 3.564(\pm 0.126)\log P - 2.545(\pm 0.200)(\langle V \rangle - \langle I \rangle).$ (4)

Среднеквадратичная ошибка решения (4) составляет ±0.162, а коэффициент корреляции - 0.993. Данное решение мы не считаем окончательным для КЦ Галактики. Его будем использовать только как промежуточное, и можно считать, что оно обеспечивает удовлетворительную точность определения расстояний для применения в формуле (1).

Теперь, уже с применением формулы (1), для выборки FU КЦ Галактики составляя и решая методом наименьших квадратов избыточные системы уравнений для показателей цветов V-I, V-J, V-H и V-K, определяем величины $R_{V-m_{h}}$. Зависимость полученных таким способом величин $R_{V-m_{h}}$ от обратной длины волны $1/\lambda$ выглядит следующим образом: $R_{V-m_{h}} = 3.244(\pm 0.082) - 0.158(\pm 0.232)/\lambda - 1.479(\pm 0.188)/\lambda^2 + 0.320(\pm 0.045)/\lambda^3$. (5) Свободный член зависимости (5) является отношением общего поглощения к селективному для полосы V. Таким образом, в результате применения метода цветовых разностей получается $R_{V-m_{h}} = 3.244(\pm 0.081)$. Используя соответствующие значения $R_{V-m_{h}}$ и имея в виду, что $R_{m_{h}} = R_{V} - R_{V-m_{h}}$, легко определить остальные коэффициенты - R_{r} , R_{r} , R_{r} , и R_{r} Далее, составляя и решая систему уравнений типа (2), для выборки КЦ БМО получаем следующее решение:

 $\langle V \rangle = 15.945(\pm 0.020) - 3.285(\pm 0.015)\log P + 2.440(\pm 0.026)(\langle V \rangle - \langle I \rangle).$ (6)

Среднеквадратичная ошибка решения (6) составляет ±0.082, коэффициент корреляции - 0.992, а количество уравнений - 713. Из (6) следует, что $R_{V}/(R_{V}-R_{f}) = 2.440(\pm 0.026)$ или $R_{V}/R_{f} = 0.590(\pm 0.026)$. Комбинируя последнее со значениями величин R_{V-m} , полученными выше методом цветовых разностей для FU KЦ Галактики, получаем, теперь уже выведенный с помощью метода совместного определения, закон межзвездного поглощения.

Определенные нами методами цветовых разностей и совместного определения законы межзвездного поглощения приведены в табл.1. Для сравнения с результатами других авторов в табл.1 приведены также результаты Бердникова и др. [17,18], Лени и Стоби [19], Джерена и др. [4], используемые в программе HSTKP [1] значения R, и R, (принятые на основе работы Кардели и др. [20]), а также используемые в программе OGLE [2] значения R, и R, (принятые на основе работы Шлегела и др. [21]). Отметим, что используемые нами и авторами работ [17,18] и [19] цветовые системы для полос ВУ совпадают (система Джонсона). В [18], как и у нас, для / использована система Крона-Казинса, и для этой полосы сравнение с [18] показывает наилучшее согласие нашего результата с аналогичной величиной из [18]. Для ЈНК мы использовали цветовую систему SAAO (Картер [22]), а в [17] использована цветовая система CIT (Элиас [23]), чем и можно объяснить небольшое расхождение результатов для этих полос. Приведенные в табл.1 значения R, Лени и Стоби и R, Джерена и др. [4] для нашей выборки FU КЦ Галактики вычислены нами с помощью следующих формул из работ [19] и [4] соответственно:

$$R_{V} = 3.07 + 0.28(\langle B \rangle - \langle V \rangle)_{0} + 0.04 E(\langle B \rangle - \langle V \rangle), \tag{7}$$

$$R_{I} = 1.82 + 0.205((B) - (V))_{0} + 0.022 E((B) - (V)), \qquad (8)$$

где, согласно [25],

 $(\langle B \rangle - \langle V \rangle)_0 = 0.314(\pm 0.014) + 0.416(\pm 0.032)\log P, \quad \sigma = \pm 0.091.$ (9)

Анализируя табл.1, приходим к основному заключению данного раздела, что коэффициенты R_{ν} и R_{ρ} принятые Удальским и др. для эксперимента OGLE, являются несколько завышенными, а принятые авторами [1] для эксперимента HSTKP - заниженными по сравнению с нашими данными. Интересно отметить, что полученные нами R_{ν} и R_{i} с точностью ±0.01 совпадают со средними соответствующих величин экспериментов OGLE и HSTKP. Кроме того, как следует из табл.1, метод совместного определения обеспечивает более высокую точность по сравнению с методом цветовых разностей.

4. Определение собственных цветов FU КЦ Галактики. Для определения собственных цветов галактических FU КЦ также предлагается новый, так называемый метод сглаживания избытков цвета E(B - V).

