АСТРОФИЗИКА

TOM 44

МАЙ, 2001

ВЫПУСК 2

УДК: 524.31

ИССЛЕДОВАНИЕ ВЕРТИКАЛЬНОГО РАСПРЕДЕЛЕНИЯ ХРОМА В АТМОСФЕРАХ СР-ЗВЕЗД. II. МОДЕЛИРОВАНИЕ

И.С.САВАНОВ¹, О.П.КОЧУХОВ^{1,2}, В.В.ЦЫМБАЛ² Поступила 30 августа 2000 Принята к печати 15 января 2001

С помощью детального моделирования профилей линий Сr II подобраны вертикальные распределения хрома в атмосферах нескольких Ар- и Ат-звезд. В случае Ар-звезд полученные вертикальные распределения согласуются с результатами исследований Бабеля линий Сr в спектре Ар-звезды 53 Сат. Показано, что наблюдательные данные не могут быть интерпретированы в рамках пипотезы о переменности с плубиной микротурбулентной скорости.

1. Введение. В данной работе мы продолжаем изучение вертикальной стратификации химических элементов в атмосферах СР-звезд. На основании новых наблюдений ранее [1] нами была проведена диагностика вертикального распределения Сг в атмосферах четырех Ат, двух Нg-Mn и двух магнитных Ар-звезд. В настоящей статье мы представляем результаты количественного расчета вертикального распределения Сг в атмосферах некоторых Ар- и Ат-звезд и рассматриваем возможность интерпретации нашего наблюдательного материала в рамках альтернативной гипотезы о переменности с глубиной микротурбулентной скорости §.

2. Моделирование вертикального распределения хрома. Следующим естественным шагом после получения зависимостей содержания Сг от $\Delta\lambda$ является определение вертикального распределения Сг в реальной шкале геометрических или оптических глубин звездной атмосферы. Такой расчет необходим для сравнения наблюдательных данных с предсказаниями теории. Исходная зависимость log(Cr/N) от $\Delta\lambda$ может быть истолкована как доказательство самого факта наличия вертикальной стратификации Сг, однако не может быть использована для количественного анализа стратификации. Романюк и Топильская [2], анализируя эквивалентные ширины линий Сг II, полученные для α^2 СVn в работах [3] и [4], рассчитали оптические глубины формирования W_1 линий 30-го мультиплета Сг, получив таким образом зависимость log(Cr/N) от оптической глубины. В нашем исследовании, основанном на расчете синтетических спектров, мы отказались от применения такой методики по следующим причинам: во-первых, существуют разногласия относительно самого определения понятия глубины формирования монохроматического излучения (см., например, обсуждение этого вопроса в работах [5] и [6]), во-вторых, использование для анализа линий Сг метода спектрального синтеза предполагает анализ формирования каждой точки спектра и не допускает естественного использования понятия глубины формирования спектральной линии в целом. Кроме того, так как спектральная линия в общем случае формируется на достаточно большом интервале оптических глубин, то высказывались сомнения [7] относительно принципиальной возможности сопоставления всей спектральной линии некоторой определенной глубины формирования.

Рис.1. а) Линейная аппроксимация зависимостей I_{-} . от $\Delta\lambda$ для различных вертикальных распределений Сг в атмосфере β СгВ. Сплощная тонкая линия соответствует однородному распределения С log(Cr/N) = <log(Cr/N)> (см. табл.1), жирные линия - ступенчатым изменениям log(Cr/N): сплощная линия - оптимальное распределение, штриховые, штрих-пункларные и короткие питриховые линии - вариации на ±0.3 dex оптимальных значений log(Cr/N), logr, я log(Cr/N), Сплощным тонками кривьюм показан 95%-ый доверительный интервал линейной аппроксимации зависимости I_{-} . I_{+} от $\Delta\lambda$ для оптимальное распределения Cr. b) Ступенчатые распределения Cr в атмосфере β CrB, использованные для построения зависимостей I_{-} . I_{-} от $\Delta\lambda$, показанных распределений Сr в атмосфере Сириуса. d) Ступенчатые распределения с на рас.1a. Все обозначения и нумерация совпадают с принятыми на рас.1a. С То же, что и на рас.1a, но для различных вертипальных распределений Сr в атмосфере Сириуса, использованные для построения зависимостей I_{-} . I_{-} от $\Delta\lambda$, показанных распределения с гользованные для построения зависимостей I_{-} . I_{-} от $\Delta\lambda$, показанных распределения и нумерация совпадают с принятыми на рас.1a. С То же, что и на рас.1a, но для различных вертипальных распределений Сr в атмосфере Сириуса. d) Ступенчатые распределения с λ_{-} показанных на рас.1c. Все обозначения и нумерация совпадают с принятыми на рас.1a.

