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The behaviour of the magnetic field inside the superconducting quark matter core of a neutron 
star is investigated in the framework of the Ginzbuig-Landau theory. We take into account the 
simultaneous coupling of the diquark condensate field to the usual magnetic and to the gluomagnetic 
gauge fields. We solve the problem for three different physical situations: a semi-infinite region with 
a planar boundary, a spherical region, and a cylindrical region. We show that Meissner currents 
near the quark core boundary effectively screen the external static magnetic field.

1. Introduction. Recently, possible formation of diquark condensates in 
QCD at finite density has been re-investigated in series of papers following 
Refs. [1,2]. It has been shown that in chiral quark models with non-perturbative 
4-point interaction motivated from instantons [3] or non-perturbative gluon 
propagators [4,5] the anomalous quark pair amplitudes in the color antitriplet 
channel can be very laige: of the order of 100 MeV. Therefore, one expects 
the diquark condensate to dominate the physics at densities beyond the 
deconfinement/chiral restoration transition density and below the critical tem
perature (of the order of 50Mev). Various phases are possible. The so called 
two-flavor (2SC) and three-flavor (3SC) phases allow for unpaired quarks of 
one color. It has been also found [6,7] that there can exist a color-flavor 
locked (CFL) phase for not too large strange quark masses [8], where color 
superconductivity is complete in the sense that diquark condensation results in 
a pairing gap for the quarks of all three flavors and colors.

The high-density phases of QCD at low temperatures are relevant for the 
explanation of phenomena in rotating massive compact stars which might 
manifest themselves as pulsars. Physical properties of these objects (once 
being measured) could constrain our hypotheses about the state of matter at 
the extremes of densities. In contrast to the situation for the cooling behaviour 
of compact stars [9,10], where the CFL phase is dramatically different from 
the 2SC and 3SC phases, we don't expect qualitative changes of the magnetic 
field structure for these phases. Therefore, below we shall restrict ourselves 
to the discussion of the simpler two-flavor theory first. Bailin and Love [11] 
used a perturbative gluon propagator which yielded a very small pairing gap 
and they concluded that quark matter is a type I superconductor, which
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expells the magnetic field of a neutron star within time-scales of 104 years. 
If their arguments would hold in general, the observation of life-times for 
magnetic fields as 10’ years [12,13] would exclude the occurence of an 
extended superconducting quark matter core in pulsars. These estimates are 
not valid for the case of diquark condensates characterized by large quark 
gaps. Besides, in [14] the authors found that within recent non-perturbative 
approaches for the effective quark interaction that allow for large pairing gaps 
the quark condensate forms a type II superconductor. Consequently for the 
magnetic field H< Hel there exists a Meissner effect and for Ha > H> Hc} the 
magnetic field can penetrate into the quark core in quantized flux tubes. 
However, they have not considered in that paper the simultaneous coupling 
of the quark fields to the magnetic and gluomagnetic gauge fields.

Though color and ordinary electromagnetism are broken in a color super
conductor, there is a linear combination of the photon and the gluon that 
remains massless. The authors of [15] have considered the problem of the 
presence of magnetic field inside color superconducting quark matter taking 
into account the possibility of the so called "rotated electromagnetism". They 
came to the conclusion that there is no Meissner effect and the external static 
homogeneous magnetic field can penetrate into superconducting quark matter 
because in their case it obeys the sourceless Maxwell equations. To our 
opinion, this result is obtained when one does not pose correct boundary 
conditions for the fields. Obviously it is energetically favorable to expell the 
magnetic field rather than to allow its penetration inside the superconducting 
matter. Using for the description of the diquark condensate interacting with 
two gauge fields the same model as in [8,9,16], we will show that the presence 
of the massless excitation in the spectrum does not prevent the Meissner 
currents to effectively screen the static external magnetic field.