Таблица 1

Метод	Цветовые разности		Совместное определение		[17] [18]	[19]	[4]	[1]	[2]
Полоса	Rm	σ _R	R _m	OR.	Rm	R _m	Rm	R	R _m
B V I	4.224 3.224 1.938	0.082 0.082 0.085	4.190 3.190 1.884	0.054 0.054 0.055	4.260 3.260 1.863	3.283	- - 1.972	- 3.100 1.835	3.250 1.950
H K	0.905 0.555 0.357	0.100 0.106 0.108	0.851 0.501 0.303	0.078 0.084 0.087	0.772 0.469 0.274	0.764 0.450 0.279	-	-	-

закон межзвездного поглощения для кц

Суть данного подхода заключается в том, что известные в настоящее время избытки цвета E(B - V), собранные в электронном каталоге Ферни и др. [14], принимаются как первое приближение и, используя соответствующие W-функции, производится их сглаживание, после чего вычисляются собственные цвета. Данный метод был применен к вышеупомянутым 25 FU КЦ Галактики из выборки Джерена и др. [4], так как для них расстояния определены с 3% точностью.

Абсолютная величина *W*-функции для комбинации полос m_{λ_1} , m_{λ_2} имеет следующий вид:

$$\mathcal{M}_{\mathcal{W}(m_{\lambda_1},m_{\lambda_2},m_{\lambda_1})} = \langle m_{\lambda_1} \rangle - \langle (m_{\lambda_2} \rangle - \langle m_{\lambda_1} \rangle) / (1 - R_{\lambda_1} / R_{\lambda_2}) - DM , \qquad (10)$$

где символом $W_{(m_{\lambda_1}m_{\lambda_2}m_{\lambda_1})}$ обозначены всевозможные неповторяющиеся значения W-функции для комбинаций полос *BVIJHK*. Всего возможны 15 таких комбинаций, то есть для 6 полос возможно вычислить 15 неповторяющихся абсолютных M_W -величин. Легко доказать, что, например, $M_{W(VVI)} = M_{W(IVI)} = M_{W(IVI)} = M_{W(IIV)}$, вследствие чего комбинации типа последних трех пропускаются. Абсолютная величина $M_{W(VBV)}$ далее не будет использована из-за ее большого, по сравнению с остальными 14 аналогичными величинами, разброса на диаграмме $M_{W(VBV)}$, log *P*.

Далее с помощью известной формулы:

$$M_{\lambda} = \langle m_{\lambda} \rangle - R_{\lambda} E(\langle m_{\lambda_{1}} \rangle - \langle m_{\lambda} \rangle) - DM$$
⁽¹¹⁾

вычисляются M_{λ} абсолютные величины 25 FU KЦ Галактики в пяти полосах *VIJHK*. При этом используются величины E(B - V) из электронного каталога Ферни и др. [14], закон межзвездного поглощения, полученный

386

выше методом совместного определения (табл.1), и модули расстояния DM из [4]. После этого рассматриваются 14 экспериментальных соотношений типа:

$$M_{\lambda} = K_{m_{\lambda_1}} M_{W_{(m_{\lambda_1}, m_{\lambda_2}, m_{\lambda_1})}} + L_{m_{\lambda_1}}, \qquad (12)$$

где $K_{m_{\lambda_1}}$ и $L_{m_{\lambda_1}}$ - постоянные коэффициенты. Соответствующие параметры всех 14 зависимостей типа (12), полученные методом наименыших квадратов, приведены в табл.2, последовательные столбцы которой обозначают: 1 выбранные комбинации полос; 2 - коэффициенты $K_{m_{\lambda_1}}$; 3 - среднеквадратичная ошибка определения $K_{m_{\lambda_1}}$; 4 - коэффициенты $L_{m_{\lambda_1}}$; 5 - среднеквадратичная ошибка определения $L_{m_{\lambda_1}}$; 6 - среднеквадратичная ошибка данного

Таблица 2

РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СООТНОШЕНИЙ ТИПА (12)

Полоса	K,,,	σκ	L _{m 11}	σ	σ	ρ
VVI	0.901	0.131	0.851	0.021	0.104	0.993
VVJ	0.773	0.156	0.845	0.025	0.126	0.990
VVH	0.875	0.172	0.829	0.027	0.136	0.988
VVK	0.837	0.174	0.829	0.027	0.138	0.988
IBI	0.485	0.097	0.884	0.015	0.077	0.997
IIJ	0.344	0.134	0.903	0.022	0.109	0.993
IIH	0.502	0.141	0.885	0.022	0.111	0.993
IIK	0.463	0.139	0.888	0.021	0.110	0.993
JBJ	0.206	0.043	0.950	0.007	0.035	0.999
JJH	0.412	0.079	0.927	0.012	0.062	0.998
JJK	0.317	0.071	0.935	0.011	0.057	0.998
HBH	0.131	0.027	0.969	0.004	0.022	1.000
·HHK	0.041	0.036	0.975	0.006	0.029	1.000
KBK	0.077	0.016	0.982	0.003	0.013	1.000

решения; 7 - коэффициент корреляции M_{λ} с $M_{W_{(m_1,m_2,m_1)}}$

Известно, что в соотношениях типа M_{λ} , log *P* разброс по сравнению с зависимостью $M_{W_{(\lambda_1, \lambda_2, \lambda_1)}}$, log *P* значительно выше из-за того, что при определении M_{λ} используются избытки цветов. Теперь, если для вычисления M_{λ} используем соотношения (12) с экспериментально определенными параметрами из табл.2, то разбросы M_{λ} , обусловленные ошибками избытков цветов, сводятся к минимуму, в чем и заключается смысл сглаживания избытков цветов с помощью *W*-функций. Обозначив вычисленные с помощью (12) и табл.2 абсолютные величины через $M_{\lambda,W}$, можно написать:

$$E(\langle B \rangle - \langle V \rangle) = (\langle m_{\lambda_1} \rangle - M_{\lambda, W} - DM) / R_{m_{\lambda_1}}.$$
 (13)

