АСТРОФИЗИКА

TOM 46

МАЙ, 2003

ВЫПУСК 2

УДК: 524.7

SPECTROSCOPIC STUDY OF A LARGE SAMPLE OF GALAXIES DISCOVERED IN THE SECOND BYURAKAN SURVEY FIELDS

M.V.GYULZADYAN¹, J.A.STEPANIAN², A.R.PETROSIAN¹, D.KUNTH³, B.McLEAN⁴, G.COMTE⁵ Received 5 February 2003

The Second Byurakan Survey (SBS) is a well known combined survey, which uses the presence of UV-excess radiation in the continuum, or the presence of emission-lines in the spectra for the identification of active and star-forming galaxies. This paper reports on a comparative study of 77 galaxies identified with UV-excess, and 34 galaxies identified via emission-line techniques in the fields of the SBS. The spectroscopic parameters used for the comparison are the [OII] λ 3727/H β and [OIII] λ 5007/H β emission-lines ratios, the equivalent widths of [OII] λ 3727, [OIII] λ 5007 and H β emission-lines, and the $C_{1011} - C_{H\beta}$ index. Spectroscopic parameters as well as new redshifts were determined from the spectra obtained with the 6m telescope of the Special Astrophysical Observatory (Russia). The main results are: 1) Galaxies discovered via UV-excess technique are preferably more active. 2) Galaxies discovered via emission-line technique are preferably high-excitation low-luminosity star-forming galaxies. 3) UV-excess galaxies with faintest UV-excess radiation are likely candidates to be LINER or Sy2 type objects.

Key words: galaxies - UV-excess galaxies:emission - line galaxies:statistics

1. Introduction. Last four decades particular interest has been devoted to the search for extragalactic blue emission-line galaxies. Many surveys have already isolated galaxies with emission-lines and blue colors. During the course of such surveys active galactic nuclei (AGN) and QSOs are occasion-ally found, but a large fraction of these newly discovered objects refer to galaxies with strong star formation bursts. Such blue starburst galaxies are rather common as they represent about 10% of all galaxies in the absolute magnitude range $-22.5 \le M(B) \le -16.5$.

Among blue emission-line galaxies, particular attention has been devoted to the subclass of low luminosity galaxies, so-called Blue Compact Dwarf Galaxies (BCDGs), with small size, high surface brightness, are gas-rich and metal-poor and in which star formation takes place in sporadic bursts. BCDGs have been used as prime targets for measuring the primordial helium abundance from their ionized gas (e.g. [1]), chemical (e.g. [2]). They also concur to the understanding of massive stellar evolution (e.g. [3]) and the triggering mechanisms for star formation processes (e.g. [4,5]) and even some clues on the nature of dark matter (e.g. [6]). Taking in account the importance to have large sample of very metal-poor BCDGs, Kunth and Sargent [7] gave a description on how they should appear on objective-prism surveys. BCDGs, during the recent surveys, have been selected from the very presence of strong and narrow emission-lines, featureless and weak but UV-excess continua [8-10]. In spite of their high astrophysical importance, the number of classical BCDGs and their candidates is still limited to a few hundreds.

In the local universe, the majority of narrow emission-line galaxies are called HII [11,12] or starburst galaxies [13] which otherwise are normal galaxies with respect to their morphology. They share the property of forming stars at a high rate at the present epoch. The blue color and UV radiation, in excess of the reddish background of evolved giant star population, originates from a large population of newborn massive OB stars. The hard UV radiation emitted by O stars ionizes the interstellar gas and produces an emission-line spectrum. Detailed investigations of these objects give not only the clues to understand the nature of present-day star formation processes but also offer the opportunity of studying processes of star and galaxy formation and evolution at a substantial cosmological look-back time [14,15]. They help to tackle problems related to the large-scale structure of the Universe (e.g. [16]).

Since the pioneering studies by Haro [17], Zwicky [18] and Markarian [19], many surveys have been devoted to search for such galaxies. The color survey, which proceeds by searching for blue or UV-excess objects, has the advantage to select star-forming galaxies at many stages of their evolution and regardless of the metal content of the gas. Emission-line surveys are limited by seeing effects and guiding and by the limited range of redshift that photographic plates permit to explore with good efficiency. A few surveys have combined both selection criteria in order to improve the detection of objects at all possible stage of evolution. The Case [20] and Second Byurakan (SBS, [21]) as well as the Marseille [22] surveys have shown that the efficiency of finding star-forming galaxies is indeed much larger when UV-excess and line emission are looked for across the same field.

Comte et al. [23] have shown that color surveys (e.g. [24]) sample different galaxies population as compared to low-dispersion prism-objective emission-line surveys (Salzer et al. [25]). Emission-line selected samples (e.g. [25]) span a broader range of colors than purely UV-excess objects [26]. There are cases where very blue objects, emission-line selected, were also missed by most Markarian UV surveys [25] while on the contrary, only 20% of Markarian galaxies observed in Wasilewski [27] emission-line search were detected as emission-line objects. The existence of such cases is not a surprise. Within "combined surveys", in which both color and emission-line information are obtained the great majority of objects have emission-lines but only part of them possess a strong UV-excess radiation. What is the essence of this observational picture? Do some selection effects play a role or some intrinsic properties of different populations of star-forming galaxies? Petrosian et al. [28] address this problem by comparing the 524 SBS galaxies discovered via UV-excess radiation with 340 SBS galaxies discovered via the presence of line emission. The parameters used for the comparison were apparent magnitude, redshift, spectral class, luminosity, morphology, activity type, and close environment.

In the present paper, on the basis of spectroscopic observations of a large sample of the galaxies at 6-m telescope of Special Astrophysical Observatory (SAO, Russia), we aim once more to address this problem. All galaxies were discovered in Second Byurakan Sky Survey fields. The sample contains objects, which were selected from their emission-line spectra, and objects, which were selected from their UV-excess radiation. In Sec.2 we discuss the SBS field galaxies sample and two other sub-samples, we present the observations and data reduction and draw some results. In Sec.3 we compare several spectroscopic parameters of the two sub-samples of SBS field galaxies and analyze the results, which are discussed and conclusions are given in the last Sec.4.

Throughout the paper, we shall use $H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the Hubble constant.

2. The Sample, Observations and Data Reduction.

2.1. The Sample. The Second Byurakan Survey was conducted with the 1-m Schmidt telescope at the Byurakan Astrophysical Observatory in combination with a set of three objective prisms with refracting angles of 1.5, 3 and 4 degrees and Kodak IIIaJ and IIIaF backed plates [21]. The limiting magnitude of the survey is $19^{\text{m}}-20^{\text{m}}$. The objective prism survey plates cover the sky region defined by $7^{\text{h}}40^{\text{m}} \le \alpha \le 17^{\text{h}}20^{\text{m}}$, $49^{\circ} \le \delta \le 61^{\circ}.2$, an area of about 1000 square degrees.

To achieve an effective and uniform survey, each area of the sky has been photographed several times on baked IIIaJ and IIIaF plates, first with 1°.5 prism and then with 3° and 4° prisms in conjunction with different filters. As in the case with the First Byurakan Survey (FBS, [19]) un-widened spectra were obtained and UV-excess objects were selected. As for the FBS, UV emitting regions were classified as stellar ("s") or diffuse ("d") according to the morphological appearance on their UV objective spectra. Intermediate classifications such as "sd" and "ds" also were used. A number between 1 and 3 was used to indicate the relative intensity of the UV emission with 1 being the strongest UV-excess. The 3° and 4° prisms were generally used to find weak and low-contrast emission-lines. Approximately all UV-excess galaxies, which were identified by 1°.5 prism observations, exhibit emission-line spectra in agreement with the observations of the 3° and 4° prisms. Besides, observations made with the 3° and 4° prisms have revealed a large number of new emission-line galaxies without excess UV radiation. In an area of about 1000 square degree 1401 UV-excess or emission-line galaxies were identified [29].