In [16] two of us have derived the Ginzburg-Landau equations of motion 
for the diquark condensate placed in static magnetic and gluomagnetic fields,

adp + ^dpdp )dp + y^r V - ֊■ 2+ ֊ Gg
dp=0, (1)

where d is order parameter, a = t dn/dE, p = (dn/dEy7Cfy(nTc)՜2/%, 
y = p|p/(6^2), dn/dE = ppp/n2, t=(T- T)/Te, Te being the critical tem-

perature, pr - the quark Fermi momentum, and for the gauge fields 
.2 s • i -j .sinaW. Vd*-d'„ Vd.) . -
X2rotrot.4+ sm2a^ = i-------------- £--- p-----— + sinacosaGo,

9 2qd2 8

~ 2 . cosaid. Vd*-d* Vd„) . -
A.2 rot rot Gg+ cos2a6!g = -1------ P------------------- + smaC0Sa 2 • (3)

These equations introduce a "new" charge of the diquark pair q = -Jq2 e2+g2 Pg, 
Pt = 1/V3, and for the diquark condensate with paired blue-green and green
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blue ud quarks one has t] = 1/V3. The penetration depth of the magnetic and 
dluomagnetic fields and the mixing angle a are given by

X;1 = qd 72y, cosa = g . (4)
Vh e + g

At neutron star densities gluons are strongly coupled (g/4n~l) whereas 
photons are weakly coupled (e2/4rt = 1/137), so that a.-x\e/g is small. For 
g2/4n = l we get a = 1/20. The new charge q is by an order of magnitude 
larger than e/3.

Please notice also that since red quarks are normal in the 2SC and 3SC 
phases, there exist the corresponding normal currents = -Yi^vAv and 
7g(G!8) = ~n^vGg which however do not contribute in the static limit under 
consideration to the above Ginzburg-Landau equations, cf. [17]. Thus, the 
qualitative behaviour of the static magnetic field for all three 2SC, 3SC, 
and CFL phases is the same.

We will solve the Ginzburg-Landau equations (1), (2), (3) for the case 
of a homogeneous external magnetic field for three types of superconducting 
regions: a) a semi-infinite region with a planar boundary, b) a cylindrical 
region and c) a spherical region. The cases a) and c) simulate the behaviour 
of the magnetic field in quark cores of massive neutron stars. A discussion of 
all the three cases might be interesting in connection with the expectation 
that the slab, the rod and the droplet structures may exist within the mixed 
quark-hadron phase of the neutron stars, cf. [18,19].

We assume a sharp boundary between the quark and hadron matter since 
the diffusion boundary layer is thin, of the order of the size of the confinement 
radius (~ 0.2 0.4fm), and we suppose that the coherence length = ^y/(֊2a) 
is not less than this value and the magnetic and gluomagnetic field penetration 
depth X? is somewhat larger than the confinement radius. Also we assume that 
the size of the quark region is much larger than all mentional lengths.

2. Solution of Ginzburg-Landau equations. Let us rewrite equations 
(2) and (3) for a homogeneous superconducting matter region (being either 
a type I superconductor, or a type II superconductor for H< Hci) in the 
following from

X2 rot rot Â+ sin2a À = sinacosa Gg, (5)

X2rotrotGg+ cos2a(78 = sinacosa A. (6)

The field Gg is defined from (5) as follows
$ _ X2 rot rot J+sin2a/î

■ sinacosa
From equations (6) and (7) we obtain the relation

rot rot Gg = -cotarot rot A. (8)



446 D.M.SEDRAKIAN ET AL

Substitution of G8 from (7) into (8) yields
rot rot(k2 rot rot A+ zi) = 0. W

Introducing the new function M,
M = rotrot^, (10)

we obtain
A^rot rot M+ M = 0. (11)

Thus the vector potential A can be determined by simultaneous solution of 
equations (10) and (11), whereas the gluonic potential G, is found from (7).

For the solution of equations (7), (10) and (11) we also need appro
priate boundary conditions. At the quark-hadronic matter boundary we re
quire the continuity of the magnetic field and the vanishing of the gluon 
potential (G8 = 0) due to gluon confinement. Also the potential Gt and the 
magnetic induction can't be infinite within the region of their existence. As 
we shall see below, these conditions are sufficient for a unique determination 
of the magnetic and gluomagnetic fields inside the quark matter.