С помощью соотношения (13) для каждой КЦ можно вычислить 14 значений $E(\langle B \rangle - \langle V \rangle)$. Из них три, вычисленные с помощью W(JJK), W(JJH) и W(HHK), нами не были использованы, так как покраснение показателей цветов J - K, J - H и H - K незначительная величина и поэтому вычисленные на ее основе $E(\langle B \rangle - \langle V \rangle)$ обременены большими ошибками. Полученные в результате усреднения остальных 11 значений $E(\langle B \rangle - \langle V \rangle)$ вместе со среднеквадратичными ошибками приведены в табл.3. Эти величины и были приняты как окончательные $E(\langle B \rangle - \langle V \rangle)$ для данной выборки FU KЦ Галактики. Столбцы табл.3 обозначают: 1 - название KЦ; 2 - логарифм периода; 3 - полученные нами значения $E(\langle B \rangle - \langle V \rangle)$; 4 - среднеквадратичные ошибки $E(\langle B \rangle - \langle V \rangle)$; 5 - $E(\langle B \rangle - \langle V \rangle)$ из [14]; 6-10 - собственные цвета, вычисленные на основе метода совместного определения закона межзвездного поглощения (табл.1) и наших $E(\langle B \rangle - \langle V \rangle)$ (столбец 3 табл.3).

Используя полученные значения E(B-V), можно вывести следующее Таблица 3

ИЗБЫТКИ ЦВЕТОВ И СОБСТВЕННЫЕ ЦВЕТА 25 FU КЦ ГАЛАКТИКИ (ВЫБОРКА ИЗ [4])

		_								
Звезда	logP	E(B-V)	σ	E(B-V)	$(B-V)_0$	(V-I),	(V-J) ₀	(V-H) ₀	$(V-K)_0$	$(J-K)_{0}$
	123	- 11		[14]			1.1			
U Nor	1.102	0.875	0.009	0.923	0.700	0.743	1.259	1.647	1.729	0.470
KN Cen	1.532	0.818	0.037	0.775	0.763	0.801	1.441	1.916	2.019	0.577
CV Mon	0.731	0.765	0.028	0.750	0.531	0.624	1.103	1.447	1.511	0.408
CS Vel	0.771	0.750	0.010	0.762	0.697	0.669	1.107	1.468	1.543	0.435
RY Sco	1.308	0.711	0.016	0.696	0.714	0.768	1.340	1.725	1.807	0.466
WZ Sgr	1.339	0.577	0.037	0.486	0.814	0.689	1.303	1.727	1.823	0.519
VW Cen	1.177	0.575	0.016	0.451	0.769	0.726	1.244	1.683	1.765	0.520
RY Vel	1.448	0.533	0.015	0.573	0.818	0.867	1.445	1.839	1.928	0.482
AQ Pup	1.478	0.491	0.024	0.565	0.931	0.876	1.420	1.865	1.951	0.530
UU Mus	1.066	0.454	0.007	0.458	0.695	0.702	1.188	1.568	1.640	0.451
BN Pup	1.136	0.427	0.015	0.449	0.758	0.772	1.258	1.656	1.725	0.467
U Sgr	0.829	0.414	0.017	0.434	0.672	0.704	1.140	1.489	1.546	0.405
WZ Car	1.362	0.381	0.011	0.379	0.760	0.784	1.346	1.765	1.855	0.508
VZ Pup	1.365	0.369	0.010	0.461	0.792	0.834	1.385	1.797	1.884	0.499
SW Vel	1.370	0.357	0.006	0.360	0.804	0.807	1.349	1.764	1.852	0.502
BB Sgr	0.822	0.317	0.023	0.303	0.669	0.703	1.104	1.453	1.518	0.413
RZ Vel	1.310	0.316	0.008	0.320	0.803	0.785	1.359	1.767	1.856	0.496
T Vel	0.666	0.313	0.010	0.300	0.608	0.631	1.065	1.413	1.478	0.412
VY Car	1.276	0.302	0.027	0.287	0.868	0.791	1.295	1.707	1.786	0.491
U Car	1.589	0.283	0.013	0.294	0.899	0.847	1.432	1.856	1.948	0.516
XX Cen	1.039	0.270	0.012	0.261	0.712	0.729	1.192	1.558	1.629	0.436
V Cen	0.740	0.268	0.006	0.282	0.606	0.688	1.134	1.486	1.551	0.416
T Mon	1.431	0.258	0.030	0.221	0.907	0.817	1.334	1.775	1.852	0.518
BF Oph	0.609	0.248	0.009	0.278	0.619	0.630	1.055	1.383	1.440	0.385
S Nor	0.989	0.205	0.010	0.194	0.735	0.730	1.216	1.598	1.671	0.454

МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ

соотношение для избытков цвета КЦ Галактики:

$$E(\langle B \rangle - \langle V \rangle) = -0.382 - 0.168 \log P + 0.766(\langle V \rangle - \langle I \rangle).$$
(14)

Основываясь на (14) и табл.1, можно легко получить всевозможные собственные цвета FU KЦ Галактики нашей выборки. Сравнение полученных нами в результате этих расчетов собственных цветов с соответствующими величинами, вычисленными на основе E(B - V) электронного каталога Ферни и др. [14], показывает, что полученные нами собственные цвета в зависимости от log P отличаются значительно низким разбросом. Данный факт свидетельствует в пользу близости наших E(B - V) к их истинным значениям, в отличие от данных Ферни и др. [14].