Учитывая вышеизложенные соображения, мы решили определять вертикальное распределение Сг в атмосферах СР звезд подбором такого распределения Сг. которое лучше всего воспроизводит наблюдаемые интенсивности линий этого химического элемента. Сравнение теоретических распределений с наблюдениями производилось графически, путем построения для каждого варианта вертикальной стратификации Сг зависимости разницы теоретических и наблюдаемых центральных интенсивностей І_-І_ от ДА (см. рис.1а и с). При этом наилучшим считалось такое вертикальное распределение Cr, которое минимизировало а) наклон прямой, аппроксимирующей зависимость I -I от Δλ и б) отклонение аппроксимирующей прямой от прямой І, - І = 0. Отметим, что использование для сравнения с наблюдениями только центральных интенсивностей линий Ст II не означает потери какой-либо информации, заключенной в профилях линий. Действительно, все исследованные линии хрома достаточно слабы в спектрах Ар и Ат-звезд, поэтому вряд ли можно ожидать такого влияния стратификации на форму их профилей, которое выявлено для резонансной линии К Ca II [8.9], резонансной ультрафиолетовой линии Ga III λ 1495 Å [5] или сильных оптических линий He I [10].

Важно отметить, что теоретические центральные интенсивности / линий Сг II для каждого вертикального распределения этого химического элемента определялись нами с помощью расчета синтетических спектров в области линий Сг. Использование синтетических спектров позволило адекватно учесть эффекты блендирования линий Сг и уширения спектральных линий за счет вращения звезды и инструментального профиля. Синтетические спектры рассчитывались по программе В.В.Цымбала SYNTHMN, которая позволяет для любого химического элемента задавать изменяющееся с глубиной содержание и/или изменяющуюся с глубиной микротурбулентную скорость. Свертка синтетических спектров с профилем вращения и инструментальным профилем осуществлялась с помощью системы STARSP [11].

В качестве первого приближения мы использовали ступенчатое распределение Cr, определяемое тремя параметрами: содержанием Cr выше скачка (log(Cr/N)₁), ниже скачка (log(Cr/N)₂) и оптической (росселандовой) глубиной самого скачка (log₇). Для Ар-звезд содержание Cr в слоях атмосферы выше скачка было выбрано солнечным log(Cr/N)₁ = log(Cr/N)₀ = -6.30 и варьировались положение скачка и его величина ($\Delta log(Cr/N) = log(Cr/N)_2 - log(Cr/N)_0$), для Ат-звезд мы, наоборот, фиксировали солнечное содержание Cr ниже скачка log(Cr/N)₂ = log(Cr/N)₀ и варьировали положение скачка и содержание Cr в верхних слоях атмосфер звезд. На данном этапе исследования микротурбулентная скорость считалась постоянной на всей протяженности звездной атмосферы и равной величине ξ_0 , найденной в предыдущих исследованиях химического состава звезд (см., например, табл.2 в [1]

и табл.2 в [12]).

Во всех предыдущих исследованиях вергикальной стратификации химических элементов авторы использовали для анализа наблюдений подобные ступенчатые распределения (см., например, [5,9,13]). На настоящий момент качество наблюдательного материала, по-видимому, не позволяет выявить более сложные вертикальные распределения химических элементов. Кроме того, как показал Бабель [8], для Ар-звезды 53 Сат ступенчатые распределения очень хорошо описывают теоретические изменения содержания многих элементов с глубиной. Таким образом, можно надеяться, что ступенчатое распределение Ст является хорошим приближением реальной стратификации, по крайней мере, для случая Ар-звезд.

Далее в нашей работе приводятся конкретные результаты подбора оптимальных вертикальных распределений Сг в атмосферах Ар и Ат-звезд.