During the last one and half decade approximately half of SBS galaxies

sample, preferably objects with strong or moderate emission-lines, were followed up spectrally at the 6-m telescope of the SAO. Several dozen galaxies, which were identified by an excess UV radiation or by their emission-lines in SBS fields, but were not included in SBS survey lists, were observed at the 6m telescope. For the aim of this present study, 111 objects with SAO calibrated spectra were selected out of 600 galaxies from the SBS fields. 77 of them were UV-excess selected from the 1°.5 prism observations. These galaxies will be referred in this paper as UV-excess galaxies (hereafter UVGs). 34 were discovered by their emission-line spectra according to the 3° or 4° prisms observations. These have not appreciable UV continuum radiation hence do not show up in the 1°.5 plates. Hereafter these galaxies will be referred as Emission-line galaxies (ELGs).

2.2. Observations and Data Reduction. The follow-up spectroscopic observations were carried out during two nights of 11^{th} and 12^{th} of February 1991 with the 6-m telescope of SAO, Russia. A 1024-channel photon counter IPCS was used. Spectral resolution was about 4\AA . Because of the low sensitivity of the IPCS in the red spectral range, observations were done only in the blue spectral range (on average from 3650 to 5550 Å). To remove the differences in sensitivity of the background and object detectors; two identical exposures of each galaxy were carried out step-by-step on the object slit and then on the background slit. Then, the obtained spectra were added together.

The reduction of the observations was done using standard procedures developed in SAO (SIPRAN) and Byurakan Observatory (AIDA). Reduction procedures include background subtraction, linearization of the spectra, wavelength and intensity calibrations.

For each object, a set of parameters were collected and are presented in Table 1, for the UVGs and in Table 2 for the ELGs. In both Tables, the column descriptions are as follows: Column 1: SBS field galaxy names. SBS names are taken from Bicay et al. [29]. Several galaxies are from Markarian's (e.g. [30]) and Case blue galaxies [31] lists; Column 2: Adopted spectral classes for the SBS field galaxies; Column 3: Apparent photographic magnitudes (m), which are eye estimates from the POSS blue prints and are accurate to ±0.5 mag [29]; Column 4: Heliocentric redshifts (z), which were measured using [OII] λ 3727, H β , [OIII] λ 4959 and [OIII] λ 5007 emission-lines (median standard deviation (σ) of velocity measurements is equal to 48 km s⁻¹); Column 5: Photographic absolute magnitudes (M_{2}) . No correction for Galactic absorption has been used since all galaxies are at high Galactic latitude and since apparent photographic magnitudes are given to within ±0.5 mag; Columns 6-7: Relative to H β line intensities of [OII] λ 3727, and [OIII] λ 4959+5007. The uncertainty in these emission-lines ratios is in the order of 25%; Columns 8-10: Equivalent widths (in Angstroms) of [OII] λ 3727, H β , and [OIII] λ 5007 emission-lines;

Column 11: Color index of the continuum underlying [OII] λ 3727 and H β emissionlines ($C_{[OII]} - C_{H\beta}$), which was calculated according to the formula (2) of Rola et al. [32]; Column 12: Notes.

Data of the Tables 1 and 2 have been used for the comparative study as well as for a detailed study of the UVGs and ELGs samples galaxies.

Table 1

UVGs: GALAXIES OF THE SBS FIELDS DISCOVERED via UV-EXCESS TECHNIQUE

			PIU			100		<u>milq</u>			
SBS	SC	m	z	M	[011]/	[0111]/	EW	EW	EW	C _{iom} -	Notes
		-	1		Hβ	Нβ	([OII])	(Hβ)	([OIII])	C _{Hp}	A STATISTICS.
0745+601A	d2e	18.0	0.0354	-177	2.46	4.69	90.4	32.0	148.7	0.148	I mark and a
0750+603A			0.0378		2.30	2.48	103.0	39.5	108.2	0.137	COMPANY OF THE OWNER OF
0750+603B			0.0370	-	1.40	3.23	112.3	47.0	155.4	0.580	A CONTRACTOR NAMES
0752+560B			0.0288			2.95	67.0	19.7	57.8	0.151	Dettel St.
0755+536			0.0360		1.36	0.35	22.1	9.6	3.4	0.569	Sy2
0755+588			0.0202			1.37	96.1	27.2	38.5	0.499	
0935+585			0.0251			2.32	125.0	25.8	62.9	0.885	S. Like and
0936+531	ds2e		0.0259		1.97	2.02	58.4	17.9	39.0	0.553	A READEN
0939+592	sd2e		0.0054			3.08	63.8	7.1	23.3	0.410	Mrk1423
0940+508			0.0656	-19.1	1.52	4.89	96.9	114.3	541.4	-0.632	E STRATICE.
0942+573	sdle		0.0052		2.79	4.94	67.8	23.6	121.9	0.031	Mrk1424
1006+578A			0.0056			3.77	18.4	6.5	26.8	0.164	BCD
1009+586	ds2e	17.0	0.0314	-18.5	2.36	2.92	67.4	25.0	70.8	0.146	Mrk28
1054+596	d2e	18.5	0.0341	-17.2	1.97	3.19	145.6	61.1	224.4	0.205	1.01-1.01
1113+593	ds2e	17.0	0.0368	-18.9	2.00	2.34	67.1	21.8	53.4	0.469	1.10-11-12
1114+517	ds2c	16.5	0.0105	-16.6	1.39	4.14	78.9	42.7	188.3	0.309	Mrk1445
1119+601A	d2e	17.5	0.0150	-14.7	1.46	4.42	214.8	54.3	261.5	1.082	BCD
1120+586B	sd3e	18.5	0.0382	-17.4	1.71	3.23	119.3	39.2	154.0	0.627	Domenic P.
1124+541	sd2e	16.5	0.0107	-16.7	1.08	4.86	96.4	108.9	597.9	-0.214	Mrk1446, BCD
1124+610	dsle	17.0	0.0336	-18.6	3.26	2.24	97.2	25.8	59.8	0.157	Sy2
1125+562	sd2e	16.0	0.0196	-18.5	2.20	2.80	87.5	29.1	84.8	0.336	Sy2
1132+578	sdle		0.0310		2.48	3.51	82.5	20.8	73.3	0.508	2 012-11-11
[140+537	sdle	16.5	0.0294	-18.9	2.59	2.57	106.2	67.6	194.2	-0.542	Mrk1451
1152+579	dle	16.5	0.0185	-17.8	0.95	4.45	129.2	184.3	450.2	-0.461	Mrk193
1155+588	ds2e	17.5	0.0654	-19.6	2.70	4.46	78.4	30.1	146.3	-0.036	Sy2
1203+592	d2e	17.0	0.0110	-16.4	2.16	3.90	214.6	118.8	569.8	-0.192	BCD
1215+558	ds2e	17.5	0.0327	-18.1	3.05	1.73	121.9	29.1	51.9	0.343	Sy2
1216+551	sdle		0.0190		2.71	3.35	50.8	9.1	31.2	0.786	BCD
1221+585	ds3e	17.5	0.0149	-16.4	0.36	4.77	12.7	12.5	60.3	1.115	BCD
1221+602	100	17.5	0.0245		2.18	2.57	47.7	18.8	48.4	0.163	
1223+537A	s3	18.5	0.0516	-17.3	3.47	2.41	105.9	18.2	44.4	0.562	Sy2
1223+537B	dsle	18.0	0 0530	-18.6	0.97	6.10	140.3	149.0	920.4	-0.035	502
1224+561A	ds3e		0.0522			5.89	38.6	3.7	22.1	1.214	LINER
1227+568B	sdle	18.0	0.0542	-18.7	1.74	2.17	45.5	11.4	28.3	0.899	The second
1230+560	ds2e	17.0	0.0339	-18.7	3.09	1.28	77.8	14.9	19.6	0.571	al and many
1242+549	sdle		0.0168		1.23	3.35	60.5	66.2	263.4	-0.319	
1250+594	sd2c	18.0	0.0454	-18.3	3.25	2.48	89.9	28.1	75.5	-0.015	ANT F MILLION
1303+537	d3e	16.0	0.0248	-19.0	3.62	3.45	37.2	9.3	33.4	0.108	Mrk242
1312+550	sle	15.0	0.0333	-20.6	2.04	1.21	36.8	20.5	22.0	-0.137	Mrk247
1314+605	d2e	17.5	0.0075	-14.9	4.90	4.36	97.9	20.3	93.4	-0.016	BCD
								-	at the second	6.14	

