АСТРОФИЗИКА

TOM 44

МАЙ, 2001

ВЫПУСК 2

УДК: 524.7-724

НОВЫЕ СПЕКТРОФОТОМЕТРИЧЕСКИЕ ДАННЫЕ О ЯДРАХ ГАЛАКТИК КАZ 26 И КАZ 73

М.А.КАЗАРЯН, Ж.Р.МАРТИРОСЯН Поступила 27 сентября 2000 Принята к печати 15 января 2001

Приводятся результаты спектрального исследования ядер галактик Каz 26 и Каz 73. Вычислены относительные интенсивности эмиссионных линий, эквивалентные ширины, полуширины и скорости расширения линий на уровне непрерывного спектра. Определены электронные шилиотности и массы газовых составляющих ядер этих галактик. Определено также число звезд, обеспечивающих свечение газовых составляющих, ядер галактик. Вычислена степень ионизации газа, содержащегося в каждом из ядер этих галактик. Сделан вывод, что ядро Каz 26 по своим физическим особенностям походит на "Starburst" галактики. Показано, что Каz 73 является лайнером (Sy3).

1. Введение, В течение 26 лет многими авторами в разных обсерваториях мира многосторонне изучались галактики с УФ-избытком, обнаруженные М.А.Казаряном [1]. Любое исследование таких галактик приводит к новым результатам, которые способствуют лучшему пониманию их физической природы. К их числу относятся галактики Каz 26 и Каz 73, каждая из которых обладает звездообразным ядром, хорошо видным на фотографиях, приведенных в [2,3]. Кроме того, ядро первой из них является самым голубым объектом среди ядер галактик, красные смещения которых близки к ее красному смещению (см. ниже).

Что касается галактики Каz 73, то она в [3] была отнесена к числу галактик типа Sy2. Ниже мы покажем, что она является лайнером, как принято, обозначаемым через Sy3. Так что Kaz 73 пополняет ряды лайнеров, которых среди галактик типа Сейферта сравнительно мало, всего 13.9% [4].

Обе галактики изучались неоднократно. Результаты исследования Каz 26 приведены в основном в [1,2,5,6], а Каz 73 - в [1,3,7].

В настоящей работе для Kaz 26 впервые приводятся результаты спектральных наблюдений, проведенных в 1981г. на 6-м телескопе САО РАН, а также другие новые данные. Для Kaz 73 приводятся данные спектральных наблюдений, проведенных на 6-м телескопе в 1978г.

2. Наблюдательный материал. Как было отмечено выше, все спектры, которые использовались в работе, были получены на 6-м телескопе САО РАН одним из авторов (М.А.К.). Данные о них приведены в табл.1. Часть спектров, содержащихся в ней использовалась в [7] для определения эквивалентных ширин линий и относительных интенсивностей

Таблица 1

№ Галак-	Дата наблюдения	Спектро- граф	Светоприемная аппаратура	Экспо- зиция (мин)	Спектральная область (Å)	Коли- чество спктров
Kaz 26	30.X.1981r. 31.X.1981r.	UAGS	Сканср	9 6 6	5650-7100 4320-5750 3350-4780	2 2 2
Kaz 73	1.VII.1978r. "- 4.VII.1978r. "-	СП-160	ЭОП-М9ЩВ "- "- "- "-	10 10 10 5 5	7170-5750 6200-4800 5150-3700 "- 7170-5750	1 1 1 1 1

СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ

эмиссионных линий. Результаты подробного исследования этих спектров впервые представлены в настоящей статье.

Щели спектрографов UAGS и СП-160 проходили через яркие центральные части галактик. Дисперсия спектрографов UAGS и СП-160-100 Å/мм и 65 Å/мм соответственно.