Equations (1), (2) and (3) have an obvious solution for a homogeneous 
(v dp = 0) and infinite superconductor (A = 0, G8 = 0)

r/2=-a/p>0. (12)
This solution motivates the possibility of existence of the complete Meissner 
effect for both the fields A and G8 inside the quark superconductor. It 
corresponds to the absolute minimum value of the free energy f = fn- c2/(2p), 
where £ is the free energy of the normal quark matter [11], [14]. The 
presence of the fields A # 0, Gt * 0 inside the quark region would increase the 
free energy.

As we have mentioned, the estimates [14,16] have demonstrated that color 
superconductors are type II superconductors. Indeed, the Ginzburg-Landau 
parameter k = kq/l$ = -7p/(y?)> 3. For type JI superconductors one can drop 
the fields A and Gg in the Ginzburg-Landau equation (1) arriving at the 
solution (12), since the coherence length is smaller than the penetration 
depth of the magnetic and gluomagnetic fields A?. Then in equations of motion 
(2) and (3) the penetration depth of the magnetic and gluomagnetic fields 
A.? can be put constant. This simplifies solution of the Ginzburg-Landau 
equations very much. For further analytical treatment of the problem we will 
assume that we deal with a type II superconductor although our main 
conclusion on the existence of the Meissner effect is quite general.

2.1. Planar boundary. Let us first consider a semi-infinite region of 
superconducting quark matter for x < 0 with a planar boundary, which 
coincides with the zy plane. The external static homogeneous magnetic field 
H is directed along the z-axis, the external vector potential A is aligned in.
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the y direction Ay(x) = Hx. Then the internal potentials A and G8 also have 
only y components: Ay = Ay{x) and Glf=Glf(x), divJ = 0, divG8 = 0. Simul
taneous solution of equations (10) and (11) determines the electromagnetic 
vector potential Ay as follows

Ay = q exp — + c2x+ c3. (13)

We put q = 0 because otherwise Ay -> oo and Giy -> oo for x -> oo that would 
lead to a complete destruction of the condensate. We search for an ener
getically favorable unique solution of the problem satisfying the above men
tioned boundary conditions. Thus we further put

Ay = C] exp — + c3. (14)

Substitution of the solution (14) into equation (7) yields the gluonic poten
tial Gly,

G8v =-cota q exp — +tanac3.

The boundary condition Giy(x = 0) = 0 determines the constant c3 = 
For the vector potential of the magnetic field we obtain

Ay = q exp — + cot2a .
^/7

(15)
n

Cj cota.

(16)

We can determine c, from the remaining boundary condition dAy (x = 0)/dx = 0 
which yields q = HXq. Finally the potentials render

2.Ay = Hkg exp — +cot2a , 
^-a (17)

Giy = -coXa.H'kg exp — -1 . (18)

Then, for the magnetic induction B=dAJdx and for the gluonic field K = 
dG^Jdx inside the quark superconductor we have the following expressions

B = Hexp —
K,

e, (19)

K = -cotaBez . (20)
Ref. [15] introduced the "rotated" fields Bx and By,

Bx = -smaB+ cosa. K,

By = cosx2?+sinaX’.

(21)

(22)
It is easy to see that solutions (19) and (20) yield By = 0 and 
Bx = -(Zf/sina)exp(x/Xg). Therefore there is no By field inside the supercon-
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ducting quark matter and the B* field is expelled from the color supercon
ductor. Consequently, in contradiction with the statement of [15] there is 
a Meissner effect for the color superconductors.

. 2.2. Cylindrical structures. Now we shall consider a cylindrical 
region of superconducting quark matter of radius a, whose axis coincides with 
Z axis of cylindrical coordinates. Such a situation may occur in the mixed 
phase where the rods of quark matter imbedded in the hadron matter are 
possible configurations. The external homogeneous magnetic field H is di
rected along the z axis, the external vector potential A is aligned in the cp 
- direction A^ = Hr/2. The internal vector potentials A and <78 have only <p 
- components 4p(r) an^ Thus, equation (11) acquires the form

՝ ! dMv 
dr2 r dr

« =0. (23)

The solution of this equation is = -qZi(r/X9), where Zj(r/X9) is the 
corresponding modified Bessel function. Consequently, equation (10) can be 
written in the following form

1 A
dr1 r dr r2

For the vector potential A? we obtain

(24)

IS J

Then for the potential from (7) we find following expression

(25)

^8<p(r) = _c°taqX2 Z։ — + tanac2r.

