АСТРОФИЗИКА

TOM 45

НОЯБРЬ, 2002

ВЫПУСК 4

УДК: 524.74

ПЛОСКИЕ ГАЛАКТИКИ КАТАЛОГА RFGC, ДЕТЕКТИРОВАННЫЕ В HIPASS - ОБЗОРЕ

И.Д.КАРАЧЕНЦЕВ¹, А.А.СМИРНОВА² Поступила 6 мая 2002

Данные сплощного обзора южного неба в линии нейтрального водорода, HIPASS, использованы для определения лучевых скоростей и ширины HI-линии у плоских спиральных галактик каталога RFGC, наблюдаемых с ребра. Выборка из 103 плоских галактик, детектированных в HIPASS, характеризуется медианной лучевой скоростью +2037 км/с и медианной шириной HI-линии на уровне 50% от максимума 242 км/с. Для RFGC-галактик 50% уровень детектирования в HIPASS соответствует видимой величине $B_i = 14^{m}$.5 или угловому диаметру a = 2.9. Относительное число детектированных галактик возрастает от 2% для морфологических типов Sbc, Sc до 41% для типа Sm. Медианное значение отношения водородной массы к полной массе у RFGC-галактик составляет 0.079. С учетом среднего внутреннего послощения у гвлактик с ребра, $< \Delta B_i > = 0^{m}$.75, медианное отношение водородной массы к светимости, $M_{HI}/L_B = 0.74 M_{\odot}/L_{\odot}$, является типичным для спиралей поздних типов. Из-за своей малой глубины HIPASS выявляет всего несколько RFGC-галактик с неизвестными ранее скоростями и шириной линий.

1. Введение. Каталог плоских галактик, FGC Караченцева и др. [1] и его обновленная версия, RFGC [2] были созданы для изучения крупномасштабных течений галактик на шкале порядка 100 Мпк. В своей последней версии каталог содержит 4236 галактик, распределенных по всему небу, с видимым отношением осей *a/b* ≥ 7 и большим угловым диаметром а≥0.6. Основную часть Каталога составляют плоские дискообразные галактики морфологических типов Sc-Sd. Такие объекты богаты газом и легко детектируются в линии нейтрального водорода 21 см. Обладая упрощенной структурой, плоские галактики хорошо следуют зависимости Талли-Фишера, которая связывает абсолютную величину или линейный диаметр с шириной линии НІ (или амплитудой кривой вращения). Это позволяет определять расстояние до галактик независимо от лучевой скорости и тем самым исследовать их крупномасштабные движения. Согласно Караченцеву [3], характерная погрешность измерения расстояния таким способом составляет около 20%. При изучении космических течений важным условием является полнота обзора галактик по всему северному и южному небу. Джиованелли и др.[4] предприняли массовые измерения лучевых скоростей и ширины линии HI у FGCгалактик на 300-метровом радиотелескопе в Аресибо. В зоне склонений [0° < δ < +38°] было детектировано около 600 галактик. Эта выборка характеризуется средней гелиоцентрической лучевой скоростью V = 6500 км/с

и средней шириной линии HI W=299 км/с. Позднее Макаров и др. [5,6] измерили оптические кривые вращения у более чем 300 северных RFGCгалактик со склонениями $\delta > +38^\circ$. В южной полусфере систематические наблюдения плоских галактик в линиях НІ или На не проводились. Однако Мэтьюсон и др. [7,8] определили лучевые скорости и амплитуды внутренних движений у 167 южных RFGC-галактик, выполняя обзоры по другим программам. 193 RFGC-галактики были исследованы также Мэтьюс и ван Дрилем [9]. Начиная с 1997г., Стевели-Смит и его сотрудники [10,11] проводили сплошной обзор южного неба (δ < +2°) в линии 21 см на 64-метровом Паркском радиотелескопе, оснащенном 13-пучковой приемной системой. Режим "слепого" обзора с эффективным временем накопления примерно 450 секунд и угловым разрешением 15'.5 перекрывал диапазон лучевых скоростей от -1200 км/с до +12700 км/с с эффективным разрешением 13 км/с. Эффективная чувствительность обзора на уровне 50 составляла 70 mJy /канал/пучок при средней температуре системы 23 К. Результаты наблюдений представлены на web-странице http://www.atnf.csiro.au/research/ multibeam в виде спектров от участков неба размером 4'х 4' с типичными флуктуациями шума примерно 6 mJy/пучок. Эти данные были использованы нами для поиска эмиссий в линии 21 см от галактик каталога RFGC, расположенных южнее склонения $\delta = +2^{\circ}$.