3. Эквивалентные ширины, полуширины линий и относительные интенсивности эмиссионных линий. В спектре ядра галактики Каz 26 наблюдаются линии [SII] $\lambda\lambda$ 6731, 6717; [NII] $\lambda\lambda$ 6584, 6548, H_a, [OIII] $\lambda\lambda$ 5007, 4959, H_p, H_y и [OII] λ 3727. Средние значения относительных интенсивностей эмиссионных линий, эквивалентных ширин и полуширин линий приведены в табл.2. Для области H_y получены четыре спектра, которые позволяют определить среднюю квадратическую ошибку данных для линии H_y. Среднеквадратические ошибки средних величин для *Таблица 2*

Ион	λ	W ₁ (Å)		5/	FWHM (IOH/C)	
	•	Работа [2]	Наст. работа	Работа [2]	Наст. работа	Наст. работа
[SII]	6731	8.3	+	0.45	1.12	210
[SII]	6717	9.5	.s. =+ 0 k.s.	0.61	1	310
[NII]	6584	39	+	2.5	5.04	220
H	6563	70	+	5.3	11.76	240
[NII]	6548	12	7 +	0.86	1.44	250
[OIII]	5007	6.5	10.8	0.39	0.56	290
[OIII]	4959	2.2	4.1	0.14	0.18	340
H	4861	14.1	21.4	1	1	320
H,	4340	4.2	6.5	0.39	0.47	360
[OII]	3727	9.1	22.5	2.1	0.77	530

ЭКВИВАЛЕНТНЫЕ ШИРИНЫ, ПОЛУШИРИНЫ И ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЛИНИЙ КАZ 26

относительной интенсивности, эквивалентной ширины и полуширины линии H_γ равны ± 0.04 , ± 0.6 Å, ± 18 км/с соответственно. Судя по этим данным, можно считать, что ошибки наблюдений других линий будут находиться в этих же пределах. Длинноволновая часть непрерывного спектра ядра галактики Каz 26 была очень слабой, поэтому для линий [SII] $\lambda\lambda$ 6731, 6717, [NII] $\lambda\lambda$ 6584, 6548 не были определены эквивалентные ширины. В табл.2 их места отмечены крестиками, в знак того, что они присутствуют в спектре. Для каждой из этих линий определена лишь полуширина. На рис.1 приведены профили остальных линий ядра Каz 26.

В спектре ядра галактики Каz 73 наблюдаются эмиссионные линии [SII] $\lambda\lambda$ 6731, 6717, [NII] $\lambda\lambda$ 6584, 6548, H_a, [OI] $\lambda\lambda$ 6364, 6300, [OIII] $\lambda\lambda$ 5007, 4959, [OII] λ 3727. Линии H_p, H_v, H_s, H_a, H_g и H₁₀ наблюдаются как в эмиссии, так и в поглощении, линии H и K CaII, а также D₁ и D₂ NaI получились в поглощении. Компонент поглощения линии H_p, по сравнению с эмиссионным компонентом, очень слабый, так что при определении относительных интенсивностей линий им можно пренебречь. На рис.2 приведены профили линий ядра галактики Каz 73. Контур каждой из линий H_p - H₁₀ в спектре ядра галактики Каz 73 состоит из сравнительно узкого эмиссионного и широкого абсорбционных компонентов, поэтому целесообразно вычислить для их абсорбционных компонентов скорости расширения на уровне непрерывного спектра (HWI₀). Такая величина была определена также для эмиссионной линий [OIII] λ 5007, так как ее контур состоит из верхней узкой и нижней широкой частей, для ее нижней части получилась довольно большая скорость расширения, HWI₀ = 900км/с.

Рис.1. Профили линий ядра галактики Каз 26. Рис.2. Профили линий ядра галактики Каз 73.

В табл.3, кроме HWI₀, приведены также эквивалентные ширины, относительные интенсивности и полуширины линий.