2.1. Ар-звезды. Вертикальные распределения Сг подбирались для β СгВ, НК 7575 и γ Еqu - Ар-звезд, показавших самую сильную зависимость log(Cr/N) от Δλ. В табл.1 указаны параметры log(Cr/N), log(Cr/N), и logt, оптимальных ступенчатых распределений Cr, полученных для трех Ар-звезд. Там же приводится оценка вероятных опибок определения этих параметров. Рис.1а, в иллюстрирует процесс подбора вертикального распределения Cr для β CrB. На рис.1а показана линейная аппрожсимация зависимости I_{on}-I_{on} or Таблица 1

ВЕРТИКАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ Сг, ПОЛУЧЕННЫЕ ДЛЯ Ар И Ат-ЗВЕЗД

Звезда	log(Cr/N)	logt	log(Cr/N) ₂
Ар-звезды			
HR 7575	$-6.30 \pm \frac{0.70}{\infty}$	$-2.62 \pm \frac{0.55}{0.30}$	$-4.15 \pm \frac{0.16}{0.22}$
β CrB	$-6.30 \pm \frac{0.60}{\infty}$	$-1.68 \pm {0.20 \atop 0.30}$	$-4.19 \pm \frac{0.15}{0.15}$
y Equ	$-6.30 \pm \frac{0.23}{0.30}$	$-0.31\pm\frac{0.18}{0.15}$	$-4.72\pm\frac{0.45}{0.45}$
Ат-звезды			
а СМа	$-5.52 \pm \frac{0.05}{0.05}$	$-1.18\pm {0.18\atop 0.20}$	$-6.30\pm {0.23 \atop 0.40}$
o Peg	$-5.21 \pm \frac{0.25}{0.39}$	$-2.68\pm_{0.61}^{0.32}$	$-6.30\pm_{0.38}^{0.20}$
ү Gem	$-6.02 \pm \frac{0.45}{0.07}$	$-2.31 \pm \frac{0.57}{1.54}$	$-6.30 \pm \frac{0.06}{0.06}$
32 Aqr	$-5.87 \pm \frac{0.22}{0.31}$	$-2.06 \pm \frac{0.63}{1.31}$	$-6.30\pm\frac{0.13}{0.14}$

Примечание. Символ ∞ означает, что, согласно принятой нами процедуре опенки ошибок параметров вертикального распределения Cr, этот кимический элемент может полностью отсутствовать в верхних слоях агмосфер HR 7575 и β CrB.

256

 $\Delta\lambda$ для различных вариантов вертикальной стратификации Cr, соответствующие вертикальные распределения этого химического элемента представлены на рис.1b. После определения оптимального варианта стратификации, мы фиксировали два параметра найденного ступенчатого распределения, а третий изменяли до тех пор, пока соответствующая линейная аппроксимация зависимости I_{yw} - I_{abs} линий Cr II от $\Delta\lambda$ оставалась в пределах 95%-го доверительного интервала линейной аппроксимации, соответствующей оптимальному вертикальному распределению. Максимально допустимые отклонения параметров log(Cr/N)₁, log(Cr/N)₂ и logt от их оптимальных значений и указаны в табл.1 как возможные опибки определения этих параметоов.

Интересно отметить очень малую чувствительность интенсивностей линий Ст II к содержанию Сг в верхних слоях атмосфер Ар-звезд. При этом,

Рис.2а-d. Синтетические профили спектральных линий Сг II λ 4824.13 Å (a, c) и λ 4864.33 Å (b, d), рассчитанные с различными вертикальными распределениями Сг. Пунктирной линией обозначен спектр, соответствующий однородному распределению Сг с log(Cr/N) = <log(Cr/N)> (см. табл.1). Сплощная жирная линия - спектр при оптимальном вертикальном распределении Сг, сплощная тонкая линия - спектр при вариации на ±0.3 dex величины скичка содержания Сг, пприховая линия - спектр при вариации на ±0.3 dex величины скичка содержания Сг, пприховая линия - спектр при вариации на ±0.3 dex величины скичка содержания Сг, пприховая линия - спектр при вариации на ±0.3 dex величины скичка содержания Сг, пприховая линия - спектр при вариации на ±0.3 dex оптической глубины скичка. Соответствующие ступенчатые распределения Сг показаны на рис.1b для β СгВ и на ряс.1d для Сириуса.

однако, максимально возможное содержание Cr выше скачка $\log(Cr/N)_1^{\max}$, несмотря на значительную ошибку определения $\log(Cr/N)_1$ все же на порядок меньше минимально возможного содержания Cr $\log(Cr/N)_1^{\min}$ в нижних слоях атмосфер Ар-звезд.