2. RFGC-галактики, детектированные в HIPASS. Каждая из 2232 галактик каталога RFGC в зоне HIPASS-обзора была проверена на наличие в ее спектре водородной эмиссии. Как правило, область лучевых скоростей V < 500 км/с не рассматривалась из-за присутствия там сильной эмиссии галактического водорода. Для дальнейшего анализа мы отбирали только случаи с уверенно обнаружимой эмиссией НІ от галактик, когда можно было измерить с приемлемой точностью ширину линии 21 см на уровне 50% (W_m) и 20% (W_m) от максимальной интенсивности. Из-за широкой диаграммы направленности радиотелескопа (15.5) в нее иногда попадало несколько галактик, что привносило путаницу в определение скорости и ширины линии HI. Сомнительные случаи мы проверяли на изображениях с цифрового обзора неба (DSS), привлекая данные из NASA Extragalactic Database (NED) о лучевых скоростях соседних галактик. В результате мы измерили лучевые скорости и ширины линий для 103 галактик каталога RFGC. На рис.1 представлена зависимость между ширинами линии 21 см, измеренными на уровне 50% и 20% от максимальной интенсивности. Линия регрессии для них выражается соотношением < W >= 0.95 · W - 18.2 в км/с. Некоторые галактики заметно отклоняются от линии регрессии. Такие отклонения обусловлены низким отношением сигнал/шум спектра, а также асимметричным профилем линии из-за попадания в диаграмму телескопа соседних галактик, входящих в единую группу. Чтобы ослабить

роль случайных факторов, мы используем далее в качестве оценки ширины линии полусумму значений W_{50} и 0.95 · W_{20} - 18.2, обозначая ее как < W >. Внутренняя погрешность этой величины равна 15 км/с. При медианном значении $W_{50} = 242$ км/с относительная ошибка определения ширины линии составляет всего 6%, что вполне приемлемо при построении зависимости

Талли-Фишера. Сводка данных о 103 детектированных галактиках представлена в табл. 1. В ее столбцах содержатся: 1 - номер галактики в каталоге RFGC; 2 - большой угловой диаметр в угловых минутах, приведенный к стандартной изофоте $25^m/\Box^n$; 3 - малый угловой диаметр в угловых минутах при той же изофоте; 4 - видимая интегральная величина B_t^c в системе каталога RC3 [12], исправленная за поглощение света в нашей Галактике согласно Шлегелу и др. [13]; 5 - морфологический тип; 6 - интегральный поток S в линии HI, выраженный в единицах Ју · км/с; 7 - измеренная гелиоцентрическая лучевая скорость V_a в км/с; 8 - измеренная ширина линии на уровне 50% от максимальной интенсивности W_{50} в км/с; 9 - усредненная оценка ширины HI-линии $\langle W \rangle$ в км/с; 10 - гелиоцентрическая лучевая скорость V_a (NED) в км/с из базы данных NED или LEDA [14]; 11 - ширина линии на уровне 50% от максимума по данным из NED или LEDA; 12 - масса нейтрального водорода в галактике в единицах массы Солнца, определяемая как

$$M_{HI} = 2.36 \cdot 10^5 \cdot S \cdot D^2$$

где D - расстояние до галактики в Мпк, вычисленное по лучевой скорости относительно центроида Местной группы при постоянной Хаббла $H_0 = 75 \,\mathrm{кm/c/Mnk}$; 13 - отношение водородной массы к светимости в солнечных единицах; 14 - отношение водородной массы галактики к ее "полной" массе, где полная масса внутри стандартной изофоты

И.Д.КАРАЧЕНЦЕВ, А.А.СМИРНОВА

Таблица 1

PECC		R ·	Re	Тип	S	V	W.	< W>	V.(NED)	W, (NED)	M _{HI}	M _{HI} /L	$M_{_{HI}}/M_{_{25}}$
I	3	-0	<i>D</i> , 4	5	6.	7	8	9	10	11	12	13	14
	-							207	6220	406	1 6E10	213	0.07
99	2.5	0.2	15.1	C	13	5242	370	387	3339	10/	1 3E9	1.06	0.06
161	3.4	0.3	14.4	d	12	1343	200	190	1245	137	1 1E9	0.88	0.13
179	3.1	0.4	14.2	m		1330	133	131	2201	363	2.3E9	0.77	0.03
238	3.3	0.4	14.0	ca	12	2283	1945	195	1080	200	2.3E9	0.90	0.06
200	4.0	0.3	14.2	bo	12	4012	104	577	5003	520	1.4E10	1.25	0.03
390	3.2	0.4	14.5	h	13	1810	218	214	1826	238	1.2E9	1.09	0.06
411	2.2	0.3	14.0	h	6	4360	286	276	4444	303	5.2E9	0.76	0.06
410	19	0.3	14.8	c	18	4514	379	372	4605	397	1.4EI0	2.20	0.11
438	28	0.2	15.0	d	18	3803	239	233	3865	241	1.2E10	2.81	0.18
509	23	0.2	15.0	dm	7	1527	144	141	1536	142	7.9E8	1.17	0.10
566	5.8	0.6	13.2	cd	77	515	113	114	513	114	3.6E8	2.24	0.13
600	3.1	0.3	14.3	dm	28	1319	169	168	1332	173	2.1E9	2.29	0.16
609	2.6	0.3	14.6	С	16	6240	455	450	6400	475	2.6E10	1.67	0.07
621	3.7	0.4	14.1	С	29	2030	305	305	2027	325	4.5E9	1.88	0.06
640	2.9	0.4	14.6	b	14	2245	293	298	2281	294	3.0E9	1.48	0.05
722	3.2	0.3	14.5	d	25	1857	225	235	1875	237	3.5E9	2.49	0.10
745	1.4	0.2	15.3	cđ	9	1895	168	162	1908	157	1.2E9	1.78	0.18
777	2.8	0.3	14.3	С	18	3716	417	427	3791	426	1.1EIU	1.43	0.05
799	1.9	0.2	14.9	m	24	1316	228	256	1304		1.269	3.28	0.08
811	2.5	0.2	14.7	bc	8	4000	343	333	4067	341	5.2E9	0.99	0.04
824	3.3	0.4	14.1	С	17	1364	192	192	1364	199	9.268	1.1/	0.00
855	2.1	0.2	15.1	C	6	4274	296	292			4.629	1.00	0.05
1025	2.2	0.3	14.7	bc	9	2332	302	301	2381	320	1.829	1.09	0.04
1049	4.3	0.5	13.5	cd	39	1201	283	286	1211	283	1.529	1.40	0.04
1081	1.8	0.2	14.0	m	12	782	118	113	786	110	1.928	0.73	0.15
1118	2.1	0.2	14.9	d	6	1042	123	130	2075	221	1.460	0.63	0.05
1224	3.3	0.4	13.1	d	20	28.50	320	312	28/3	220	6 200	1 36	0.08
1200	2.5	0.3	14.0	ca	21	2885	324	322	2910	223	2 1 50	1.50	0.09
1290	2.5	0.3	13.0	C L	30	1100	207	2//	1110	211	2059	0.57	0.04
1402	0.1	0.7	14.7	ad	6	1650	102	176	1652	157	4 858	0.71	0.05
1405	2.0	0.2	14.7	dan	20	1602	303	304	1703	305	2 5E9	1.76	0.07
1500	65	0.5	13.0	bc	10	1820	503	498	1836	513	2.0F9	0.46	0.01
1504	4.8	03	13.8	d	31	2161	323	320	2177	334	4.8E9	1.57	0.05
1623	2.8	03	12.7	d	14	2661	269	276			3.2E9	0.25	0.06
1629	2.8	0.3	14.6	dm	9	1393	164	161	1425	154	5.3E8	0.94	0.05
1654	5.7	0.6	13.2	d	39	1279	317	319	1292	324	1.9E9	1.11	0.03
1678	3.3	0.4	13.8	cd	24	2778	265	273	2812	265	6.4E9	1.21	0.10
1682	6.1	0.7	12.7	Ь	32	2444	456	454	2474	482	6.4E9	0.58	0.02
1700	4.3	0.3	14.3	dm	14	657	121	117	662	130	1.0E8	1.15	0.04
1705	1.8	0.2	14.7	m	6	1975	113	127			6.8E8	0.66	0.13
1745	3.2	0.3	13.9	С	17	2494	340	332	2525	345	3.5E9	0.95	0.04
1747	2.9	0.3	14.4	cd	13	2576	341	339	2608	345	2.9E9	1.18	0.04
1876	5.0	0.7	13.2	cd	30	978	222	221	986	232	7.7E8	0.87	0.04
1893	4.3	0.5	13.8	cd	20	2037	258	250	2053	254	6.7E9	1.04	0.08
1937	1.7	0.2	14.6	dm	8	1277	118	137	1301		3.1E8	0.78	0.09
1986	3.5	0.4	13.3	dm	30	1310	197	192	1383		1.5E9	0.93	0.10
2002	3.2	0.3	13.4	С	16	2965	365	368	3030		5.1E9	0.55	0.04
2162	2.4	0.3	14.3	m	22	1780	187	191	1796	192	2.2E9	1.82	0.15
2308	2.6	0.2	14.4	b	14	2581	222	222	2632		3.2E9	1.25	0.10

ПЛОСКИЕ ГАЛАКТИКИ КАТАЛОГА RFGC

Таблица 1 (окончание)

1	2	2	4	5	6	7	8	0	10	11	12	13	14
2215	115	15	11.2	1	00	1114	205	200	1101	204	2 550	0.41	0.02
2315	11.5	1.5	11.2	a	10	1114	242	290	1121	200	3.369	0.41	0.03
2399	2.5	0.2	14.0	am	10	1106	242	240	1116	05	1 200	0.20	0.10
2419	1.0	0.2	13.0	m	10	2000	207	92	1110	25	I.JEO	1.04	0.10
2425	2.3	0.3	14.0	cu	10	1400	240	293	1497	251	1 1 1 5 0	1.90	0.03
2429	3.0	0.3	14.2			1402	129	125	1407	146	6169	1.15	0.05
2432	1.9	0.2	13.5	m	14	2762	130	133	2904	419	0.120	1.30	0.11
2441	0.1	1.1	19.4	dm	10	740	110	108	744	114	1 0 50	0.01	0.04
2449	0.0	1.1	12.1		10	740	200	202	2758	- 307	2850	0.91	0.18
2501	2.0	0.5	13.0	cd	12	2622	262	265	2671	275	2.019	0.35	0.05
2570	00	12	11.5	h	75	1401	504	493	1502	507	5 5F9	0.44	0.02
2603	12.2	1.2	11.0	dm	17	825	133	130	826	136	24F9	0.69	0.02
2652	14	01	16.0	đ	8	1872	117	118	1892	133	9 5F8	2 98	0.27
2692	61	0.1	10.0	h	45	2641	472	459	2664	477	12E10	0.80	0.03
2602	22	0.0	14.7	dm	30	2878	286	301	2914	311	1 1E10	2.86	0.19
2073	55	0.5	13.2	d	40	1529	235	233	1540	245	4 3E9	1 37	0.09
2860	37	0.5	13.6	cd	20	2185	221	246	2201	226	5 3F9	1 20	0.10
2800	26	0.5	14.2	d	10	3747	261	264	3789	259	54F9	0.69	0.07
2005	15	0.4	15.9	dm	6	2485	158	152	2515		14E9	1 99	0.16
2000	32	0.1	147	d	12	1000	154	165	2021	145	2 0E9	1 39	0.11
2920	10.0	10	10.7	c	07	521	162	156	522	177	4 5F8	0.28	0.05
3021	43	1.0	13.8	C	21	1897	247	251	1013	250	3 3F9	1.03	0.06
3041	12	0.7	15 1	đ	14	2190	120	123	2199	111	2659	245	0.62
3070	28	0.2	13.8	fo	25	5314	499	403	5427	511	2.8F10	1 30	0.07
3111	57	0.2	12.0	~	20	2026	360	348	2045	511	5 2FQ	0.65	0.03
2720	5.0	0.0	12.5	a	16	1492	224	221	1508	226	3 4 50	0.05	0.05
2429	27	0.4	12.5	e d	16	3146	271	221	3182	287	6450	0.73	0.07
2427	27	0.4	14.3	đ	12	1931	197	199	1941	101	1 7F9	1.09	0.07
3490	2.1	0.5	14.5	ed u	23	1003	253	240	1978	255	32F9	2.36	0.08
3561	2.5	0.2	15.2	cd	12	2800	250	244	2837	247	4 0F9	2.25	0.00
3711	2.5	0.2	14.5	cd	15	3744	273	267	3260	275	64F9	148	0.09
3774	2.2	0.3	14.6	d	11	1769	163	159	1791	175	1 3E9	1.10	0.10
3753	15	0.3	157	dm	6	2000	203	198	2931		2 5E9	1 77	0.12
3703	24	0.3	14.8	C	10	3352	348	347	3305	360	5 1 F9	1.77	0.05
3846	2.7	0.3	15.0	č	17	2060	312	308	3014	500	7 3 59	2 52	0.06
3854	24	0.5	15.2	c	a l	2230	166	165	2270	171	1 9F9	165	0.12
3805	16	0.2	15.8	dm	á	2644	08	04	2657		1 3F9	1 29	0.30
3896	26	0.2	15.0	C	10	1693	136	141	1693	137	2 0E9	2 99	0.22
3908	40	0.6	13.4	ed 1	48	1719	363	355	1746	361	5 2E9	164	0.05
3015	22	0.0	15.0	coi	7	2881	205	198	2921	206	2 5F9	1 13	0.09
3916	20	0.2	15.2	cd	14	2743	209	225	2783	224	4 SE9	2.68	0.15
3035	2.0	0.2	14.5	dm	18	1774	70	116	1808	146	2 6E9	176	0.32
3935	2.9	0.3	14.0	m	8	2560	100	188	2588	178	2.6E9	1.76	0.12
3008	35	0.3	13.0		10	2326	220	211	2364	219	3 9 8 9	1.10	0.10
4013	18	0.5	153	đm	11	3151	190	180	3180	215	5.1E9	2 19	0.23
4023	16	0.2	154	cd	20	2660	207	203	2693	212	6.1F9	4.56	0.33
4031	41	04	14.2	dm	16	920	110	109	979		5 8F8	1 14	0.12
4050	23	03	14.7	ah	14	5766	367	355	5888	405	2 1E10	175	0.11
4152	2.5	0.5	157	bo bo	10	3171	183	202	3197	-405	4 1F9	304	0.13
4156	55	0.2	13.7	h	30	2807	524	524	2843	546	1 3E10	1 30	0.03
4170	26	0.0	14.5	d	11	1473	248	240	1490	230	1059	1.07	0.04
4177	51	0.5	12.2	4	22	261	01	240	267	02	1 359	1.07	0.04
41//	2.1	0.7	12.2	u	ددا	201	71	0/	20/	95	1.560	1.11	0.10

551

определялась, согласно Робертсу [15], выражением

$$M_{25} = 33113 \langle W \rangle^2 \cdot a \cdot D.$$

При вычислении интегральной светимости галактик мы учитывали поглощение света в нашей Галактике по данным [13], а внутреннее поглощение в самой галактике игнорировали ввиду неопределенности величины этой поправки. Сопоставление данных столбцов 7 и 10 показывает, что средняя квадратичная разность лучевых скоростей по нашим измерениям и данным NED/LEDA составляет $\sigma(\Delta V) = 29 \text{ км/с}$, а средняя разность скоростей $\langle V_{HIPASS} - V_{NED} \rangle = (-28 \pm 3) \text{ км/с}$. Аналогичное сравнение оценок ширины линии W_{so} из столбцов 8 и 11 дает $\sigma(\Delta W) = 14 \text{ км/с}$ и $\langle W_{HIPASS} - W_{LEOM} \rangle = (-7 \pm 2) \text{ км/с}$. Как видим, погрешности определения лучевой скорости и ширины НІ-линий по спектрам HIPASS невелики, хотя и показывают некоторые систематические различия с опубликованными данными.

3. Обсуждение результатов. Параметры "слепого" обзора HIPASS (собирающая поверхность телескопа, время накопления) таковы, что обзор детектирует менее 5% галактик каталога RFGC. Разумеется, коэффициент детектирования зависит от видимой величины и/или углового диаметра галактик. На рис.2 представлено распределение RFGC-галактик по видимым величинам B_r . Штриховкой выделены галактики, детектированные в HIPASS. Как видно из этой гистограммы, относительное число объектов с HIPASS-эмиссией быстро падает с ростом видимой величины, и 50% уровень детектирования соответствует $B^c = 14^m$.5. Аналогичное распределение по угловым диаметрам показывает, что половина RFGC-галактик детектируется в HIPASS при угловом диаметре a=2.9. Однако вероятность детектирования в HI зависит не только от видимой величины но также от ее морфологического типа. На

Рис.2. Распределение числа южных RFGC-галактик по видимым величинам. Штриховкой отмечены объекты, детектированные в HIPASS.

рис.3 показано распределение RFGC-галактик в зоне HIPASS по морфологическим типам. Штриховка на нем соответствует объектам табл.1. Для спиральных галактик более ранних типов {Sab, Sb, Sbc, Sc} уровень

Рис.3. Распределение числа южных галактик по морфологическим типам. Объекты, детектированные в HIPASS, заштрихованы.

детектирования равен всего 2%. Для поздних типов {Scd, Sd} относительное число детектированных галактик возрастает до 5-7%, а у иррегулярных галактик типа Sdm и Sm уровень детектирования повышается, соответственно, до 22% и 41%. Распределение 103 галактик из табл.1 по измеренным скоростям и ширинам линии HI приведено на рис.4. Наблюдаемая слабая положительная корреляция между W_{50} и V_{4} отражает эффект селекции галактик по светимости с расстоянием, характерный для выборок, ограниченных видимой величиной *B*, или предельным потоком *S*. Медианное значение лучевой скорости для

Рис.4. Распределение 103 детектированных в HIPASS галактик по измеренной лучевой скорости и ширине линии HI.

детектированных галактик составляет +2037 км/с. Близкое к этому медианное значение лучевой скорости, +2150 км/с, получили Хеннинг и др. [16] для 110 галактик, детектированных обзором HIPASS в зоне южного Млечного пути. Дэвис и др. [17] использовали HIPASS-обзор для отождествления галактик низкой поверхностной яркости, выбранных из АРМ-каталога. Среди 2435 таких объектов они обнаружили в HIPASS эмиссию HI только у 26 галактик, медианная лучевая скорость которых составила +2070 км/с. Таким образом, мы заключаем, что эффективная глубина HIPASS-обзора невелика, достигая по медианному значению скорости всего (2000-2150) км/с. Для RFGC-галактик, детектированных в HIPASS, медианное значение ширины линии HI на уровне 50% от максимума равно 242 км/с. Хеннинг и др.[16] получили лля HIPASS-галактик в зоне Млечного пути аналогичную медиану ширины линии 158 км/с. Согласие между этими оценками следует считать хорошим, если принять во внимание поправку за наклон галактик к лучу зрения. Диаграмма Талли-Фишера для 103 галактик из табл.1 приведена на рис.5. Линия регрессии, показанная пунктирной прямой, имеет наклон -5.45 ±0.4. Относительно нее дисперсия абсолютных величин составляет 0^m.74. Сплошной прямой на рисунке показана стандартная регрессия для произвольно ориентированных спиральных галактик по данным Краан-Кортевег [18]. Ее наклон равен 6.70 ± 0.3. Различие нуль-пунктов указывает на то, что среднее внутреннее поглощение у плоских галактик, наблюдаемых с ребра, составляет в В-полосе величину △ B, = 1^m.5, или 4 раза по светимости. Наблюдаемое различие в наклонах легко объяснимо, если внутреннее поглощение в гигантских спиралях сильнее, чем в карликовых системах, как это предполагали Талли и др. [19] и Джиованелли и др. [20]. На рис.6 представлено распределение детектированных в HIPASS-галактик по глобальным параметрам: отношению

Рис.5. Диаграмма Талли-Фишера для 103 галактик, детектированных в HIPASS. Пунктирная прямая соответствует линейной регрессии для них. Сплошная прямая изображает линейную регрессию для произвольно ориентированных галактик согласно данным [18].

ПЛОСКИЕ ГАЛАКТИКИ КАТАЛОГА RFGC

водородной массы к светимости и отношению водородной массы к полной массе (в пределах стандартной изофоты). Медианное значение $M_{HI}/L_{\rm B}$ для этой выборки равно $1.2 M_{\odot}/L_{\odot}$, что заметно выше аналогичных значений (0.2-0.5) M_{\odot}/L_{\odot} для спиральных галактик поздних типов у Робертс и Хайнес [21]. Однако учет внутреннего поглощения света в галактиках, видимых с ребра, ослабляющего светимость в среднем в 2 раза, понижает медианную величину до $0.7 M_{\odot}/L_{\odot}$, уравнивая RFGC-галактики с обычными Sc-Sd спиралями. Распределение объектов нашей выборки по второму параметру, M_{HI}/M_{25} , имеет медиану 0.079, характерную для спиральных галактик поздних типов. Как следует из данных рис.6, отношение водородной массы к светимости у RFGC-галактик варьируется в широких пределах: от 0.25 до

Рис.6. Распределение детектированных галактик по отношению водородной массы к светимости и отношению водородной массы к полной массе в солнечных единицах.

4.56 M_{\odot}/L_{\odot} . Отношение водородной массы к полной массе также охватывает широкий диапазон: от 0.01 до 0.62. Высокие значения этих параметров у некоторых галактик, например, у RFGC 3041, могут быть вызваны попаданием в диаграмму радиотелескопа соседних галактик. Однако большая часть наблюдаемого разброса по этим параметрам, вероятно, обусловлена физическим разнообразием дисков галактик по удельному содержанию газа, которое зависит от темпов звездообразования в них. Используя данные HIPASS-обзора, мы получили средний квадратичный разброс на диаграмме Талли-Фишера 0^m.74, что заметно больше характерной величины $\sigma_M = 0.40 - 0.45$ для других выборок RFGC-галактик (Кудря и др. [22]). Повышенный разброс, очевидно, связан с малой глубиной HIPASS-обзора, который фактически не выходит за пределы Местного сверхскопления галактик. При медианной лучевой скорости обзора 2037 км/с систематические и случайные скорости движения галактик существенно влияют на вид диаграммы Талли-Фишера.

В заключение отметим, что результативность HIPASS-обзора оказалась

относительно низкой: среди 103 южных галактик из каталога RFGC, детектированных в HIPASS, добавилось всего 13 галактик с новыми оценками ширины *W*, из которых только 4 объекта не имели ранее измеренных лучевых скоростей.

Результаты, обсуждаемые в этой статье, получены на Паркском радиотелескопе, который является частью Телескопа Австралии под управлением CSIRO. В статье использована база данных NASA/IPAC (NED) и Лионская внегалактическая база данных LEDA. Авторы признательны Анастасии Боярчук за помощь в работе.

Специальная астрофизическая обсерватория РАН, e-mail: ikar@luna.sao.ru

² Государственный астрономический институт им. П.К.Штернберга, Россия

FLAT RFGC GALAXIES DETECTED IN THE HIPASS SURVEY

I.D.KARACHENTSEV¹, A.A.SMIRNOVA²

We use the HI Parkes All Sky Survey (HIPASS) to determine radial velocities and HI line widths for flat spiral edge-on galaxies from the RFGC catalog. A sample of 103 RFGC galaxies detected in the HIPASS is characterized with the median radial velocity +2037 km/s and the median line width 242 km/s. The 50% level of detection in the HIPASS corresponds to an apparent magnitude of $B_r = 14^m$.5 or apparent angular diameter of 2'.9. A relative number of detected galaxies increases from 2% for the morphological types Sbc, Sc till to 41% for the Sm type. The median value of the hydrogen mass-to-total mass ratio for the detected objects is 0.079. After correction for the mean internal extinction, $<\Delta B_t >= 0^m.75$, derived for the edge-on galaxies, their median hydrogen mass-to-luminosity ratio is $M_{HI}/L_B = 0.74 M_{\odot}/L_{\odot}$, which is typical for the late type spirals. Being rather shallow, the HIPASS reveals only a few RFGC galaxies, whose radial velocities and HI line widths have been unknown before.

Key words: galaxies:spirals - galaxies:radial velocities - galaxies:general

556

ЛИТЕРАТУРА

- I. I.D. Karachentsev, V.E. Karachentseva, S.L. Parnovsky, Astron. Nachr., 314, 97 (FGC), 1993.
- I.D.Karachentsev, V.E.Karachentseva, Yu.N.Kudrya, M.E.Sharina, S.L.Parnovsky, Bull. Spec., Astrophys. Observ., 47, 5 (RFGC), 1999.
- 3. I.D.Karachentsev, Astron. J., 97, 1566, 1989.
- 4. R. Giovanelli, E. Avera, I.D. Karachentsev, Astron. J., 114, 122, 1997.
- 5. Д.И.Макаров, А.Н.Буренков, Н.В.Тюрина, Письма в Астрон. ж., 25. 706, 1999.
- 6. Д.И.Макаров, А.Н.Буренков, Н.В.Тюрина, Письма в Астрон. ж., 27, 250, 2001.
- 7. D.S. Mathewson, V.L. Ford, M. Buchhorn, Astrophys. J. Suppl. Ser., 81, 97, 1992.
- 8. D.S. Mathewson, V.L. Ford, Astrophys. J. Suppl. Ser., 107, 97, 1996.
- 9. L.D. Mattews, W. van Driel, Astron. Astrophys. Suppl. Ser., 143, 421, 2000.
- 10. L.Staveley-Smith, S.Yuraszek, B.S.Koribalski et al., Astron. J., 116, 2717, 1998.
- 11. D.G.Barnes, L.Staveley-Smith, W.J.C. de Block, Mon. Notic. Roy. Astron. Soc., 322, 486, 2001.
- G. de Vaucouleurs, A. de Vaucouleurs, H.C.Corwin, R.J.Buta, G.Paturel, P.Fouqué, Third Reference Catalogue of Bright Galaxies, New-York, Springer-Verlag, v.1-3, 1991.
- 13. D.J.Schlegel, D.P.Finkbeiner, M.Davis, Astron. J., 500, 525, 1998.
- G.Paturel, L.Bottinelli, H. Di Nella, N.Durand, R.Garnier, L.Gouguenheim, M.C.Marthinet, C.Petit, J.Rousseau, G.Theureau, I.Vauglin, Principal Galaxy Catalogue: PGC-ROM 1996, (Saint-Genis Laval: Observatorie de Lyon), 1996.
- 15. M.S. Roberts, Astron. J., 74, 859, 1969.
- 16. P.A. Henning, L. Staveley-Smith, R.D. Ekers et al., astrp-ph/0003245, 2000.
- 17. J:I.Davies, W.J.C. de Block, R.M.Smith et al., astro-ph/01099087, 2001.
- 18. R.C.Kraan-Korteweg et al., Astrophys. J., 331, 620, 1998.
- 19. R.B.Tully, M.J.Pierce, Jia-Sheng Huang et al., Astron. J., 115, 2264, 1998.
- 20. R. Giovanelli, M.P. Haynes, J.J. Salzer. et al., Astron. J., 107, 2036, 1994.
- 21. R. Giovanelli, M.P. Haynes, Ann. Rev. Astron, Astrophys., 32, 115, 1994.
- 22. Ю.Н.Кудря, В.Е.Караченцева, И.Д.Караченцев, С.Л.Парновский, Письма

в Астрон. ж., 23, 728, 1997.