Коротковолновые линии, а также линия [OI] λ 6300, хорошо выявляются в спектре ядра Kaz 73, полученном с экспозицией 10 мин, а длинноволновые линии [NII] λλ 6584, 6548 и H_α - в спектре с экспозицией 5 мин. Результаты, приведенные в табл.3, соответствуют обработкам этих спектров. Контуры для 8 линий, наблюдавшихся в спектре ядра галактики Kaz 73, приведены в [3] и были построены по наблюдениям со сканером. Каждый из них очень

Таблица 3

Ион	λ	Эмиссия	₩ ₁ (Å)		I,/I,	C THE R	FWHM	HWI,
		или	Работа	Наст.	Работа	Наст.	(KM/C)	(км/с)
100000000	-	абсорбция	[3]	работа	[3]	работа		
[SII]	6731	эмиссия	9.7	12.4	1.0	0.99	420	The second second
ISII	6717	H	9.3	12.5	0.95	0.9	350	1.000
ININ	6584	and the station	49.2	26.2	5.09	2.54	325	n. reon
H	6563	m	76.4	1 564	7.38	1 4 92	460	- B.
INII	6548		17.4	3 30.4	1.71	\$ 4.02	2112 1	41 12
IOI	6300	н_	-	3.3	-	0.16	470	
ionn	5007	н_	5.6	2.4	0.3	0.39	400	900
iomi	4959	DOMES NO	1.8	0.9	0.1	0.12	DIST. TIME	DO DO
H.	4861	1.00	9.0	5.2	1	1	400	10000
H	4861	абсорбция	3.1	0.6	-	-	and the second	1200
H	4340	эмиссия	2.6	1.2	0.35	0.24		
H'	4340	абсорбция	2.5	0.7			10000	1150
H.	4102	эмиссия	0.8	0.7	0.13	0.23	40.73	- ing
H.	4102	абсорбция	2.5	1.3	- inter			13 . 71
H	3970	ЭМИССИЯ	-	0.2	-	+		
H	3970	абсорбция	1	1 22	Sol Trank	- 1º	D. C. A. C. A. C. C. C.	1100
Call	3968	1040 2010	} 2.0	} 2.2	arte atta	CONUMPER .	What is a set	Co XI III
Call	3934	-	2.0	1.5		-	- untra	650
H.	3835	эмиссия	111-50 0	+		+		
H.	3835	абсорбция	- <u>-</u>	1.4	Sec. Sec.		a set a set of	750
H.,	3798	эмиссия		+ 1	7115 1 10	+ 100	TOT LL	20 - 25
H.,	3798	абсорбшия	r manlor	2.0	1 P- 000	S CONTROL	100 JO	750
	3727	эмиссия	8.7	11.5	0.42	1.02		

ЭКВИВАЛЕНТНЫЕ ШИРИНЫ, ПОЛУШИРИНЫ И ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЛИНИЙ КАZ 73

похож на соответствующий контур, приведенный на рис.2. Однако детали на контурах линий, приведенных на этом рисунке, видны более четко. Это результат того, что дисперсия этих спектров примерно в полтора раза больше, чем дисперсия спектров, использованных в [3]. На рис.2 очень хорошо видны эмиссионные компоненты на контурах бальмеровских линий H₉ и H₁₀, которые отсутствуют в [3]. Из рис. 2 видно также, что контуры низковозбужденных эмиссионных линий [OI] λ 6300 и [OII] λ 3727 очень похожи друг на друга.

4. Электронная плотность и масса газовой составляющей галактик. Электронная плотность газовой составляющей галактик была определена из отношения интенсивностей запрещенных линий [SII] λλ 6731, 6717, $R = I_{[SII] μ 6731}$. Те же параметры были вычислены и для I сгущения Каз 26 с использованием данных, приведенных в работе [5].

Используя теоретическую зависимость между *R* и п, для $T_e = 10000^{\circ}$ K [8], мы определили электронную концетрацию газовой составляющей этих галактик. Значения масс газовой составляющей галактик определены методом, приведенным в [9]. Определен также эффективный радиус объема,

в котором сосредоточена газовая составляющая. Вычислено также количество L_c -квантов (N_{L}), из наблюдений. Все эти данные приведены в табл.4.