На основе полученных нами собственных цветов FU KЦ Галактики нашей выборки можно вывести соотношения период-цвет типа:

$$\langle \langle V \rangle - \langle m_{\lambda} \rangle \rangle_{0} = A_{1} + B_{1} \log P \quad \varkappa \quad (\langle B \rangle - \langle V \rangle)_{0} = A_{2} + B_{2} \log P. \tag{15}$$

Полученные зависимости приведены в табл.4. Детальным анализом этих результатов займемся после получения соответствующих данных для БМО и ММО.

Таблица 4

СООТНОШЕНИЯ ПЕРИОД-ЦВЕТ $(\langle V \rangle - \langle m_{\lambda} \rangle)_0 = A_{m_{\lambda}} + B_{m_{\lambda}} \log P$ ДЛЯ FU КЦ ГАЛАКТИКИ

Цвет	A _m	σ,	Bma	σ	σ	ρ	N
B-V	0.365	0.011	0.328	0.012	0.058	0.847	306
V-I	0.499	0.000	0.219	0.000	0.000	1.000	309
V-J	0.725	0.024	0.434	0.023	0.087	0.873	111
V - H	1.033	0.029	0.520	0.028	0.089	0.879	106
V - K	1.064	0.033	0.558	0.032	0.101	0.864	109
J - K	0.342	0.020	0.121	0.019.	0.061	0.521	109

5. Собственные цвета FU КЦ БМО и ММО. При определении собственных цветов $(B - V)_0$ и $(V - I)_0$ FU КЦ МО будем использовать наблюдательный материал двух выборок, составленных нами на основе КЦ OGLE. Выборку КЦ БМО Джерена и др. [4] будем использовать только для получения $(V - J)_0$, $(V - H)_0$, $(V - K)_0$ и $(J - K)_0$.

Для получения $(V - I)_0$ мы применили новый метод, основной особенностью которого является то, что используются исключительно только средние по интенсивности видимые V и I величины КЦ, периоды и закон межзвездного поглощения, не привлекая, кроме перечисленных, какие-либо другие посторонние данные. Понятно, что при наличии надежных $(V - I)_0$ получение остальных собственных цветов не представляется трудным делом. Единственным предположеним, на которое опирается предлагаемый метод, является игнорирование естественного разброса PL-соотношений V_0 , log P и I_0 , log P. Предполагается, что эти соотношения имеют нулевой естественный разброс. Отметим также, что предлагаемый метод требует наличия достаточно многочисленных высокоточных наблюдательных данных, аналогично данным, полученным Удальским и др. [2] для БМО и ММО, где усредненные по интенсивности величины *BVI* измерены с точностью $\pm 0^m.01$, а периоды - $7 \cdot 10^{-5} P$.

Назовем предлагаемый метод - методом разделения разбросов.

Поясним смысл предлагаемого метода, применив его для FU КЦ БМО и ММО.

Построив зависимости видимых величин V и I от logP для FU KЦ MO, определяем их параметры, а именно, нуль-пункт, наклон и среднеквадратичные отклонения. Эти зависимости для БМО и ММО приведены в табл.5, обозначения столбцов которой общеприняты. Затем для каждой FU KЦ вычисляются значения разбросов ΔV и ΔI видимых величин V и I от приведенных в табл.5 зависимостей V, logP и I, logP соответственно. На самом деле значение каждого из полученных ΔV и ΔI определяется воздействием следующих четырех факторов - разбросом расстояний КЦ по лучу зрения вокруг среднего, межзвездным поглошением, естественным разбросом PL-соотношений и ошибками наблюдений. Если игнорировать влияние последних двух факторов и предполагать, что нам известен количественный вклад первого фактора, то по вычисленным значениям ΔV и ΔI легко получить величины межзвездного поглощения для каждой КЦ в каждой из полос V и I. При этом нуль-пункт величины поглощения определяется применением так называемого критерия физической

Таблица 5

Галактика	Полоса	A _λ	σ	B _λ	σ	σ	ρ	N
БМО	V	17.574	0.035	-2.758	0.052	0.298	0.895	714
	Ι	16.904	0.022	-2.971	0.032	0.187	0.960	719
MMO	V	18.074	0.014	-2.876	0.028	0.298	0.947	1204
	Ι	17.452	0.011	-3.093	0.021	0.222	0.973	1233

ПАРАМЕТРЫ PL-СООТНОШЕНИЙ $m_{\lambda} = A_{\lambda} + B_{\lambda} \log P$ ДЛЯ ВИДИМЫХ ВЕЛИЧИН V И I FU КЦ БМО И ММО

бессмысленности отрицательных значений межзвездного поглощения. Одним словом, в предлагаемом методе производится фактическое разделение разбросов видимих величин, обусловленных разбросом расстояний, от разбросов, обусловленных межзвездным поглощением. Значение разброса видимой величины для каждой КЦ $\Delta m_{\lambda, DM}$, обусловленное разбросом расстояний, легко определить, используя неоткалиброванный вариант формулы (2). На

МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ

основе этой формулы можно написать, что:

$$\Delta m_{\lambda,DM} = \langle m_{\lambda} \rangle - A_{\lambda} - B_{\lambda} \log P - C_{\lambda} (\langle m_{\lambda} \rangle - \langle m_{\lambda_{1}} \rangle), \qquad (16)$$

где постоянные коэффициенты A_{λ}, B_{λ} и C_{λ} определяются методом наименьших квадратов из избыточных систем уравнений типа

$$\langle m_{\lambda} \rangle = A_{\lambda} + B_{\lambda} \log P + C_{\lambda} \left(\langle m_{\lambda} \rangle - \langle m_{\lambda_{1}} \rangle \right). \tag{17}$$

Составляя и решая системы уравнений типа (17) для FU KU MO и подставляя полученные таким образом значения констант A_{λ} , B_{λ} и C_{λ} в соответствующие соотношения типа (16), для БМО получаем:

 $\Delta V_{DM} = \langle V \rangle - 15.944(\pm 0.020) + 3.288(\pm 0.015)\log P - 2.444(\pm 0.026)(\langle V \rangle - \langle I \rangle), (18)$ $\Delta I_{DM} = \langle I \rangle - 15.944(\pm 0.020) + 3.288(\pm 0.015)\log P - 1.442(\pm 0.026)(\langle V \rangle - \langle I \rangle). (19)$

и для ММО:

 $\Delta V_{DM} = \langle V \rangle - 16.331(\pm 0.029) + 3.477(\pm 0.017)\log P - 2.800(\pm 0.045)(\langle V \rangle - \langle I \rangle), (20)$ $\Delta I_{DM} = \langle I \rangle - 16.329(\pm 0.029) + 3.477(\pm 0.017)\log P - 1.799(\pm 0.045)(\langle V \rangle - \langle I \rangle). (21)$ Среднеквадратичная ошибка решений (18), (19) составляет ±0.082, а количество уравнений в каждой системе - 714. Соответствующие величины для (20), (21) равны ± 0.145 и 1204. Вычисляя с помощью (18)-(21) ΔV_{DM} и ΔI_{DM} для каждой КЦ, можно сказать, что значения компонентов разброса блеска ΔV_{CF} и ΔI_{CF} , обусловленные межзвездным поглощением, соответственно равны: $\Delta V_{CE} = (\Delta V - \Delta V_{DM})$ и $\Delta I_{CE} = (\Delta I - \Delta I_{DM})$. Разделив эти величины соответственно на $R_V/(R_V-R_I)$ и $R_I/(R_V-R_I)$, вычисленные на основе табл.1, можно получить значения E(V-I). Но здесь надо иметь в виду, что половина полученных таким способом значений E(V-I) имеет отрицательный знак, что лишено какого-либо физического смысла. Чтобы избежать этого, возникает необходимость сдвига полученных значений E(V - I) на определенную величину в положительную сторону, то есть определить поправку к нуль-пункту полученных Е(V-I). Как показывает опыт, значение этой поправки, при наличии достаточно большого количества наблюдательных данных, легко определяется опытным путем и оно получается равным 1.5 , где с - среднеквадратичное отклонение величин $\Delta V_{IE}/R_V/(R_V-R_I)$ и $\Delta I_{IE}/R_I/(R_V-R_I)$. Применение этого метода к 714 FU КЦ БМО привело к следующим соотношениям период-цвет:

 $(\langle V \rangle - \langle I \rangle)_0 = 0.487 + 0.217 \log P$ и $(\langle V \rangle - \langle I \rangle)_0 = 0.489 + 0.220 \log P$, (22) первое из которых получено с применением ΔV_{CE} , а второе - ΔI_{CE} . Соответствующие соотношения для выборки, состоящей из 1204 FU КЦ ММО, имеют следующий вид:

 $(\langle V \rangle - \langle I \rangle)_0 = 0.488 + 0.215 \log P$ и $(\langle V \rangle - \langle I \rangle)_0 = 0.489 + 0.213 \log P$. (23) Соотношения период-цвет (22), (23) можно считать совершенно идентичными, и как окончательный результат для FU KЦ обоих МО нами был принят их средний:

$$\langle V \rangle - \langle I \rangle \rangle_{\rm n} = 0.488 + 0.216 \log P.$$
 (24)

Отметим, что полученное нами методом разделения разбросов соотношение период-цвет (24) для FU KЦ MO показывает идеальное совпадение с аналогичным соотношением, полученным в [2] на основе E(B - V)эксперимента OGLE. Особенность собственных цветов OGLE заключается в том, что для их получения авторами [2] применен закон межзвездного поглощения Шлегела и др. [21]. Как следует из табл.1, этот закон дает ненамного завышенные значения для R_{λ} по сравнению с нашими. Кроме этого, для получения E(B - V) в OGLE использован метод окрестных звезд. То есть с помощью окрестных звезд в 84 точках для БМО и в 11 точках для MMO определены E(B - V) и эти величины отнесены к близлежащим KЦ. Идеальное совпадение наших с OGLE (V - I)₀ свидетельствует о правильности нашего метода и о корректности OGLE процедуры получения E(B - V).