171

M.V.GYULZADYAN ET AL

Table 1 (the end)

1 2 3 4 5 6 7 8 9 10 11 12 1315+593 d52 17.5 0.0293 17.8 3.38 3.40 38.8 6.9 24.9 0.560 1317+523C d5e 16.0 0.0165 -18.1 3.88 2.63 60.5 14.1 38.4 0.111 1319+953 d1 15.5 0.0321 -19.6 4.09 3.70 42.1 10.5 39.3 -0.018 Mrk65 1323+518 d52e 14.2 0.0015 15.5 4.58 4.12 17.7 3.9 16.7 -0.007 Mrk1479 132+545 sd1e 16.5 0.0068 15.7 2.40 3.00 109.9 6.66 198.5 -0.409 Mrk1480 BCD 134+594 d2e 17.5 0.018 3.27 72.5 12.7 46.0 0.225 1358+554 sd2e 150 0.0252 132 1341												
1315+593 622 17.3 0.0165 18.1 3.88 2.63 60.5 14.1 38.4 0.111 1317+523C 63e 15.0 0.0165 18.1 3.88 2.17 60.0 13.7 30.7 0.153 Mrk65 1323+575 63e 15.0 0.022 -15.4 0.95 3.58 88.8 122.1 475.8 -0.140 BCD 1332+545 sdze 14.2 0.00516 18.6 3.56 3.27 72.5 12.7 46.0 0.512 Sy2 1340+529 sdle 18.0 0.0255 -17.1 3.00 3.28 105.4 31.2 108.9 0.026 BCD 1341+594 d2e 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1354+580 sdle 17.5 0.018 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1354+580 sdle 17.5 0.0282 -17.8 3.57 4.24 109.7 2.50	1	2	3	4	5	6	7	8	9			12
1317+523C d3e 16.0 0.0165 -18.1 3.88 2.63 60.5 14.1 38.4 0.111 1319+593 d1 15.5 0.0439 -20.7 3.80 2.17 60.0 13.7 30.7 0.153 Mrk66 1323+575 d3e 15.0 0.0212 -19.6 4.09 3.70 42.1 10.5 39.3 -0.018 Mrk66 1331+493 s2e 14.9 0.0028 -15.4 0.95 3.58 88.8 122.1 475.8 -0.140 BCD 1332+545 sdte 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.409 Mrk1480.BCD 1341+594 d2e 17.5 0.010 -15.7 3.30 3.28 105.4 31.2 108.9 0.026 BCD 1354+580 sdte 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 17.5 0.0138 -16.2 2.31 3.10 19.7 0.66.3<	1315+593	ds2e	17.5	0.0293	-17.8	3.38	3.40	38.8		-		
1319+593 d1 15.5 0.0439 -20.7 3.80 2.17 60.0 13.7 30.7 0.153 Mrk65 1323+575 d3e 15.0 0.0212 -19.6 4.09 3.70 42.1 10.5 39.3 -0.018 Mrk66 1331+493 s2e 14.2 0.0028 -15.4 0.95 3.58 88.8 122.1 475.8 -0.140 BCD 1332+545 sdle 14.2 0.0016 -15.6 4.58 4.12 17.7 3.9 16.7 -0.007 Mrk1479 1332+545 sdle 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.409 Mrk1480, BCD 134+594 d2e 17.5 0.0110 -15.7 3.30 3.28 105.4 31.2 108.5 -0.409 Mrk1480, BCD 1354+580 sdle 17.5 0.0126 -17.1 1.30 4.46 43.8 27.7 7.4 0.214 1354+580 sdle 17.5 0.0138 -16.2 2.31 3.10			16.0	0.0165	-18.1	3.88	2.63	60.5				
1323+575 d3e 15.0 0.0212 -19.6 4.09 3.70 42.1 10.5 39.3 -0.018 Mrk666 1331+493 s2e 14.9 0.0028 -15.4 0.95 3.58 88.8 122.1 475.8 -0.140 BCD 1332+518 ds2e 14.2 0.0015 -15.5 4.58 4.12 17.7 3.9 16.7 -0.007 Mrk1479 1332+545 sd1e 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.409 Mrk1480, BCD 1341+594 d2e 17.5 0.010 -15.7 3.30 3.28 105.4 31.2 108.9 0.026 BCD 1352+589 sd2e 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+584 sd2e 17.5 0.0282 17.8 3.57 4.24 109.7 25.0 106.0 0.225 1414+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3.80</td><td>2.17</td><td></td><td></td><td></td><td></td><td></td></td<>						3.80	2.17					
1331+493 s2e 14.9 0.0028 -15.4 0.95 3.58 88.8 122.1 475.8 -0.140 BCD 1332+518 ds2e 14.2 0.0015 -15.5 4.58 4.12 17.7 3.9 16.7 -0.007 Mrk1479 1332+545 sd1e 16.5 0.0056 -18.6 3.56 3.27 72.5 12.7 46.0 0.512 Sy2 1340+529 sd1e 16.5 0.0056 -18.6 3.57 4.24 109.9 66.6 198.5 -0.409 Mrk1480.BCD 1341+594 d2e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1354+580 sd1e 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1388+554 sd2e 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1411+556A ds3e 15.5 0.0430 -19.7 4.76 2.22 47.7 5.1<						4.09	3.70	42.1				
1332+518 ds2e 14.2 0.0015 -15.5 4.58 4.12 17.7 3.9 16.7 -0.007 Mrk1479 1332+545 sdle 18.0 0.0516 -18.6 3.56 3.27 72.5 12.7 46.0 0.512 Sy2 130+529 sdle 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.009 Mrk1480.BCD 1341+594 d2e 17.5 0.0110 -15.7 3.30 3.28 105.4 31.2 108.9 0.025 1354+580 sdle 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1404+571 sd2e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.055 -19.4 1.12 1.49 19.6 9.9						0.95	3.58					
1332+545 sdle 18.0 0.0516 -18.6 3.56 3.27 72.5 12.7 46.0 0.512 Sy2 1340+529 sdle 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.009 Mrk1480. BCD 1341+594 d2e 17.5 0.0110 -15.7 3.30 3.28 105.4 31.2 108.9 0.026 BCD 1354+580 sdle 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1404+571 sd2e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+586 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 </td <td></td> <td></td> <td>14.2</td> <td>0.0015</td> <td>-15.5</td> <td>4.58</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			14.2	0.0015	-15.5	4.58						
1340+529 sdle 16.5 0.0068 -15.7 2.40 3.00 109.9 66.6 198.5 -0.409 Mrk1480, BCD 1341+594 d2e 17.5 0.0110 -15.7 3.30 3.28 105.4 31.2 108.9 0.026 BCD 1352+589 sd2e 18.0 0.0255 -17.1 1.30 4.46 43.8 27.7 37.4 0.214 1354+580 sd1e 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1404+571 sd2e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+586A sd2 16.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 </td <td></td> <td></td> <td></td> <td>0.0516</td> <td>-18.6</td> <td>3.56</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				0.0516	-18.6	3.56						
1341+594 d2e 17.5 0.0110 -15.7 3.30 3.28 105.4 31.2 108.9 0.026 BCD 1352+589 sd2e 18.0 0.0255 -17.1 1.30 4.46 43.8 27.7 37.4 0.214 1354+580 sd1e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1358+554 sd2e 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.6113 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1446+595 d2e 17.0 0.019 -16.4 2.12 5.25 50.4 30.5 144.3		sdle	16.5	0.0068	-15.7	2.40						
1352+589 sd2e 18.0 0.0255 -17.1 1.30 4.46 43.8 27.7 37.4 0.214 1354+580 sd1e 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1404+571 sd2e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds3e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -16.4 1.47 5.01 53.1 29.5 166.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3.30</td><td></td><td></td><td></td><td>1</td><td></td><td>BCD</td></td<>						3.30				1		BCD
1354+580 sdie 17.5 0.0282 -17.8 3.57 4.24 109.7 25.0 106.0 0.225 1358+554 sd2e 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1404+571 sd2e 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 ds3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1422+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.683 1430+526 ds2e 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311		sd2e	18.0	0.0255	-17.1	1.30	1			the second se		
1358+554 sd2c 17.5 0.0138 -16.2 2.31 3.10 19.0 28.8 60.4 -0.544 BCD 1404+571 sd2c 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1422+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.663 1430+526 ds2e 17.0 0.0103 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1453+526 sd1e 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3.57</td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>						3.57	•					
1404+571 sd2c 16.5 0.0420 -19.8 2.09 1.11 47.1 21.9 24.5 0.033 1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.683 1430+526 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 dze 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.0115 -16.3 2.86 36.6 178.4 83.2 344.5 <t< td=""><td></td><td></td><td></td><td>0.0138</td><td>-16.2</td><td>2.31</td><td>3.10</td><td></td><td></td><td></td><td></td><td>BCD</td></t<>				0.0138	-16.2	2.31	3.10					BCD
1411+556A ds3e 16.5 0.0420 -19.7 4.76 2.22 47.7 5.1 12.0 0.727 LINER 1411+584 s2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.683 1430+526 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1458+497 ds1e 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 <t< td=""><td></td><td>sd2c</td><td>16.5</td><td>0.0420</td><td>-19.8</td><td>2.09</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		sd2c	16.5	0.0420	-19.8	2.09						