Рис.2а, b иллюстрирует чувствительность профилей линий Cr II λ 4824.13 и 4864.33 Å к вариациям вертикального распределения Cr в атмосфере β CrB. Расчеты показывают, что линия λ 4864.33 Å чувствительна прежде всего к положению скачка содержания Cr, тогда как линия λ 4824.13 Å - к его величине. Интенсивность обеих спектральных линий при наличии стратификации Cr меньше, чем в предположении однородного распределения Cr с log(Cr/N) = <log(Cr/N)>.

Дополнительную информацию об условиях формирования линий 30-го мультиплета Cr II в атмосфере β CrB удалось получить с помощью расчета оптических глубин формирования излучения на длинах волн, соответствующих линиям Cr II. Для каждой точки синтетических профилей исследованных линий хрома от их ядер до квазиконтинуума, образованного крылом линии Н_p, мы рассчитали функции вклада. Это дало возможность определить для каждой длины волны а) оптическую глубину, соответствующую абсолютному максимуму функции вклада, б) диапазон оптических глубин, в котором формируется 90% потока излучения. На рис.3а для каждой исследованной

Рис.3. Зависимость от Δλ оптических глубин формирования спектральных линий Cr II в атмосфере β CrB (а) и Сириуса (b). Тонкими вертикальными отрезками показан диапазон интервалов оптических глубин, в котором формируется 90% потока излучения на длинах волн от ядер линий Cr II до квазиконтинуума линий H₂. Жирные отрезки соответствуют диапазону изменения положения абсолютного максимума функций вклада для этих же длин волн. Сплощными отрезками показаны результаты расчета оптических глубин, выполненного в предположения однородности вертикального распределения Cr, штриховыми - с оптимальным ступенчатым распределением (для удобства представления сдвинуты на 1 Å). Изменение с Δλ максимума функции вклада для собственно водородной линии H₂ показано сплошной кривой, пунктирные кривые соответствуют границам интервала формирования 90% потока излучения в линии H₂. Также указаны наблюдаемые эквивалентные ширины исследованных линий Cr. Горязонтальной штряховой линией показаны оптическая глубина скачке содержания Cr, заштрихованная область соответствуют ошибке ее определения.

258

линии Cr II вертикальными отрезками показаны интервалы, в которые попадают вышеуказанные характеристики функций вклада. При этом сплошными отрезками обозначены результаты расчетов с однородным распределением Cr, а штриховыми - с оптимальным вариантом скачкообразного распределения, найденного выше.

Анализ рис. За позволяет сделать следующие выводы. Во-первых, благоларя чрезвычайно высокому среднему содержанию Cr в атмосфере в CrB и значительной интенсивности линий Cr II (о ней можно сулить по величине W., также указанной на рис.За) все рассмотренные линии Ст формируются на достаточно большом интервале оптических глубин. Это полтверждает неадекватность использования какой-либо средней глубины формирования всей линии в целом. Во-вторых, благодаря своей силе даже линии Cr II, находящиеся на значительном удалении от ядра Н., чувствительны к наличию относительного дефицита Сг в верхних слоях атмосферы в СгВ. В-третьих, глубина формирования линий Cr II кроме расстояния до центра Н, существенно зависит и от силы линии. Так, спектральная линия λ 4824.13 Å частично формируется в тех же слоях атмосферы, что и ближайшие к ядру Н. линии λ 4856.19 и 4864.33 Å. Таким образом, при диагностике вертикального распределения химических элементов предпочтительнее было бы сравнивать log(Cr/N), полученные по спектральным линиям одинаковой силы. В то же время, исключение содержания Сг. полученного для Ар или Ат-звезд по линии λ 4824.13 Å практически не изменяет величину параметра а, приведенную в табл.4 в [1].

Результаты подбора вертикальных распределений Сг в атмосферах Арзвезд графически представлены на рис.4а. Жирными линиями показаны оптимальные распределения для β CrB, HR 7575 и γ Equ, заштрихованные области соответствуют ошибкам их определения. На том же рисунке показано теоретическое распределение Cr, полученное Бабелем [8] для 53 Cam и подтвержденное в [14] на основании изучения ультрафиолетовых линий Cr в спектре этой звезды. Итак, можно констатировать хорошее качественное согласие результатов двух независимых исследований стратификации Cr в атмосферах звезд одного типа, выполненных на основании разного наблюдательного материала и с использованием различных методик выявления вертикальной неоднородности распределения Cr. Непосредственное сравнение двух методик возможно провести в будущем с помощью детального анализа линий 30-го мультиплета Cr II в спектре 53 Cam.