Таблица 4

№ no [1]	R	п _е (см ⁻³)	<i>F</i> набл. (эрг/см ² .с)	<i>L</i> _{нв} (эрг/с)	V (см ³)	М (М _о)	г _{зфф} (ПК)	NL
26	0.89	1100	1.6 x 10 ⁻¹³	5.8 x 10 ⁴⁰	4.3 x 10 ⁵⁰	3.9 x 10 ⁵	15.1	1.6 x 10 ⁵³
26(1)	0.97	800	4.4 x 10 ⁻¹⁵	1.6 x 10 ³⁹	2.1 x 10 ⁵¹	1.5 x 10 ⁴	5.5	4.4 x 10 ⁵¹
73	0.94	900	4 x 10 ⁻¹⁴	1.6 x 10 ³⁹	1.7 x 10 ⁵⁸	1.3 x 10 ⁴	5.2	4.4 x 10 ⁵²

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИССЛЕДОВАННЫХ ОБЪЕКТОВ

5. Определение числа звезд, обеспечивающих свечение газовой составляющей ядер галактик. Для решения этой задачи по методу Занстра определялась средняя температура совокупностей звезд, при помощи линии H_p. Используя полученные температуры, мы определили количество звезд, которое обеспечивает свечение газовой составляющей ядер галактик Kaz 26 и Kaz 73, а также 1-го сгущения Kaz 26. Считая, что звезды принадлежат к главной последовательности диаграммы Герциппрунга-Рессела, оценивался средний спектральный класс и абсолютная звездная величина. Данные приведены в табл.5. В [11] дана таблица, которая устанавливает зависимость между температурой и количеством *L*-квантов, испускаемых при данной температуре с 1 см² поверхности звезды. Используя данные этой таблицы, для каждого значения температуры, приведенной в табл.5, мы определили количество *L*_с-квантов, испускаемых с 1 см² поверхности звезды данной совокупности. Затем было определено общее количество *L*-квантов, которое должно испускаться звездой данной совокупности.

В табл.5 приведено N_{Le} (набл.). Количество звезд (N) данного спектрального класса, входящих в данную совокупность, равно $N = N_{Le(under)}/N_{Le}$. В табл.5 приведены также абсолютные фотографические звездные величины M_{Re} (выч.) и M_{Re} (набл.). Значения первых из них вычисляются и являются абсолютными звездными величинами звезд совокупностей. Значения вторых определяются из наблюдений и являются *Таблица 5*

данные с	ЭБРАЗОВАНИ	ии	ЗВЕЗД,	ОБЕС	ПЕЧИВАЈ	ющих
СВЕЧЕНИ	Е ГАЗОВОЙ	COCT	АВЛЯЮІ	ЦЕЙ	ОБРАЗОВ.	АНИЙ

№ no [1]	<i>Т</i> *(Ң _р)	Спектр. класс	M'n	<i>R</i> [•] (<i>R</i> _∞)	N _{Le} x10 ⁻⁴⁶	N _L (набл.) x10 ⁻⁵²	N x10 ⁵	М _м (выч.)	М _л (набл.)
26	2 x 10 ⁴	B0	-3 ^m .7	9.2	22.7	16	7	-18 ^m .31	-19 ^m .7
26(1)	1.9 x 10 ⁴	B2	-2 ^m .8	6.5	9.8	0.4	0.5	-14 ^m .55	-16 ^m .7
73	1.7 x 10 ⁴	B3	-2 ^m .0	4.8	3.4	4.4	1.3	-14 ^m .79	-17 ^m .5

211

абсолютными звездными величинами образований.