1411+584 \$2 18.0 0.0755 -19.4 1.12 1.49 19.6 9.9 16.0 0.613 1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.683 1430+526 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1458+497 ds1e 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362 - 1509+527 sd3e 15.6 0.0129 -18.0 4.88 4.69 36.3 9.0 37.				0.0420	-19.7	4.76						LINER
1422+573 d3e 15.0 0.0111 -18.4 3.81 2.39 32.9 9.0 23.0 -0.050 Mrk812 1426+573 ds3e 17.5 0.0438 -18.7 1.30 7.22 46.0 18.9 137.5 0.683 1430+526 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.019 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1458+497 ds1e 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362 - 1509+527 sd3e 15.6 0.0129 -18.0 4.88 4.69 36.3 9.0 37.6 0.077 1511+515A ds2e 16.5 0.0372 -19.4 1.91 0.74 64.9 34.1				0.0755	-19.4	1.12						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1420+373 0.324 17.0 0.0109 16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1430+526 ds2e 17.0 0.0109 16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1458+497 dsle 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362		d3e	15.0	0.0111	-18.4	3.81						Mrk812
1430+526 ds2e 17.0 0.0109 -16.4 2.12 5.25 50.4 30.5 144.3 0.077 BCD 1446+595 d2e 18.0 0.0081 -14.6 1.47 5.01 53.1 29.5 166.6 0.220 BCD 1453+526 sd1e 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1458+497 ds1e 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362 . 1509+527 sd3e 15.6 0.0129 -18.0 4.88 4.69 36.3 9.0 37.6 0.077 1511+515A ds2e 16.5 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A ds1e 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4	1426+573	ds3e	17.5	0.0438	-18.7	1.30						-
1453+526 sdc 17.0 0.0115 -16.3 2.86 3.66 178.4 83.2 344.5 -0.311 BCD 1453+526 sdle 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362 1509+527 sdle 17.0 0.0493 -19.5 2.90 2.09 78.6 19.4 40.6 0.362 1509+527 sdle 15.6 0.0129 -18.0 4.88 4.69 36.3 9.0 37.6 0.077 1511+515A ds2e 16.5 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A dsle 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289						2.12	5.25					
1435+320 sile 17.0 0.0193 19.5 2.09 2.09 78.6 19.4 40.6 0.362 1458+497 dsle 17.0 0.0493 19.5 2.09 2.09 78.6 19.4 40.6 0.362 1509+527 sile 15.6 0.0129 18.0 4.88 4.69 36.3 9.0 37.6 0.077 1511+515A ds2e 16.5 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A dsle 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1531+580 d3e 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865	1446+595	d2e	18.0	0.0081	-14.6	1.47						
1436 1497 solid 17.5 0.0129 -18.0 4.88 4.69 36.3 9.0 37.6 0.077 1509+527 sdle 15.6 0.0129 -18.0 4.88 4.69 36.3 9.0 37.6 0.077 1511+515A ds2e 16.5 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A dsle 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1533+469 sd1 16.0 0.0195 -18.5 2.09 4.85 79.7 40.5 186.8 -0.068 1556+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 <td< td=""><td>1453+526</td><td>sdle</td><td>17.0</td><td>0.0115</td><td>-16.3</td><td>2.86</td><td></td><td></td><td></td><td></td><td></td><td>BCD</td></td<>	1453+526	sdle	17.0	0.0115	-16.3	2.86						BCD
15019527 abc 155 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A dsle 15.5 0.0372 -19.4 1.91 0.74 64.9 34.1 27.4 0.000 1519+508A dsle 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1531+580 d3e 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660	1458+497	dsle	17.0	0.0493	-19.5	2.90	2.09					
1511+515 date 16.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1519+508A dsle 15.5 0.0573 -21.3 0.99 0.43 15.1 27.7 14.4 -0.571 1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1533+469 sd1 16.0 0.0195 -18.5 2.09 4.85 79.7 40.5 186.8 -0.068 1556+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1558+585 sd2e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0	1509+527	sd3e	15.6	0.0129	-18.0	4.88	4.69		-		1	Constant and a second
1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1533+469 sd1 16.0 0.0195 -18.5 2.09 4.85 79.7 40.5 186.8 -0.068 1556+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1559+585 ds2e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7	1511+515A	ds2e	16.5	0.0372	-19.4	1.91	0.74	64.9	-			1120.000
1529+548 d2e 15.1 0.0398 -21.0 2.21 2.36 45.4 26.8 66.4 -0.290 Mrk484 1531+580 d3e 15.5 0.0406 -20.6 1.60 1.54 55.8 48.4 72.6 -0.353 Mrk289 1531+580 sd1 16.0 0.0195 -18.5 2.09 4.85 79.7 40.5 186.8 -0.068 1556+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1559+585 d52e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 d52e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9	1519+508A	dsle	15.5	0.0573	-21.3	0.99	0.43					A CONTRACTOR
1533+469 sd1 16.0 0.0195 -18.5 2.09 4.85 79.7 40.5 186.8 -0.068 1553+469 sd1 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+583 sle 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1559+585 ds2e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsle 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146						2.21	2.36		1			
1556+583 site 15.3 0.0354 -20.5 2.40 3.09 33.9 21.1 45.7 -0.436 Mrk865 1556+583 site 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1558+585 sd2e 17.5 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sie 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsie 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sd1e 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1499 1640+516 sd1e 15.6 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 <td>1531+580</td> <td>d3e</td> <td>15.5</td> <td>0.0406</td> <td>-20.6</td> <td>1.60</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>Mrk289</td>	1531+580	d3e	15.5	0.0406	-20.6	1.60			-			Mrk289
1558+585 sd2e 17.5 0.0147 -16.3 1.38 1.38 30.3 11.9 15.9 0.660 BCD 1559+585 ds2e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsle 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sd1e 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1533+469	sdl	16.0	0.0195	-18.5	2.09	4.85					1 1 1 2 1 1
1559+585 ds2e 14.8 0.0146 -19.0 3.65 2.24 35.4 8.4 20.0 0.159 1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsie 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sd1e 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1556+583	sle	15.3	0.0354	-20.5	2.40	3.09					
1610+586 ds2e 17.0 0.0458 -19.3 2.56 1.73 62.3 22.7 41.6 0.078 1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsle 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sdle 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1558+585	sd2e	17.5	0.0147	-16.3	1.38	1.38		11.9			BCD
1614+600 sle 18.5 0.0312 -17.0 2.37 2.29 80.4 34.7 84.9 -0.025 1634+523 dsle 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sdle 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1559+585	ds2e	14.8	0.0146	-19.0	3.65	2.24	35.4	8.4	20.0	0.159	- AND - AND -
1634+523 dsle 15.6 0.0092 -17.5 2.49 2.93 169.0 59.5 173.8 0.146 Mrk1499 1640+516 sdle 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 -0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1610+586	ds2e	17.0	0.0458	-19.3	2.56	1.73	62.3	22.7	41.6	0.078	- Calue Million
1640+516 sdle 15.6 0.0318 -19.9 3.33 2.36 74.8 21.2 52.2 0.064 Mrk1500 Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1614+600	sle	18.5	0.0312	-17.0	2.37	2.29	80.4	34.7	84.9	-0.025	1.12.7
Mrk222 d2 16.5 0.0170 -17.7 2.37 3.67 94.0 46.1 172.1 -0.162	1634+523	dsie	15.6	0.0092	-17.5	2.49	2.93	169.0	59.5	173.8	0.146	Mrk1499
	1640+516	sdle	15.6	0.0318	-19.9	3.33	2.36	74.8	21.2	52.2	.0.064	Mrk1500
Mrk224 d3 16.2 0.0046 -15.1 2.35 3.74 90.7 56.5 237.8 -0.412	Mrk222	d2	16.5	0.0170	-17.7	2.37	3.67	94.0	46.1	172.1	-0.162	
	Mrk224	d3	16.2	0.0046	-15.1		3.74	90.7	56.5	237.8	-0.412	TOPOCH T
Mrk229 d2e 17.0 0.0246 -18.0 1.75 2.78 162.2 125.2 320.2 -0.326	Mrk229	d2e	17.0	0.0246	-18.0	1.75	2.78	162.2	125.2	320.2	-0.326	