2.2. Ат-звезды. Для расчета вертикального распределения Ст были выбраны Ат-звезды Сириус, о Ред, у Gem и 32 Aqr. Еффективная температура этих металлических звезд полностью охватывает интервал Т для Ат-звезд, исследованных в данной работе и ранее в [12]. В табл.1 и на рис.4b, с представлены результаты подбора оптимальных распределений

Рис.4. а) Результаты моделирования вертикальной стратификации Сг для Ар-звезд. Жирными линиями показаны вертикальные распределения Сг в апосферах β СгВ (сплошная линия), НК 7575 (штриховая линия) и у Еqu (штрих-пунктирная линия). Жирная кривая соответствует зависимости log(Cr/N) от отнческой глубины, найлений для Ар-звезды 53 Сат в [7]. Заштрихованные области соответствуют ошибкам определения log(Cr/N), logτ_x и log(Cr/N)₂. b) То же для Am-звезд Сириуса (спиошная линия), *о* Ред (штриховая линия). с) То же для у Gern (сплошная линия) и 32 Аср (штриховая линия).

Сг. Ошибки параметров этих ступенчатых вертикальных распределений определялись так же, как и для Ар-звезд.

Подбор вертикального распределения Сг иллюстрируется на примере Сириуса (рис.1с, d). В отличие от Ар-звезд, зависимость I_{μ} - I_{μ} от $\Delta\lambda$ достаточно чувствительна к изменению каждого из трех параметров ступенчатого распределения Сг. Следует отметить, что результаты, приведенные в табл.1 для более холодных Ат-звезд у Gem и 32 Aqr, не являются вполне однозначными: наш наблюдательный материал допускает одновременное увеличение скачка содержания Сг и сдвиг его в более высокие атмосферные слои. Эта неоднозначность, возможно, является следствием недостаточного качества нашего наблюдательного материала и/или наличием более плавного хода log(Cr/N) с глубиной.

На рис.2с, d для Сириуса представлены профили линий Cr II λ4824.13 и 4864.33 Å, рассчитанные с различными вариантами вертикального распределения Cr. Обе спектральные линии чувствительны к изменению величины скачка содержания Cr, а линия λ4824.13 Å - также к вариации оптической глубины скачка.

Анализ глубин формирования линий Сг II выполнен для Сириуса на

260

рис.3b. В отличие от β CrB, у Сириуса наблюдается умеренный избыток содержания Cr, спектральные линии 30-го мультиплета не столь сильны и формируются в меньшем диапазоне оптических глубин. Однако так же, как и для β CrB, линия λ 4824.13 Å хотя и находится на достаточном удалении от ядра H_p, но при этом частично формируется достаточно высоко в атмосфере α CMa.

3. Зависимость микротурбулентной скорости от оптической глубины. При исследовании химического состава атмосфер ряда сверхпитантов классов А, F и G было показано, что микротурбулентная скорость $\xi_{,}$ растет с высотой в атмосфере от 1-2 км/с в нижних ее слоях до 10-20 км/с в верхних (см., например, работу [15], в которой зависимость $\xi_{,}(\tau)$ была получена для сверхгиганта γ Суд). Гигас [16] в своем детальном не-ЛТР анализе линий Fe в спектре Веги также обнаружил зависимость $\xi_{,}(\tau)$. Согласно этому исследованию, $\xi_{,}$ меняется в атмосфере Веги от 1 до 2 км/с. В работе [17] для γ Gem оказалось необходимым ввести для ультрафиолетовых спектральных линий Ti, Fe и Ni на 0.6 км/с меньшую величину $\xi_{,,}$ чем при анализе линий тех же элементов, находящихся в видимом диапазоне. Это также может служить основанием для предположения о переменности $\xi_{,}$ с глубиной в атмосфере A и F-звезд главной последовательности.

Возможно ли интерпретировать полученные нами зависимости log(Cr/N) от Δλ с помощью введения для химически однородной звездной атмосферы такой переменной с глубиной микротурбулентной скорости? В рамках этой гипотезы наблюдаемый для Ар-звезд относительный дефицит Сг в поверхностных слоях объясняется уменьшением в этих слоях ξ, по сравнению с остальной атмосферой; для металлических звезд, наоборот, следует предположить увеличение ξ, в поверхностных атмосферных слоях.