6. Определение степени ионизации газа в галактиках. Для галактики Каз 26 имеются радионаблюдения в линии 21 см нейтрального водорода [12]. Используя эти данные, можно вычислить среднее количество атомов нейтрального водорода в 1 см³. Для этой цели из [12] взяты $M_{H} = 2.2 \times 10^{9} M_{\odot}$, $\sigma_{H} = 2.16 \times 10^{-3} \text{ г/см}^{2}$, D = 16.2 клк, где M_{H} - масса нейтрального водорода в столбце с основанием 1 см² и высотой, равной диаметру (D) галактики.

При получении N_1 были использованы следующие простые соотношения: $N_1 = \sigma_H/m_B D$ и $N_1 = M_H/Vm_{H^2}$ где V - объем галактики, а m_H - масса атома водорода. При вышеприведенных данных: $N_1 = 0.03$ и N = 0.04 соответственно. Используя среднее значение этих двух величин: $N_1 = 0.035$, для средней степени ионизации газовой составляющей ядра галактики Kaz 26 получаем: $(N_1/N_1) = 3.1 \times 10^4$. При этом мы предполагали, что полученное среднее значение нейтрального водорода для всей галактики относится и к газовой составляющей ядра.

Для сравнения этой величины с таковой, полученной теоретическим путем, лучше всего использовать формулу, приведенную в [13] для средней степени ионизации. Она имеет вид

$$(N_p/N_1) = 20 U(S_p) N_e^{1/3}$$
,

где $U(Sp) = s_o N_e^{2/3} = 1.23 \times 10^{-7} (R_{\bullet}/R_{\odot})^{2/3} N_L^{1/3} nc/cm^2$, s_{\bullet} - радиус зоны НІІ вокруг освещающей звезды с радиусом (R_{\bullet}/R_{\odot}) , N_e -электронная концентрация газовой составляющей данного объекта, N_L - количество L_e - квантов, излученных 1 см² поверхности звезды за 1с.

Такую степень ионизации создает вокруг себя каждая звезда вышеотмеченных совокупностей, что принимается как средняя степень ионизации газовой составляющей данного объекта.

Результаты вычислений (N,/N₁) приведены в табл.6. В частности, для Kaz 26 эта величина на один порядок меньше по сравнению с данными, полученными из наблюдений.

Такое различие является результатом того, что при определении из наблюдений степени ионизации газовой составляющей ядра галактики

Таблица б

СТЕПЕНЬ ИОНИЗАЦИИ ГАЗОВЫХ СОСТАВЛЯЮЩИХ ИССЛЕДУЕМЫХ ОБЪЕКТОВ

№ no	U(Sp)	(N_{p}/N_{1})	(<i>N</i> ,/ <i>N</i>)
[1]		(reop.)	(набл.)
26 26(1) 73	19.04 14.36 10.1	$\begin{array}{r} 3.9 \times 10^{3} \\ 2.7 \times 10^{3} \\ 2 \times 10^{3} \end{array}$	3.1 x 10 ⁴

Каz 26 в качестве плотности нейтрального водорода использовалось значение N₁. По всей вероятности, плотность нейтрального водорода в этой области на порядок выше.

7. Обсуждение результатов. Для ядер изученных галактик в [1] приведены СМ-характеристики, которые у обеих галактик одинаковы, sl. Это означает, что они обладают сильным УФ-избытком. *UBV*-фотометрия галактики Каz 26 показала, что как ее ядро, так и ее центральная область, т.е. ядро со своим окружением, очень голубые. Для них в [2,14] приведены величины *U-B*, которые равны -1^m .12 и -0^m .86, соответственно. Как было отмечено выше, ядро Каz 26 и ее центральная область являются самыми голубыми объектами среди галактик с УФ-избытком, имеющими красные смещения, близкие к красному смещению самой галактики, z = 0.0137. На рис.3 приведена зависимость между *U-B* и z для галактик Маркаряна, красные смещения которых не превосходят 0.03. Данные были взяты из каталога [15]. На этом рисунке нанесены также данные ядра и центральной области Каz 26, обозначенные кружочком и крестиком соответственно.