Table 2

ELGS: GALAXIES OF THE SBS FIELDS DISCOVERED via EMISSION-LINE TECHNIQUE

SBS	SC	m _{re}	Z	M _{re}	[OII]/ Hβ	[OIII]/ Hβ	EW ([OII])	EW (Ηβ)	EW ([OIII])	С _{іоні} - С _{нв}	Notes
0743+591B	SC.	18.5	0.0229	-16.3	1.59	4.05	132.8	113.5	418.6	-0.045	BCD
0750+559	dse	17.5	0.0263	-17.6	2.33	0.92	46.4	10.9	102.9	0.655	
0756+553	sde	17.5	0.0364	-18.3	1.02	1.07	49.6	15.7	11.2	1.227	
0805+577	sde	18.0	0.0280	-17.2	0.21	0.19	88.0	28.3	58.6	0.911	
0811+583	de	17.5	0.0289	-17.8	3.35	3.02	87.7	14.8	47.1	0.617	Sy2
1128+573	sde	18.5	0.0062	-13.5	1.28	8.40	236.8	77.2	680.5	0.953	BCD
1129+577	de	15.3	0.0055	-16.4	1.10	2.41	76.1	98.4	297.1	-0.380	BCD

Table 2 (the end)

				11 ml							
1	2	3	4	5	6	7	8	9	10	11	12
1134+598	de	19.0	0.0327	-16.6	1.89	8.80	65.8	40.4	365.7	-0.158	BCD
1136+607	32	18.0	0.0125	-15.5	3.52	3.47	133.3	24.3	83.2	0.481	BCD
1137+589	sc	18.0	0.0074	-14.4	2.45	5.37	89.0	25.7	202.6	0.379	BCD
1159+516B	de	17.5	0.0151	-16.4	1.81	1.60	148.4	60.2	96.0	0.334	BCD
1200+589B	de	18.5	0.0329	-17.1	1.29	4.82	75.7	111.8	685.3	-0.698	di termita
1200+589C	sde	18.5	0.0330	-17.1	2.18	4.04	54.1	31.6	167.3	-0.262	10110102
1214+564	de	17.5	0.0528	-19.1	1.53	1.54	70.7	30.7	39.6	0.714	19.000
1223+557	de	17.0	0.0524	-19.6	1.28	7.03	171.5	130.3	905.1	0.027	100 25
1225+571	de	17.5	0.0281	-17.8	4.42	1.45	69.0	7.1	10.5	0.850	LINER
1226+542	de	19.0	0.0421	-17.1	1.98	6.70	537.5	115.4	770.5	0.929	
1319+539	de	18.5	0.0339	-17.2	1.95	5.18	142.3	126.0	637.0	-0.595	811
1319+539E	de	17.5	0.0343	-18.2	1.29	1.54	46.1	35.7	54.8	0.000	3.13 m
1354+597	de	17.5	0.0104	-15.6	2.25	0.79	49.7	16.8	14.1	0.299	BCD
1401+490	de	16.5	0.0038	-14.4	2.22	3.50	173.9	109.5	476.1	-0.364	BCD
1428+457	ds	15.2	0.0089	-17.6	2.44	2.23	146.1	91.9	211.8	-0.466	201 1
1504+514	sdc	16.0	0.0132	-17.6	2.71	3.83	247.9	58.7	250.3	0.482	1 3780
1523+519	de	18.1	0.0126	-15.4	2.19	5.29	101.0	39.3	285.5	0.278	BCD
1541+590	SC	19.5	0.0450	-16.8	1.25	8.07	146.2	117.1	943.5	0.000	BCD
1607+493	de	17.5	0.0430	-18.7	3.10	4.48	147.9	67.4	409.9	-0.375	Set of
1616+503	dse	16.3	0.0433	-19.9	0.98	6.96	21.2	12.0	81.8	0.642	01.00
CG368	se	17.5	0.0350	-18.2	2.78	3.84	96.4	33.8	140.4	0.026	2.00
CG564	de	14.1	0.0092	-18.7	2.27	3.69	86.7	22.7	85.2	0.567	in the second
CG587	se	17.1	0.0126	-16.4	2.21	5.00	98.1	25.2	136.0	0.612	BCD
CG597	dse	17.0	0.0392	-19.0	2.39	2.78	82.8	28.1	86.0	0.230	
CG608	sc	16.3	0.0117	-17.0	2.63	3.35	101.3	22.1	76.7	0.604	10 120
CG642	sde	18.0	0.0489	-18.5	1.43	3.82	201.8	160.8	614.4	-0.138	FLACST
CG657	se	16.0	0.0545	-20.7	1.75	2.76	170.1	112.2	317.6	-0.157	aniver

3. Results. We have compared the samples of SBS field galaxies discovered via UV-excess and EL techniques. Besides of the general comparison of the UVGs and ELGs samples, we also examine each sample in detail.