Для проверки гипотезы о переменности с плубиной ξ_i , мы попытались подобрать для β CrB и Сириуса такие зависимости $\xi_i(\tau)$, которые ликвидировали бы ход I_{ijm} - I_{obs} с $\Delta\lambda$. Для оценки приемлемости той или иной зависимости $\xi_i(\tau)$ использовалась та же методика, что и ранее для определения вертикальных распределений Cr. Несмотря на множество испробованных зависимостей $\xi_i(\tau)$, нам не-удалось подобрать такого хода микротурбулентной скорости с глубиной, который бы объяснил наблюдаемые относительные интенсивности линий Cr II в спектрах β CrB и Сириуса также хорошо, как и гипотеза о вертикальной стратификации Cr. Детальные расчеты показали, что введение переменной ξ_i практически не оказывает влияния на слабые линии λ 4856.19 и 4864.33 Å, которые расположены ближе всего к ядру H_g. В то же время, интенсивность сильных линий (λ 4824.13, 4848.24 и 4876.40 Å) меняется, и в результате разброс содержаний Cr, определенных по сильным и слабым линиям, значительно увеличивается. Зависимость I_{ijm} - I_{obs} от W_{λ} становится доминирующей и не позволяет ликвидировать зависимость I_{m} - I_{m} от $\Delta\lambda$. На рис. Sa и с представлена аппроксимация зависимостей I_{gm} - I_{em} от $\Delta\lambda$ для нескольких "неудачных" вариантов хода ξ_i с глубиной в атмосферах β CrB и Сириуса. Соответствующие зависимости $\xi_i(\tau)$ показаны на рис. Sb и d.

Итак, гипотеза о зависимости 5, от оптической глубины не может объяснить наблюдаемые относительные интенсивности линий Сг II. Следует добавить, что традиционная методика определения 5, требующая отсутствия хода log(El/N) с W_{λ} , вряд ли является корректной при наличии вертикальной стратификации данного химического элемента. Действительно, сильные спектральные линии чувствительны к содержанию химического элемента в широком диапазоне оптических глубин, а слабые - только к содержанию химического элемента вблизи области формирования континуума. По этой

Рис.5. а) Линейная аппроксимация зависимостей I_{-} от $\Delta\lambda$ для различных $\xi_{1}(x)$ в атмосфере β CrB. Сплощная тонкая линия соответствует однородному распределению с log(Cr/N) = <log(Cr/N) (см., табл.1), жирная сплощная линия - оптимальному ступенчатому распределению Cr, жирные пприховые линии - однородному распределению Cr с log(Cr/N) = -5.65 и - 5.85 и с зависимостью $\xi_{1}(x)$, изображенной на рис.50. Сплощными тонкими кривьми показан 95%-ый доверительный интервал линейной аппроксимации зависимости I_{-} от $\Delta\lambda$ для оптимального варианта стратификации Cr. b) Один из вариантов зависимости $\xi_{1}(x)$ в атмосфере β CrB. c) То же, что и на рис.5е, но для Сириуса. Жирными штриховыми линиями показана линейная аппроксимация зависимостей $I_{ap} - I_{ab}$ от $\Delta\lambda$, рассчитанных при однородном распределения Cr с log(Cr/N) = -4.65 и -4.85 и с зависимостью $\xi_{1}(x)$, изображенной на рис.5d. d) То же, что и на рис.50, но для Сариуса.

причине при наличии вертикальной стратификации можно ожидать зависимости содержания элемента от силы линий, никак не связанной с неправильным выбором §.

Что касается Ар-звезд, то для них ситуация усложняется наличием сильных магнитных полей. В этом случае следует ожидать дополнительной стабилизации звездной атмосферы и малости истинной величины Е. Микротурбулентные скорости, вволимые при анализе химических составов магнитных Ад-звезд, скорее всего являются эффективным учетом магнитного уширения спектральных линий. Таким образом, в случае магнитных Арзвезд зависимость log(Cr/N) от $\Delta\lambda$ может быть, в принципе, объяснена изменением с глубиной напряженности магнитного поля при отсутствии стратификации Сг. В работе Романюка [18] была предпринята попытка определения вертикального градиента магнитного поля с помошью сравнительного анализа спектральных линий, расположенных до и после бальмеровского скачка. В этом исследовании для $\alpha^2 CVn$ было найдено увеличение напояженности поля с плубиной, а для В CrB - одноволное магнитное поле. Окончательный ответ на вопрос о влиянии вертикального градиента магнитного поля на относительные интенсивности линий Cr II может дать детальное моделирование профилей этих спектральных линий с учетом их уширения в магнитном поле.