Аппроксимации полученных нами методом разделения разбросов значений E(B-V), а также E(B-V), приведенные в электронном каталоге OGLE для FU KU MO, даны в табл.6. Аппроксимации произведены методом наименьших квадратов с помощью формул

$$E(\langle B \rangle - \langle V \rangle) = A_{EBV} + B_{EBV} \log P + (R_V - R_I)(\langle V \rangle - \langle I \rangle), \qquad (25)$$

где R_{ν} - R_{I} =0.766, согласно табл.1. В табл.6, кроме данных, относящихся к МО, приведены также и данные, вычисленные на основе E(B - V) КЦ Галактики: а) из каталога Ферни и др. [14], б) полученные нами выше, в разделе 4, методом сглаживания с помощью *W*-функций и выражающиеся формулой (14). Анализ табл.6 показывает идентичность полученных нами для КЦ Галактики и МО E(B - V) с соответствующими данными OGLE, что нельзя сказать о E(B - V) Ферни и др. [14], которые резко отличаются как от наших, так и от OGLE данных.

Как было отмечено выше, для учета межзвездного поглощения света КЦ, в эксперименте OGLE использованы дискретные и малочисленные

Таблица б

АППРОКСИМАЦИИ ТИПА (25) ДЛЯ FU КЦ ГАЛАКТИКИ, БМО И ММО

Парамстр	Источник	Галактика	БМО	ММО
A _{EBI} ,±σ	Данная работа	-0.382±0.020	-0.374±0.020	-0.374±0.020
	OGLE	-	-0.362±0.010	-0.386±0.003
	Ферни и др. [14]	-0.330±0.012	-	-
$B_{EBV}\pm\sigma$	Данная работа	-0.168±0.017	-0.166±0.020	-0.166±0.006
	OGLE	-	-0.176±0.015	-0.166±0.006
	Ферни и др. [14]	-0.211±0.013	-	-

значения E(B - V) близлежащих к КЦ окрестных звезд, что, несомненно, понижает точность получения свободных от межзвездного поглощения величин. Чтобы показать эффективность применения полученных нами индивидуальных E(B - V) для каждой КЦ, на рис.1 приведены зависимости период-светимость V и I величин FU КЦ БМО для трех случаев: 1) без учета межзвездного поглощения, 2) межзвездное поглощение учтено с применением OGLE E(B - V) и 3) межзвездное поглощение учтено с применением полученных нами E(B - V). Если уменьшение среднеквадратичных разбросов точек для второго случая едва замечается (от ±0.298 до ±0.279 для V и от ±0.188 до ±0.178 для I), то для третьего случая разбросы сокращаются, примерно, в 2.5-3 раза (от ±0.298 до ±0.081 для V и от ±0.188 до ±0.081 для I).

На основе OGLE данных по FU KЦ МО для $(B - V)_0$ были получены соотношения период-цвет следующими двумя способами. Первый - с использованием полученных нами E(B - V) и второй - с использованием приведенных в каталоге OGLE значений $(B - V)_0$. Полученные таким способом соотношения приведены в табл.7. Для сравнения в табл.7 приводятся также и соответствующие соотношения, полученные ранее в работах [24] и [25].

Инфракрасные собственные цвета были получены на основе выборки FU КЦ БМО Джерена и др. [4]. При этом на основе табл.6 принимается, что

$$E(\langle B \rangle - \langle V \rangle) = -0.374 - 0.166 \log P + 0.766(\langle V \rangle - \langle I \rangle).$$
(26)

С помощью полученных $(V-J)_0$, $(V-H)_0$, $(V-K)_0$ и $(J-K)_0$ были выведены приведенные в табл.8 зависимости период-цвет. Отметим, что указанная выборка Джерена и др. состоит всего из 83 КЦ, из которых для 53 КЦ имеются $\langle V \rangle$ и $\langle I \rangle$ величины, а для 59 КЦ - $\langle J \rangle$, $\langle H \rangle$ и $\langle K \rangle$ величины. Средние по интенсивности величины во всех 5 полосах имеют всего 29 КЦ, с помощью которых и получены инфракрасные собственные цвета.

6. Обсуждение полученных результатов. В предыдущих разделах, на основе современных наблюдательных данных, мы определили закон межзвездного поглощения и собственные цвета FU KЦ Галактики, БМО и ММО. FU KЦ упомянутых галактик сильно отличаются по металличности. Согласно последним данным Андриевски и др. [26], среднее значение металличности КЦ Галактики, по данным 67 объектов, в зависимости от галактоцентрического расстояния, меняется согласно формуле $[Fe/H] = -0.029(\pm 0.004)R_G + 0.253(\pm 0.031)$. Среднее значение металличности 52 FU KЦ из этих 67 KЦ составляет 0.022 ± 0.066 dex. Согласно данным Лак и др. [27], металличность KЦ БМО и ММО составляет -0.3 dex и -0.7 dex, соответственно. Однако, как следует из