3.1. A Comparison of the UVGs and ELGs samples. Since apparent magnitudes, redshifts and luminosities of the SBS UVGs and ELGs were compared previously for much larger samples of galaxies [28] here we will carry out only the comparison of the spectrophotometric parameters of the galaxies samples.

Table 3 presents the median values of blue luminosities M_{R} , [OII]/H β , and [OIII]/H β emission-line ratios, equivalent widths of [OII] λ 3727, [OIII] λ 5007 and H β lines as well as the $C_{[OII]} - C_{H\beta}$ index for the UVGs and ELGs.

Table 3

all the	M	[OII]/Hβ	[OIII]/ Hβ	EW([OII])	EW(Hβ)	EW([OIII])	С _{[011}]-С _{НВ}
UVGs	-18.1	2.36	3.09	67.8	25.8	60.4	0.146
ELGs	-17.2	2.08	3.76	97.2	37.5	184.9	0.288

MEDIANS FOR THE UVGs AND ELGs

173

In Table 3 the larger (about three times) and less larger difference in median equivalent widths of $[OIII]\lambda 5007$ and H β lines for UVGs and ELGs are in agreement with their difference in median of the $[OIII]/H\beta$ ratio (e.g. [33]). Since at the same time the median absolute magnitude of the UVGs is 0.9 magnitude brighter than the median absolute magnitude of the ELGs, all these facts come together to re-enforce a known result: low luminosity star-forming galaxies have on average higher excitation parameters and emission-lines equivalent widths than intrinsically high luminosity objects [33,34]. The fact that UV-excess galaxies have bluer continua than galaxies discovered from their emission-lines only is obvious.

The number of AGNs in UVGs sample is 9 (12% of the sample) and in ELGs sample is 2 (6% of the sample). The picture is similar to that by Petrosian et al. [28]. The number of Blue Compact Dwarf galaxies (BCDGs) in the UVGs sample is 6 (8% of the sample) and 12 in the ELGs sample (35% of the sample). In our sample of 111 SBS field galaxies, about four times more BCDGs were discovered from their emission-line than from their UV-excess properties. The excess of AGNs in the UVGs sample and the excess of BCDGs in the ELGs sample play in favor of the above results.

3.2. A Comparison of the UVGs according to their UV emission intensity. The role of the compactness of the emitting region. One interesting problem to study is the relation between the relative intensity of the UV emission and the spectroscopic parameters of the UVGs. Among 77 UVGs in our sample, 25 are objects with the strongest UV-excess radiation (hereafter UV1), 37 are intermediate (UV2) and 15 are objects with the faintest UV-excess radiation (UV3). Table 4 presents the median values of the luminosities, [OII]/H β , and [OIII]/H β emission-line ratios, the equivalent widths of [OII] λ 3727, [OIII] λ 5007 and H β as well as the $C_{[OII]} - C_{H\beta}$ index for these sub-classes of galaxies.

Table 4

MEDIANS FOR THE UVGs WITH STRONGEST (UV1), INTERME-DIATE (UV2), AND FAINTEST (UV3) UV-EXCESS RADIATION

	Mm	[OII]/ Hβ	[OIII]/Hβ	EW([OII])	EW(Hβ)	EW([OIII])	С _[01] -С _{НВ}
UVI	-18.5	2.40	3.00	79.7	25.8	73.3	0.031
UV2	-17.7	2.20	3.08	77.8	28.8	70.8	0.148
UV3	-18.4	3.40	3.45	42.1	10.5	38.4	0.164

Table 4 shows that the median equivalent widths of the [OII], H β and [OIII] lines, the [OII]/H β ratio, as well as the $C_{[OII]}-C_{H\beta}$ index of the UV3 (faintest UV-excess radiation) differ dramatically from the medians of the same parameters for the two other sub-classes UV1 and UV2. Comte et al.

[23] report similar trend for the emission-line equivalent widths of the Kiso galaxies with "high", "intermediate", and "low" UV-excess radiation. This result is not surprising since most AGNs, particularly LINERS (Sy3 galaxies) are objects with the faintest UV-excess radiation. Redder continua, higher [OII]/H β ratio, and lower equivalent widths of forbidden and H β lines are typical for these galaxies (e.g. [32]).

In the combined sample of UVGs and ELGs, 64 galaxies have diffuse and semi-diffuse (d + ds) spectral classes and 47 stellar and semi-stellar (s+sd). Table 5 presents the median values for all derived spectrophotometric parameters as well as the luminosities of these two sub-samples of UV-excess and emission-line galaxies.

Table 5

MEDIANS FOR UVGs AND ELGS WITH DIFFUSE AND SEMI-DIFFUSE (d + ds), AND STELLAR AND SEMI-STELLAR (s + sd) EMISSION REGIONS

	Mm	[OII]/ Hβ	[OIII]/Hβ	EW([OII])	EW(Hβ)	EW([OIII])	С _[0П] -С _{Нβ}
d+ds	-17.9	2.26	3.21	75.9	29.3	85.6	0.147
s+sd	-17.4	2.21	3.27	88.0	27.2	83.2	0.151

Table 5 shows that median spectrophotometric parameters as well as luminosities are approximately the same for the UV-excess and emission-line galaxies with diffuse or semi-diffuse, and stellar or semi-stellar emission regions.

3.3. Multivariate Factor Analysis. As a further general exploration of the data related to the spectrophotometric properties of the UVGs and ELGs we applied the Multivariate Factor Analysis (MFA) method to our samples. The MFA is a statistical method for detecting correlations among a set of *m* initial variables measured on *n* objects through a reduced number (p < m) of linearly independent factors F1, F2, ..., Fp that account for the correlations. This method has been used in astronomy by several authors (e.g. [35,36]). A detailed description of the MFA method can be found in Harman [37] and Afifi & Azen [38].

The initial m variables used for the UVGs and ELGs were:

- the spectral class SC, with SC = 1 for the galaxies discovered by the UV-excess technique and SC = 2 for the galaxies discovered with the emission-line technique;

- the compactness C of the UV (for UVGs) or continuum (for ELGs) emission region, with C=1 for galaxies with "stellar" s, C=2 for galaxies with "semi-stellar" sd, C=3 for "semi-diffuse ds and C=4 for "diffuse d class spectra;

- the relative intensity UV-ex of UV-excess radiation or its absence, with UV-ex = 1 for strongest, UV-ex = 2 for intermediate, UV-ex = 3 for the

faintest UV-excess radiation, and UV-ex = 4 for the cases when UV-excess radiation is absent;

- the absolute photographic magnitude $M_{\mu\nu}$; the [OII]/H β and [OIII]/H β emission-line ratios; the equivalent widths EW([OII]), EW(H β), and EW([OIII],

- the $C_{\text{[OII]}} - C_{\text{HB}}$ index,

- and finally a parameter AGN for nuclear activity with AGN = 0 for normal and 1 for active nuclei.