4. Основные результаты. В заключение обобщим основные результаты нашего исследования вертикальной стратификации Сг в атмосферах СР-звезд.

1. Для нескольких Ар и Ат-звезд с помощью моделирования профилей линий Сг II подобраны вертикальные распределения хрома. Эти расчеты подтвердили корректность интерпретации зависимости log(Cr/N) от Δλ на основании гипотезы о наличии вертикального градиента исследованного химического элемента. В случае Ар-звезд полученные вертикальные распределения согласуются с результатами исследований [8,14] линий Сг в спектре Ар-звезды 53 Сат.

2. С помощью исследования функций вклада проведен детальный анализ условий формирования линий Сг II в атмосферах β СгВ и Сириуса.

3. Показано, что альтернативная гипотеза о переменности с глубиной микротурбулентной скорости ξ, не способна объяснить наблюдаемые относительные интенсивности линий Сг II.

¹Крымская астрофизическая обсерватория, Украина ²Симферопольский государственный университет, Украина

И.С.САВАНОВ И ДР.

INVESTIGATION OF STRATIFICATION OF VERTICAL DISTRIBUTION OF CHROMIUM IN THE ATMOSPHERES OF CP STARS. II. MODEL ANALYSIS

I.S.SAVANOV¹, O.P.KOCHUKHOV^{1,2}, V.V.TSYMBAL²

Detailed modelling of Cr II line profiles has been performed in order to obtain vertical distributions of this element in the atmospheres of several Ap and Am-stars. Our results for Ap-stars are in agreement with vertical Cr distribution calculated by Babel [8,14] for Ap-star 53 Cam. It is shown that our observational material cannot be interpreted using hypothesis of depthdependent microturbulent velocity.

ЛИТЕРАТУРА

- 1. И.С.Саванов, О.П.Кочухов, В.В.Цымбал, Астрофизика, 44, 79, 2000.
- 2. I.I.Romanyuk, G.P.Topilskaya, in "Stellar Magnetic Fields". Eds. Yu.V.Glagolevsky, I.I.Romanyuk; M., Nauka, 170, 1997.
- 3. В.Л.Хохлова, Г.П.Топильская, Письма в Астрон. ж., 18, 150, 1992.
- J.Zverko, J.Ziznovskij, in "Chemically Peculiar and Magnetic Stars". Eds. J.Zverko, J.Ziznovskij, Astron. Inst., Slovak Academy of Sci., Tatranska Lomnica, 110, 1994.
- 5. K.C.Smith, Astron. Astrophys., 297, 237, 1995.
- 6. P. Magain, Astron. Astrophys, 163, 135, 1986.
- 7. Д.Ф.Грей, Наблюдения и анализ звездных фотосфер, Мир, М., 1980.
- 8. J.Babel, Astron. Astrophys., 258, 449, 1992.
- 9. J.Babel, Astron. Astrophys., 283, 189, 1994.
- K.Hunger, in "Upper Main Sequence Stars with Anomalous Abundances". Eds. C.R.Cowley, M.M.Dworetsky, C.Megessier, IAU Colloq. No. 90, D.Reidel, 257, 1986.
- 11. V.V.Tsymbal, in "Model Atmospheres and Stellar Spectra". Eds S.J.Adelman, F.Kupka, W.W.Weiss, ASP Conf. Ser., 108, 198, 1996.
- 12. И.С. Саванов, О.П.Кочухов, Письма в Астрон. ж., 24, 601, 1998.
- 13. K.C.Smith, M.M.Dworetsky, Astron. Astrophys., 274, 335, 1993.
- 14. J.Babel, T.Lanz, Astron. Astrophys., 263, 232, 1992.
- 15. Л.С.Любимков, З.А.Самедов, Астрофизика, 32, 49, 1990.
- 16. D. Gigas, Astron. Astrophys., 165, 170, 1986.
- 17. M.Nishimura, K.Sadakane, Publ. Astron. Soc. Jap., 46, 349, 1994.
- 18. И.И.Романюк, Письма в Астрон. ж., 10, 443, 1984.