Таблица 7

СООТНОШЕНИЯ ПЕРИОД-ЦВЕТ (В-V)0 = АВV + ВВV log Р ДЛЯ FU КЦ ГАЛАКТИКИ, БМО И ММО

Источник	Галактика	Aav	σ	Bav	σ	σ.	ρ	N
Данная работа	Галактика БМО ММО	0.365 0.313 0.308	0.011 . 0.010 0.005	0.328 0.346 0.268	0.012 0.015 0.008	0.058 0.055 0.091	0.848 0.787 0.668	306 327 1172
OGLE	БМО ММО	0.272 0.319	0.018 0.005	0.379 0.267	0.027 0.010	0.099 0.105	0.611 0.614	327 1172
[24]	Галактика БМО ММО	0.310 0.259 0.222	0.022 0.096 0.087	0.412 0.419 0.358	0.023 0.066 0.057	0.070 0.099 0.107	-	108 26 45
[25]	Галактика БМО ММО	0.314 0.262 0.099	0.014 0.027 0.028	0.416 0.416 0.416	0.032 0.032 0.032	0.091 0.091 0.091	-	47 19 19

Рис.1. Соотношения период-светимость для FU КЦ БМО. Верхние два - без учета межзвездного поглощения, средние два - межзвездное поглощение учтено с применением OGLE E(B - V), нижние два - межзвездное поглощение учтено с применением полученной в данной работе E(B - V).

. МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ

полученных нами данных, FU КЦ Галактики, БМО и ММО по $(V-I)_0$ совершенно не отличаются друг от друга. Наблюдаемые разницы собственных цветов $(V-J)_0$, $(V-H)_0$ и $(V-K)_0$ FU КЦ Галактики и БМО (табл.4 и 8), по-видимому, обусловлены малочисленностью выборки FU КЦ БМО (всего 29 КЦ) и находятся в пределах ошибок определения этих собственных цветов FU КЦ БМО.

Таблица 8

Цвст	Am	σA	B _{m1}	σ _B	σ	ρ
V - J	0.836	0.060	0.325	0.043	0.056	0.823
V - H	1.166	0.078	0.394	0.056	0.073	0.803
V - K	1.175	0.086	0.438	0.062	0.080	0.807
J - K	0.339	0.042	0.113	0.030	0.039	0.589

СООТНОШЕНИЯ ПЕРИОД-ЦВЕТ $(\langle V \rangle - \langle m_{\lambda} \rangle)_0 = A_{m_{\lambda}} + B_{m_{\lambda}} \log P$ ДЛЯ 29 FU KЦ БМО ИЗ [4]

Статистически значимое различие, коррелирующее с металличностью, наблюдается только между собственными цветами $(B - V)_0$ FU KЦ Галактики и MO. Величины $(B - V)_0$ для $\log P = 1$, вычисленные на основе табл.7 для FU KЦ Галактики, БМО и MMO, в звисимости от металличности, приведены в табл.9. Как следует из этой таблицы, в среднем, FU KЦ Галактики ненамного краснее по сравнению с FU KЦ MO. Данный результат качественно совпадает с аналогичным выводом, ранее полученным авторами работ [24,25] на основе более малочисленных выборок, по сравнению с нашей (табл.7). Но количественный анализ табл.9 показывает, что различие не такое уж большое, как это следует из результатов работ [24,25].

Для выявления связи собственных цветов с металличностью FU КЦ

Таблица 9

Источник	Галактика	$(B - V)_0$	σ	[Fe/H]dex
Данная работа	Галактика БМО ММО	0.693 0.659 0.576	0.016 0.018 0.009	0.022 -0.300 -0.700
[24]	Галактика	0.722	0.032	0.022
	БМО	0.678	0.117	-0.300
	ММО	0.580	0.104	-0.700
[25]	Галактика	0.730	0.034	0.022
	БМО	0.678	0.042	-0.300
	ММО	0.515	0.043	-0.700

СОБСТВЕННЫЕ ЦВЕТА $(B - V)_0$ ДЛЯ $\log P = 1$ И МЕТАЛЛИЧНОСТЬ FU КЦ ГАЛАКТИКИ, БМО И ММО

Галактики были использованы полученные нами собственные цвета и данные о металличности, приведенные в работе [26]. Прямолинейные аппроксимации этих связей, полученные методом наименьших квадратов, не показывают статистически значимых корреляций между металличностью и собственными цветами, несмотря на то, что металличность галактических FU KЦ, в зависимости от местонахождения в Галактике, меняется в довольно широких пределах - от -0.2 dex до 0.2 dex.

7. Заключение. Предложен новый метод - метод совместного определения вывода закона межзвездного поглощения света FU KU. Этим методом получен: $R_B: R_V: R_I: R_I: R_H: R_R = 4.190:3.190:1.884:0.851:0.501:0.303.$

Показано, что широко используемые ныне для галактических КЦ избытки цвета E(B - V) Ферни и др. [14] нуждаются в корректировке. Для определения E(B - V) FU КЦ Галактики предложена простейшая формула (14). Аналогичная формула, почти совпадающая с (14), получена также и для КЦ МО (26).

Предложен новый метод - метод разделения разбросов для определения избытков цвета FU KЦ MO.

Взамен широко распространенной формулы (9) для $(B - V)_0$ FU KU Галактики предлагается более точная и значительно отличающаяся от (9) следующая формула (табл.4, строка 1):

 $(\langle B \rangle - \langle V \rangle)_0 = 0.365(\pm 0.011) + 0.328(\pm 0.012)\log P$, $\sigma = \pm 0.058$ (27)

Получены и детально исследованы всевозможные собственные цвета FU КЦ Галактики и обоих МО в зависимости от металличности. Доказана абсолютная независимость (*V*-*I*)_n от металличности FU КЦ.