In order to present each initial variable with the smaller number of common factors for an easier interpretation of the results, we apply the Varimax orthogonal rotation to the first four factors Fi (i=1 to 4).

Table 6

VARIMAX ROTATED FACTOR SCORES MATRIX FOR 77 UVGs AND 34 ELGs SAMPLES

	FI	F2	F3	F4
SC	-0.166	0.910	0.181	0.026
С	0.182	0.197	0.023	0.787
UV-ex	0.026	0.941	0.142	0.065
M_	0.138	0.087	0.656	-0.170
[OII]/ Hβ	0.759	-0.219	0.011	0.278
[OIII]/Hβ	-0.089	0.052	0.772	0.023
EW([ÖII])	-0.209	0.198	0.688	0.108
EW(H _β)	-0.718	0.062	0.512	0.298
EW([OIII])	-0.582	0.135	0.700	0.209
	0.514	0.304	0.026	-0.603
C ₁₀₁₁₁ - C _{HB} AGN	0.537	0.020	-0.048	0.007
Accumulated Variance (%)	19	37	58	69

In Table 6 the Varimax rotated factor scores and the accumulated dispersions of the first four factors Fi (i=1 to 4), for a total of 69% of the common variance, are presented. Factor scores are the correlation coefficients between the initial variables and the factors Fi. Adopting a correlation threshold of $r \approx 0.7$ we find that the first factor F1, correlates the [OII]/H β intensity ratio with the equivalent width of H β . Since both parameters depend on the intensity of H β , the result is somehow expected. Because the equivalent widths strongly depend on the level of the continuum radiation for a given object, the observed correlation (correlation threshold level is between 0.583-0.209) between H β and the oxygen lines equivalent widths is obvious (see also Fig.6 of Comte et al. [23]). This factor correlates also the type (AGN) at a r=0.537 threshold level. AGNs tend to have higher [OII]/H β ratios and lower H β equivalent widths (e.g. Rola et al. [32]). Observed at r=0.514 threshold level, the correlation between spectral index $C_{[OII]}-C_{H\beta}$ and the

176

factor F1 is also expected. Objects with redder continuum radiation (higher values of $C_{\text{fourl}} - C_{\text{HB}}$ index, Rola et al. [32]) are very often AGNs with small emission-lines equivalent widths and large [OII]/HB ratios. The second factor F2, correlates the spectral class with the relative intensity of the UV-excess radiation: hence stronger UV-excess radiation objects were discovered via UVexcess technique, which is obvious. Since according to Rola et al. [32] larger $C_{IOIII} - C_{HB}$ values correspond to redder continua, the observed correlation between $C_{IOIII} - C_{HB}$ and spectral class as well as UV-ex is also obvious (in F2 at r = 0.304 threshold level). Redder objects have fainter or no UV-excess radiation and were mostly discovered via emission-line technique. The third factor F3, correlates [OIII]/HB ratio, and at a threshold level between 0.688-0.512 the equivalent widths of observed lines, which is expected. It is well known that higher values of the excitation parameter - [OIII]/HB are typical for dwarf star-forming galaxies (Blue Compact Dwarfs or Dwarf Irregulars) with low level of continuum radiation (e.g. [39, 34]) and high equivalent widths. This is proved by the correlation of $M_{\rm ex}$ with F3 at a threshold level of 0.656. The factor four, F4, only depends on the compactness (C) of the UV (for UVGs) or continuum (for ELGs) emitting region. The same factor correlates the $C_{[OII]} - C_{H\beta}$ index at a level of 0.604, indicating that bluer galaxies have more diffuse UV or continuum emission regions. Since dwarf star-forming galaxies in our sample are mostly diffuse, this is an expected result.

4. Discussion and Conclusions. Petrosian et al. [28] have conducted a study with the goal to further illuminate the discussion of the nature and origin of activity and star formation in galaxies and to clarify possible observational selection effects. They achieved a thorough comparative study of the integral properties of a large sample of SBS galaxies discovered with a combination of UV-excess and emission-line techniques. Results presented by Petrosian et al. [28] indicate that the combination of UV-excess with the emission-line techniques of the Second Byurakan Survey has led to the discovery of active and star-forming galaxies with a broad range of the integral parameters. Both techniques are unique by their approach and strengthen each other, helping to create deeper and larger intervals of redshift sample. The UV-excess technique preferentially discovers high luminosity active galaxies while emission-line technique remains preferable for the discovery of low luminosity galaxies, mostly with diffuse morphological structure.

Spectrophotometric parameters chosen for this study are related to the activity and star-forming properties of the sample galaxies. For star-forming galaxies, equivalent widths and emission-lines intensities are related to the present day star formation rate since the observed sources are mostly OB stars. For the galaxies hosting AGNs, the situation is more complicated. According to the current studies, mostly for the Sy2 and LINER type active galaxies, a circumnuclear starburst can play a crucial role in the AGN phenomena (e.g. [40,41]). In this case, observed equivalent widths and emission-line intensity ratios can be interpreted according to this "combined" approach. In several papers (e.g. [42,43,32]) the classification methods can identify active and star-forming galaxies according to their emission-line spectra. We find that the diagnostic diagrams of Rola et al. [32] were more appropriate for our comparative study. Calculated medians of [OII]/H β and [OIII]/H β emissionlines ratios, equivalent widths of [OII], H β and [OIII] emission-lines and continuum color index $C_{[OII]} - C_{H\beta}$ were checked with Rola et al. [32] diagnostic diagrams. They were compared with the luminosities and the rates of active and dwarf star-forming galaxies in the samples of the UV-excess and emission-line galaxies. Our conclusions can be summarized as follows:

1. Galaxies discovered via UV-excess technique in comparison to the galaxies discovered via emission-line technique have: higher median luminosity; lower $C_{[OII]} - C_{H\beta}$ index (which corresponds to the bluer continuum radiation); lower emission-lines equivalent widths (which result from the higher level of the continuum radiation); higher [OII]/H β and lower [OIII]/H β emission-lines ratios (from LINERs and Sy2 galaxies). High excitation low luminosity star-forming galaxies are more found via emission-line technique.

2. UV-excess galaxies with faint UV-excess radiation have the reddest and more powerful continuum spectra hence lower emission lines equivalent widths. Since most AGNs in UV-excess galaxies sample are objects with faintest UV-excess radiation, they are expected to have higher median of [OII]/H β lines ratio.

3. Diffuseness of the UV-excess or emission-line emitting region has no significant impact on the spectrophotometric properties of the UV-excess and emission-line galaxies.

Acknowledgments. This work partly supported by the Jumelage Astrophysique France-Armenie, a bilateral programme funded by Centre National de la Recherche Scientifique, the French Ministère des Affaires Entrangères and the Ministère de la Recherche et de la Technologie. M.Gyulzadyan and A.R.Petrosian thank the Institut d'Astrophysique de Paris and Marseille Observatory for their hospitality during the periods that this work was elaborated. A.R.Petrosian acknowledges the hospitality of the Space Telescope Science Institute during his stay as visiting scientist supporting by the Director's Discretionary Research Found.