Рис.3. Зависимость между величинами U-B и z для галактики Маркарана, кружочком и крестиком обозначены соответственно ядро и центральная область галактики Kaz 26.

Из рис.3 видно, что среди этих галактик ядро и центральная область Каz 26 выделяются своими низкими значениями величины U-B.

Полуширины линий и ширины линий на уровне непрерывного спектра ядер Каг 26 и Каг 73 приведены впервые в табл.2 и 3. При этом не учтено влияние инструментальных профилей линий. Эти величины определены при помощи линий неба, полученных на соответствующих спектрах Каг 26 и Каг 73, которые оказались 150 км/с и 100 км/с. После учета поправки за инструментальный профиль линий, для линий Каг 26 они будут такими же малыми, как и для "starburst" галактик. В случае Каг 73 после учета такой поправки полуширины линий останутся давольно широкими, что характерно для галактик типа Сейферта. Как было отмечено выше, Каг 73 была отнесена к числу галактик типа Sy2. В действительности она является лайнером, так как отношения интенсивностей линий І_{топравол} > 1/3 и І_{юпрали} /_{іюправол} ≥1 удовлетворяют критериям для лайнеров, приведенных в [16].

Таким образом, по своим физическим особенностям ядро галактики Каz 26 является "Starburst" галактикой, а ядро Каz 73 - лайнером. Сравнение данных эквивалентных ширин линий и относительных интенсивностей эмиссионных линий, приведенных в табл.3 для разных времен наблюдений, показывает, что они не совпадают. Из табл.2 видно, что значения эквивалентных ширин и относительных интенсивностей линий, полученные в настоящей работе, более высокие. Например, для линии H, они отличаются примерно на 50%, а их ошибки, приведенные в [2] и в настоящей работе, меняются от 8% до 15%.

Данные ядра Каz 73, приведенные в табл.3, также довольно сильно отличаются друг от друга. По-видимому, такие различия являются результатом переменности интенсивностей линий и непрерывных спектров ядер этих галактик.

Ереванский государственный университет, Армения

NEW SPECTROPHOTOMETRIC DATA ON NUCLEI OF THE GALAXIES KAZ26 AND KAZ73

M.A.KAZARIAN, J.R.MARTIROSIAN

The results of spectrophotometry of galaxies Kaz 26 and Kaz 73 are presented. The relative intensities, as well as equivalent widths, FWHM and HWI_{o} of emission lines are calculated. The electron density and mass of the gaseous components of the nuclei of these galaxies are obtained. The quantity of stars, which ensure their luminous gaseous component of the nuclei of galaxies as well as degree of ionization were obtained. It is concluded that the galaxy Kaz 26 by physical properties is similar to the "Starburst" galaxies. It is shown that the galaxy Kaz 73 is a LINER (Sy3).

ЛИТЕРАТУРА

М.А.Казарян, Астрофизика, 15, 5, 1979.
М.А.Казарян, В.С.Тамазян, Астрофизика, 18, 192, 1982.
М.А.Казарян, Э.С.Казарян, Астрофизика, 22, 431, 1985.

CONTRACTOR PROTECTION

- 4. В.А.Липовецкий, С.И.Неизвестный, О.М.Неизвестная, Каталог сейфертовских галактик, Сообщ. САО, 55, 5, 1987.
- 5. М.А.Казарян, В.С.Тамазян, Астрофизика, 36, 363, 1993.
- 6. J.Shuder, D.Osterbrock, Astrophys. J., 250, 55, 1981.
- 7. *М.А.Казарян, Э.Е.Хачикян*, Вопросы теории сверхплотных небесных тел, Изд. Ереванского университета, Ереван, 1984, с.195-214.
- 8. И.В. Носов, Астрон. циркуляр, 1050, 1979.
- 9. Э.А.Дибай, В.И.Проник, