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In this paper we have considered a rotating, perfectly conducting sphere and have calculated 
the electric and magnetic field distributions measured by the rotating observer using the anholonomic 
approach. The calculations have been done for the following two cases: (1) rotating charged 
spherical shell and (2) uniformely magnetized sphere. We have shown that in the limiting situation 
(to a/cf « 1 and y » 1, the magnetic field distribution is the same for both observers, inertial 
and noninertial. The expressions obtained for the electric field components in the rotating frame 
have been compared with the corresponding expressions in the inertial frame, where the observer 
is at rest Some of results are in agreement with Post's approach to noninertial electrodynamics.

1. Introduction. The formulation of electrodynamics in noninertial 
frames has been examinated by various authors adopting different approaches. 
An inspection of literature shows that the most widely used approaches are 
the approach of anholonomic frames and that which is based on the Kotter- 
Cartan-Van Dautzing (KCD) formalism of electrodynamics, extensively used 
by Post and collaborators. However neither of this approaches being free 
from objections and further theoretical investigations should be pursued for 
a better understanding of electrodynamics in noninertial frames.

Using the anholonomic approach Corum [1] has investigated the electro
magnetic fields produced by rotating charge distributions and solved a number 
of paradoxes. However the expressions of the electric and magnetic field 
components computed for a rotating charged sphere with a uniform charge 
distribution when observed from the noninertial frame cannot be considered as 
satisfactory because, as we shall see, the field Frenet-Semet (FS) frames used 
in calculations need to be corrected. Let us also note that in referee [2], the 
electric and magnetic field distribution produced by a rotating magnetized 
sphere have been calculated using the "Post" approach.

In this paper using the anholonomic approach we reconsidered the above 
mentioned problem of Corum , and also treat the case of rotating magnetized 
sphere. The field of FS frames used for calculating the electromagnetic fields 
components is obtained by explicitly solving the FS equations. Our solutions 
differ from FS frames used by Corum, because his frames are a simple 
extension of the tetrad components in cylindrical coordinates to the case of 
spherical ones. Finally the expressions of the electromagnetic field compo-
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nents obtained for the rotating magnetized sphere are compared to those derived 
by using the "Post" approach [2,3].

2. The field of FS frames for relativistic rotation. To calculate 
the physical quantities measured in the rotating frame being the tetrad components of 
the corresponding tensor field, we have to determine the components of the FS 
tetrad. At each event on the worldline of the rotating .observer let us associate the FS 
tetrad (a = 1, 2,3,4) consisting of his 4-velocity p(4) and the orthonormal triad 
{ H(aj| >s the reference frame used by the observer at the event in question.

The FS tetrad is determined by equations [4]
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Let us note that Corum in his investigations on rotational electrodynamics 
used the following FS tetrad:

f 1 _ r2 co2sin20^ %
I c2 )

and
2 2 2

à = _ri_^sin0> c = d = o.
C C

Taking into account the reliability e(2) <-> e^ and comparing (2) and (3) we 
clearly see that they differ from each other. It would not matter of one
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could obtain p(o) from e(o) by a rotation since both tetrads are orthogonal to the 
observer’s 4-velocity. It is easy to show that the matrix

<sin0, 
^(<x₽)= rcose>

I o,
0,
0, 
rsinO.

cosQ ՝ 
- rsin0

0 .
(4)

such that e(aj = is not orthogonal, i.e. * I. From this
result we infer that these tetrads are different. This is not surprising since 
Corum obtained the expression for the tetrad component e(3) by replacing the 
cylindrical coordinate r by rsin0 in the solution

.3 , yr2to 3
w 3q> c cdt

of FS equations for cylindrical coordinates.
For this reason, Corum's computations of the electromagnetic fields 

produced by a rotating charged sphere are not free of objections. Therefore 
in the next section we shall reconsider this problem.

3. Rotating charged spherical shell. In the inertial frame of the 
observer, if the charge density on the spherical shell of radius a is taken as 
uniform, say

Po (5)

where Q is the total charge, the components of the 4-current density /' (z = 1,2,3,4) 
are specified

/ = O,O,-^,po .
\ c J

The solutions of Maxwell’s equations for the 4-potential are
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3cr
where /f(0)(x) = X'(oj At are the physical components and X(a) is the unit vector in 
the direction of the parametric-line x^ (x1 = r, x2 = 0, x3 = cp, x4 = ci). Taking 
(7), (8), from the definition of the electromagnetic field tensor Ff in terms of A,

Fÿ=V,4y-Vy4 (9)
we obtain the following expressions for the nonvanishing components of

0, 
7)4= 2

r<a
(10)



582 D.M.SEDRAKIAN, R.A.KRIKORIAN
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The components of the vector-potential A(t) and electromagnetic tensor F(-) in 
the rotating frame { are related to the inertial components Ap Ff by the 
transformation

Aa)W = l‘(a)4 (13)
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Comparing our results with those of Corum (with the reliability

(17)

(18)

(19)

(20)

e(2) e(3))

we see that the expressions for >4(a)(p) and are different [1]. This



ON PULSAR ELECTRODYNAMICS 583

disagreement is not surprising since, as explained in section 2, our FS tetrad 
P(a) does not coincide with the tetrad e^, used by Corum. It is important 
to recall that p(aj cannot be obtained from by a rotation having as axis 
the 4-velocity of the noninertial observer.