The magnetic induction Bt inside the superconductor is given by

(26)

Bz(r)- C.^ /0 +2c2- (27)

9

We determine q from the boundary condition 6^(0) = 0 and c, from 5(a) = H. 
Consequently, final expressions for the potentials are

a+ cot2a—Ix — (28)

r (AGM = -BlA J -Lt ai
r

a

a

and for the corresponding fields we get

(29)
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+ 2cot2a—/։ —
a M

H cota

(30)

X, (31)

where P^a/Xq, a) is given by

+2^cot2a/1U- .
Xfl aX. (32)

Thus, we obtain the following final expressions for the rotated fields

B‘-a.
2X? Æcota

a) sisina
T -P-

1 x„ ’ (33)

X,
a

Bx- H
1 P(p/\> a) sina (34)

We notice that the field By is homogeneous inside the quark matter. Thus 
one may expect that in presence of the magnetic field the slab structures are 
energetically favorable starting with a smaller quark fraction volume than in 
absence of the magnetic field since, as we have argued, the magnetic field 
is expelled from the slabs and it penetrates the cylindres. In application to 
the description of the quark core of the neutron star, the discussion of the 
cylindrical case has no meaning and one should further consider the case of 
a spherical geometry.

2.3. Spherical case. We now assume that the neutron star possesses a 
spherical core of radius a consisting of color superconducting quark matter. The 
applied homogeneous magnetic field H is directed along the z axis. The functions 
M, À and Gs have only <p - components: j|/v(r,3),4p(r,S) and G^r, 9). For 
the solution of the equation (11) we use the ansatz Mv(r,&) = /(r)sinS. Then 
the equation (11) can be written in spherical coordinates as

d2
dr1 r dr (35)

The solution of equation (35) which tends to zero at the centre of the core renders

/W= (36)

where

= sinh —
3?,

f \
-—cosh — (37)
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For the solution of equation (10) we use the ansatz (r> $) ~ #(r) Then

equation (10) acquires the form
d2g 2 dg 2g _ D r[ r 
dr2 r dr r2 r2 ^X?> (38)

The general solution of equation (10) in spherical coordinates is given by
2?X? ( '
—~J — sinS + qrsinO.

x.
We also find the general solution for the gluonic potential from (7)

G8q>(r, $) = -cota
Dk2
-^֊-J— sin& +tanac.rsinS. rl W

(39)

(40)

The constant c, is determined from the boundary condition G^a, S) = 0 as 
c։ = Z)X*cot2aj(a/A.?)/a3. Then expressions for the vector potential and 
for the gluonic potential 6^ are written as

£il|jf_L^ + cot2a

X,

n;2
G8„(a, &) =-cota—

£
a3

a3
a

X„

sinS,

sinfk

Therefore, the expressions for the radial component B* and the 
component Btb acquire the form

2DK2
a3

+ cot2aJ — cosS, 
X-

(41)

tangential

$)-
D I2 3 (

2L -2cot2aJ — sin&, 
a3 r3 1 X„

,3
(42)

X, x.

4₽M) =

1 Zj|_l 
,3J

a

where

X,

2 ՛ I

1 + -Ç- sinh —-------—cosh — .
xi <*■<։> (43)

Accordingly, the expressions for the radial component Ku and the tangential 
component Kia of the internal gluomagnetic field render

v z 2Z)X2O
^(r, ») = -cota—

ar

H/8(r, d) = -cota

a3՜ 
„3 X.

ni2 3 ( > ( '^3- a֊Jx -L- +2J -°- 
r3 K X„a3 X, X.

cosS,

sinfk
(44)

a

The solutions of the Maxwell equations outside the sphere are
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(45)
8 (r, 9) = H+ -y-J sind.