V.A.Ambartsumian Byurakan Astrophysical Observatory,

Armenia, e-mail: mgyulz@bao.sci.am

- ² Instituto de Astronomía, Universidad Nacional Autónoma de México, México
- ³ Institut d'Astrophysique de Paris, France
- ⁴ Space Telescope Science Institute, USA
- ⁵ Marseille Observatory, France

SPECTROSCOPIC STUDY OF SBS GALAXIES

СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ БОЛЬШОГО КОЛИЧЕСТВА ГАЛАКТИК, ОБНАРУЖЕННЫХ В ОБЛАСТЯХ ВТОРОГО БЮРАКАНСКОГО ОБЗОРА

М.В.ГЮЛЬЗАДЯН¹, ДЖ.А.СТЕПАНЯН², А.Р.ПЕТРОСЯН¹, Д.КУНТ³, Б.МакЛЕН⁴, ДЖ.КОНТ⁵

Второй Бюраканский обзор (SBS) - хорошо известный комбинированный обзор, в котором для идентификации активных галактик и галактик с звездообразованием используется наличие УФ-избыточного излучения в континууме или наличие эмиссионных линий в спектрах. Эта статья о сравнительном исследовании 77 галактик с УФ-избытком и 34 галактик с эмиссионными линиями без УФ-избытка из SBS. Для сравнения, в качестве спектроскопических параметров, были использованы отношения [ОП λ3727/Нв и [OIII] λ 5007/H₈, эквивалентные ширины [OII] λ 3727, [OIII] λ 5007 и H₈ эмиссионных линий, и Сюнилато - Снв индекс. Спектроскопические параметры и красные смещения были определены по спектрам, полученным 6-м телескопом Специальной астрофизической обсерватории (Россия). Основные результаты: 1) Галактики, обнаруженные по наличию УФизбытка, в основном более активные. 2) Галактики, обнаруженные по эмиссионным линиям, в большинстве случаев имеют высокую степень возбуждения, но низкую светимость и являются галактиками со звездообразованием. 3) Галактики с УФ-избытком со слабым УФ-избыточным излучением являются вероятными кандидатами LINER или Sv2 объектов.

REFERENCES

- 1. Yu.I.Isotov, T.X.Thuan, Astrophys. J., 500, 188, 1998.
- 2. Yu.I.Isotov, T.X.Thuan, Astrophys. J., 511, 639, 1999.
- 3. C.Leitherer, T.M.Heckman, Astrophys. J. Suppl. Ser., 96, 9, 1995.
- 4. H.Gerola, P.E.Seiden, L.S.Schulman, Astrophys. J., 242, 517, 1980.
- 5. M. Noguchi, Mon. Notic. Roy. Astron. Soc., 251, 360, 1991.
- 6. S. Tremaine, J.E. Gunn, Phys. Rev. Letters, 42, 407, 1979.
- 7. D. Kunth, W.L.W.Sargent, Astrophys. J., 300, 497, 1986.
- 8. Yu.I.Izotov, V.A.Lipovetsky, N.G.Guseva, A.Yu.Kniazev, J.A.Stepanian, Astron. Astrophys., 247, 303, 1991.
- 9. J.Gallego, J.Zamorano, M.Rego, A.G.Vitores, Astrophys. J., 475, 502, 1997.
- 10. J.J.Salzer, 1999, in "Dwarf Galaxies and Cosmology", eds. T.X.Thuan et al., Editions Frontieres, In Press.

- 11. H.B.French, Astrophys. J., 240, 41, 1980.
- 12. J. Melnick, R. Terlevich, P. P. Eggleton, Mon. Notic. Roy. Astron. Soc., 216, 255, 1984.
- 13. V. Balzano, Astrophys. J., 268, 602, 1983.
- 14. D.Kunth, J.M.Mas-Hesse, E.Terlevich, R.Terlevich, J.Lequeux, S.M.Fall, Astron. Astrophys., 334, 11, 1998.
- C.C.Steidel, K.L.Adelberger, M.Giavalisco, M.Dickinson, M.Pettini, Astrophys. J., 519, 1, 1999.
- 16. S.M. Pascarelle, R.A. Windhorst, W.C. Keel, Astrophys. J., 116, 2659, 1998.
- 17. G.Haro, Boletin Obs. Tonantzintla y Tacubaya, 14, 8, 1956.
- 18. F.Zwicky, Astrophys. J., 140, 1467 and 143, 192, 1964.
- 19. B.E. Markarian, Astrofizika, 3, 55, 1967.
- 20. P.Pesch, N.Sanduleak, Astrophys. J. Suppl. Ser., 51, 171, 1983.
- 21. B.E. Markarian, V.A. Lipovetskii, J.A. Stepanian, Astrofizika, 19, 29, 1983.
- 22. C.Surace, G.Comte, Astron. Astrophys., 281, 653, 1994.
- 23. G.Comte, R.Augarde, A.Chalabaev, D.Kunth, H.Maehara, Astron. Astrophys., 285, 1, 1994.
- 24. B. Takase, N. Miyauchi-Isobe, Annals Tokyo Astr. Observ. 2nd Ser. XVIII, 55, 1984.
- J.J.Salzer, G.M.MacAlpine, T.A.Boroson, Astrophys. J. Suppl. Ser., 70, 447, 1989.
- 26. G. Comte, Astrofizika, 41, 137, 1998.
- 27. A.J. Wasilewski, Astrophys. J., 272, 68, 1983.
- 28. A.R.Petrosian, R.J.Allen, C.Leitherer, J.MacKenthy, B.McLean, N.Panagia, Astron. J., 125, 86, 2003.
- 29. M.D.Bicay, J.A.Stepanian, V.H.Chavushian, L.K.Erastova, V.T.Ayvazyan, J.Seal, G.Kojoian, Astron. Astrophys. Suppl. Ser., 147, 169, 2000.
- 30. J.M.Mazzarella, V.A.Balzano, Astrophys. J. Suppl. Ser., 62, 751, 1986.
- 31. N.Sanduleak, P.Pesch, Astrophys. J. Suppl. Ser., 63, 809, 1987.
- 32. C.S. Rola, E. Terlevich, R.J. Terlevich, Mon. Notic. Roy. Astron. Soc., 289, 419, 1997.
- 33. M.L.McCall, P.M.Rybski, G.A.Shields, Astrophys. J. Suppl. Ser., 57, 1, 1985.
- 34. D.Kunth, G.Östlin, Astron. Astrophys. Rev., 10, 1, 2000.
- 35. F.Patat, R.Barbon, E.Cappellaro, M.Turatto, Astron. Astrophys., 282, 731, 1994.
- 36. H.Navasardyan, A.Petrosian, M.Turatto, E.Cappellaro, J.Boulesteix, Mon. Notic. Roy. Astron. Soc., 328, 1181, 2001.
- 37. H.H.Harman, Modern Factor Analysis (2nd Edition), Univ. of Chicago Press, 1967.
- 38. A.A.Afifi, S.P.Azen, Statistical Analysis. A Computer Oriented, 1979. Approach, Academic Press, Chicago.
- 39. E.D.Skillman, Jr.R.C.Kennicutt, P.W.Hodge, Astrophys. J., 347, 875, 1989.
- 40. R. Cid Fernandes, R. Terlevich, Mon. Notic. Roy. Astron. Soc., 272, 423, 1995.
- 41. R.M. Gonzalez Delgado, T. Heckman, C. Leitherer, Astrophys. J., 546, 845, 2001.
- 42. J.A.Baldwin, M.M.Phillips, R.Terlevich, Publ. Astron. Soc. Pacif, 93, 5, 1981.
- 43. S. Veilleux, D.E. Osterbrock, Astrophys. J. Suppl. Ser., 63, 295, 1987.