4. Uniformly magnetized rotating sphere. The uniformly magne
tized, perfect conducting, sphere with an angular velocity co parallel to B is 
considered in the astrophysical literature as the simplest model of pulsars [5,6]. 
Let us suppose that in the inertial frame of the observer we have a uniformly 
magnetized, slowly rotating [(mo/c)2 «1), perfect conducting sphere. The 
magnetic field lines being parallel to the rotation inside the sphere, while 
outside we have a dipolar distribution given by

Br = ֊^cosO, r>a,
r (21)

B6 = -^-sin6, r > a, 
r

where m is the magnetic moment of the sphere. As have been shown in [6], 
the unipolar induction of the rotating sphere surrounded by vacuum, will 
generate a stationary electric field outside, the distribution of which is:

„ B0(oa5 L 2- A
£, = —S—j—I3cos 0 -11,

2-7 (22)
£0 = _ fl»0)0 sinQcosO.

cr4
On the surface of the sphere the electric field components have the following 
expressions:

^=A^sin20>
2c (23)

„ B0(oa . . -Ee = —y---- sm0cos0,
c

where Bo = 2 m/a3 is the value of the magnetic field at the pole. Since the 
normal component of the electric field is discontinuous for r= a we must have 
a charge distribution o on the surface of the sphere given by

ct = - ff-cos29. (24)
ac

Let us now find the distributions of the electric and magnetic fields as 
measured by an observer rotating with the sphere. As we have seen in section 
3, the noninertial field components are connected with the inertial ones by 
the transformation law (13,14). Assuming (®a/cf «1, we obtain the following 
nonzero results for magnetic field components:

/7(23)(h) = fli)W = sine cos0,
r r>a (25)

F (i2)Gi) =5(3)(p) = ^- P2 (cose),
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and
^(23)(m) = ^(i)W = sinOcose, 

a r=a

and for the electric field components:

(26)
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/Ï34) = ^(3)(M) =

,2ym^. 3cos20_1-£_(4cos20-1) sinG, 
cr2 r
I^r3sm2e֊^-fSin26- 

cr r k
3cos2e-i^

2 z
cos0.

r>a (27)

Finally, the electric field components on the surface of the sphere £(i)(p) and 
E(3)(p) are equal to zero. It is worth to mention that this last result has been 
used in [6] to obtain the expressions of the electric fields (23) on the surface' 
of the sphere as measured by an inertial observer.

The above-derived expressions of the electric field components for the noninertial 
observer are valid only under laboratory conditions, when no charge can escape 
from the metallic sphere. Applying these solutions to the case of pulsar, Goldreich 
and Julian in [6] concluded that "rotating magnetic neutron star can not be 
surrounded by a vacuum", since the electric force along the direction of the 
magnetic field exceeds the gravitational force in the same direction. As a 
consequence of the escaped charges from the star surface, the closed magnetic 
field lines may be regarded as equipotentials. Taking into account that the 
interior of a neutron star is a perfect conductor they obtained for the electric 
field components in the inertial frame the following expressions [5]:

K ' 2 r*a (28)
Ee - - m-°-fl sinQcosQ.

We use these formulas to calculate the expression for the electric field compo
nents for the noninertial observer. The result is simple: all components of the 
electric field for the rotating observer are equal to zero. This result is not 
surprising because the escape of charged particles transforms the region occupied 
by the closed magnetic field lines into a perfect conductor, consequently for the 
noninertial observer there is no reason for the generation of an electric field.

5. Conclusion. This paper is a continuation of our investigation of 
electrodynamical problems in accelerated frame [2]. We have considered a 
rotating, perfectly conducting sphere and have obtained the electric and mag
netic field distribution measured by the rotating observer, using the anholonomic 
approach. Particularly we calculated the magnetic and electric field components 
for the following cases: (1) rotating charged spherical shell and (2) uniformly 
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magnetized rotating sphere. In the first case, our results differ from those of Corum 
because his tetrad field is not a solution of the FS equations (1) [4].

The second case is interesting since it permits to compare the field distri
butions in rotating frames obtained by two different approaches of noninertial 
electrodynamics. Taking into account that R(I) and R(3) are respectively the 
components in the direction of the acceleration and the axis of rotation, 
comparison (25), (26) with (21) shows that'in the limiting situation (toa/c)2 « 1 
and у « 1 the magnetic field distribution is the same for both observers, inertial and 
noninertial. This result is in agreement with Post's remark that in the Peyram and 
Kennard experiments "the observations are independent of whether the solenoid 
generating coaxial В field was stationary or rotating at the same angular velocity as 
the cylindrical condenser".

When the rotating sphere is surrounded by vacuum the electric distributions 
for the inertial and rotating observer are completely different. In the inertial 
frame the radial dependence of the fields components is 1/r4 whereas in the 
rotating frame the decrease with distance is slower, i.e. 1/r1. Let us also 
mention that the angular dependence is also different. When the escape of 
charged particles is permitted, the electric field components are all equal to zero. 
This result is in agreement with the Post's remark that no unipolar induction 
effect exists for the noninertial observer rotating with the sphere.
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К ЭЛЕКТРОДИНАМИКЕ ПУЛЬСАРОВ В 
ВРАЩАЮЩИХСЯ СИСТЕМАХ

Д.М.СЕДРАКЯН1, РА.КРИКОРЯН2

В этой статье мы рассмотрели вращающуюся, проводящую сферу и 
вычислили распределения электрических и магнитных полей, измеряемые 
вращающимся наблюдателем, в неголономном приближении. Вычисления 
проводились в следующих двух случаях: (1) вращающейся заряженной сферы, 
(2) равномерно намагниченной сферы. Мы показали, что в предельном 
случае (со о/с)2 «1 и у » L распределения магнитного поля одинаковы для 
инерциального и неинерциального наблюдателей. Выражения для компонент 
электрического поля во вращающейся системе сравнены с соответствующими 
выражениями в инерциальной системе, где наблюдатель находится в состоянии 
покоя. Некоторые результаты находятся в согласии с приближением Поста 
неинерциальной электродинамики.
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