We can find D and m from the boundary conditions B/r(a, &) = Bv(a, d), 
S) = Jffe8(a, &). Thus, we obtain

3Ha
2Wsinh(a/X?) ’

m- H<? 1 + 3 
m —---------r + j

2N

Where N is given by

W = l-3cot2a

X2 „ X,

a‘

'ft

(46)

a X9

^i_\coth— . 
o a X9 (47)

The final expressions for the internal magnetic fields have the form
B 3HK}

a2 jV sinh (a

_ 3#X2
■°/8 - 2,,.,/

_3 X.
+ cot2a/ —

X,
cosS,

(48)
,3

— -2cot2a/ — sind, 
r X„ XoX,r

The corresponding internal components of gluomagnetic field are given by
_ 377X2cota 

a27V'sirüi(a/X
£ 
„3 X.

cosS,

r 3 H X2cota
,8 2a2Wsinh(a/X9)

(49)
,3

+ 2J JL
r3 K, KX,

sind.

a

We obtain therefore the following internal components of the rotated source
less field By

ßZTX^cotx
—5------ -coth-^--l cosS,
№?sina |_X9 X9

3/TX9cotar a a \ . Q
------------ -^-coth——1 smS.
M?sinx |_X9 X9

(50)

X,
It is to be noticed that the components of the rotated field By depend only 
on the polar coordinate & The internal components of the rotated massive 
field Bx are

Nr3 sinasinh(a/X9) ^X, cosd,

ßX 3H%a
'8 2 Nr3 sinasinh(fl/X9)Jx — sind.

X.

(51)
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In a neutron star, the radius of the superconducting quark core a is much 
larger than the penetration dept In this limit the unbroken rotated field 
components take the form

< = 3^cota^.cos9> 
sina a (52)

^8=_Mcota^.sinS 
• sina a

In the very same limit, for the components of the rotated massive field Bx 
at the surface of the quark core we obtain

Bxr (a, S) = - — cos3,
sina a (53)

Bxa (a, 3) = sin9.
sina

Therefore, the rotated massive field component at the surface of the quark 
core Bxa (a, S) is larger than Bfa by the factor a/X?cota and the B£(a, s) 
and B?r components are of the same order of magnitude. We notice that 
there is Meissner effect for the rotated field Bx. Let us now estimate the 
rotated field By inside the star. For values of the external field strength H 
= 1012G, the penetration depth X9=1.7frn, the mixing angle a = 0.05 and 
the radius of the quark core 0 = 1km we obtain B',=1-10՜*G. Thus, we can 
safely neglect the rotated unbroken field By. Therefore we again insist that 
there is a Meissner effect, and the applied external static magnetic field is 
thereby almost completely screened within the spherical geometry. Only a 
tiny fraction of the field can penetrate into the superconducting quark cores 
of the neutron stars.

3. Conclusion. We have investigated the behaviour of color supercon
ducting quark matter in an external static homogeneous magnetic field and 
could show that color.and electric Meissner currents exist. For this purpose 
we have solved the Ginzburg-Landau equations for three types of superconduct
ing regions: a) a semi-infinite region with planar boundary, b) a cylindrical 
region and c) a spherical region. We have obtained analytic expressions for 
magnetic and gluomagnetic fields inside the quark matter for all three cases. 
In application to the quark cores of massive neutron stars we showed that one 
can neglect the rotated field By inside the superconducting quark core since the 
Meissner currents effectively screen the applied external static magnetic field. 
These results confirm the physical situation discussed in [16].
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ЭФФЕКТ МЕЙССНЕРА ДЛЯ "ЦВЕТОВОГО" 
СВЕРХПРОВОДЯЩЕГО КВАРКОВОГО ВЕЩЕСТВА

Д.М.СЕДРАКЯН1, Д.БЛАШКЕ2, К.М.ШАХАБАСЯН1,
Д.Н.ВОСКРЕСЕНСКИЙ3

В работе изучено проникновение внешнего магнитного поля в 
сверхпроводящее кварковое ядро нейтронной звезды в рамках теории 
Гинзбурга-Ландау. Учтено также непосредственное взаимодействие 
кварков с магнитными и глюомагнитными калибровочными полями. 
Решена задача о проникновении магнитного поля в кварковое вещество 
для трех различных случаев: полубесконечной՛ сверхпроводящей среды с 
плоской границей раздела, цилиндрической сверхпроводящей области и 
сферической сверхпроводящей области. Показано, что мейсснеровские 
токи, возникающие на границе кваркового ядра, эффективно экранируют 
статическое внешнее магнитное поле.
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