Автор выражает благодарность рецензенту за ценные замечания и К.С.Гигояну за оказанную помощь в ходе выполнения данной работы.

Бюраканская астрофизическая обсерватория им. В.А.Амбарцумяна, Армения, e-mail: habrahamyan@web.am

INTERSTELLAR EXTINCTION AND INTRINSIC COLOURS OF CLASSICAL CEPHEIDS OF GALAXY, LMC AND SMC

H.V.ABRAHAMYAN

We examine samples of Classical Cepheids of Galaxy, LMC and SMC for dhe determination of the interstellar extinction law and intrinsic colours

· МЕЖЗВЕЗДНАЯ ЭКСТИНКЦИЯ

of these stars. New techniques have been applied to derive extinction coefficients $R_B: R_V: R_I: R_I: R_H: R_R = 4.190: 3.190: 1.884: 0.851: 0.501: 0.303$ and colour excesses $E(B - V) = -0.382 - 0.168\log P + 0.766(V - I)$ for the Classical Cepheids of the Galaxy and $E(B - V) = -0.374 - 0.166\log P + 0.766(V - I)$ for the Classical Cepheids of both Magellanic Clouds. The correlation of the intrinsic colour indices $(B - V)_0$ with the metallicity of Classical Cepheids is discussed. There is no correlation between intrinsic colour indices $(V - I)_0$ and metallicity of Classical Cepheids. A high precision relation is derived for the intrinsic colour index $(B - V)_0$ for the Classical Cepheids of the Galaxy: $((B) - (V))_0 = 0.365(\pm 0.011) + 0.328(\pm 0.012)\log P$.

Key words: (stars:variables:)Cepheids:interstellar extinction - individual: Galaxy, LMC, SMC

ЛИТЕРАТУРА

- 1. W.R.Freedman, B.F.Madore, B.K.Gibson et al., Astrophys. J., 553, 47, 2000.
- A.Udalski, M.Szumanski, M.Kubiak, G.Pietrzymski, G.Soszynski, I.Wozniak, K.Zebrun, Acta Astron, 49, 201, 1999.
- 3. W.P.Gieren, P.Fouque, M.Gomez, Astrophys. J., 488, 74, 1997.
- 4. W.P.Gieren, P.Fouque, M.Gomez, Astrophys. J., 496, 17, 1998.
- 5. T.G.Barnes, D.S. Evans, Mon. Notic. Roy. Astron. Soc., 174, 489, 1976.
- 6. M.A.C.Perryman, E.Hog, J.Kovalevsky, L.Lindengren, C.Turon, The Hipparcos and Tycho Catalogues, European Space Agency, SP-1200, 1997.
- 7. M.W.Feast, R.M.Catchpole, Mon. Notic. Roy. Astron. Soc., 286, L1, 1997.
- 8. P.Lanoix, G.Paturel, R.Garnier, Mon. Notic. Roy. Astron. Soc., 308, 969, 1999.
- 9. A.Sandage, G.A.Tammann, Mon. Notic. Roy. Astron. Soc., 293, L23, 1998.
- 10. B.F.Madore, W.L.Freedman, Astrophys. J., 492, 110, 1998.
- 11. C.Koen, D.Laney, Mon. Notic. Roy. Astron. Soc., 301, 582, 1998.
- L.N.Berdnikov, A.K.Dambis, O.V.Vozyakova, Astron. Astrophys. Suppl. Ser., 143, 211, 2000.
- 13. M.A.T. Gronewegen, R.D. Oudmaijer, Astron. Astrophys., 356, 849, 2000.
- 14. J.D.Fernie, B.Beattie, N.R.Evans, S.Seager, IBVS №4148, 1995.
- S. van den Berg, Galaxies And The Universe, Eds. A.Sandage, M.Sandage, J.Kristian, Univ. Chicago Press, 509, 1975.
- 16. W. Wegner, Mon. Notic. Roy. Astron. Soc., 270, 229, 1994.
- 17. Л.Н.Бердников, О.В.Вознякова, А.К.Дамбис, Письма в Астрон, ж., 22, 372,1996.
- 18. Л.Н.Бердников и др., Письма в Астрон, ж., 22, 936, 1996.

C.D.Laney, R.S.Stobie, Mon. Notic. Roy. Astron. Soc., 263, 921, 1993.
 J.A.Cardelli, G.C.Clayton, J.S.Mathis, Astrophys. J., 345, 245, 1989.
 D.J.Schlegel, D.P.Finkbeiner, M.Davis, Astrophys. J., 500, 525, 1998.
 B.S.Carter, Mon. Notic. Roy. Astron. Soc., 242, 1, 1990.
 J.H.Elias, J.A.Frogel, K.Matthews, G.Neugebauer, Astron. J., 87, 1029, 1982.
 J.A.R.Caldwell, I.M.Coulson, Mon. Notic. Roy. Astron. Soc., 218, 223, 1986.
 C.D.Laney, R.S.Stobie, Mon. Notic. Roy. Astron. Soc., 266, 441, 1994.
 S.M.Andrievsky, V.V.Kovtyukh, R.E.Luck et al., Astron. Astrophys., 381, 32, 2002.

27. R.E.Luck, T.J.Moffett, T.G.Barnes, W.P.Gieren, Astron. J., 115, 605, 1998.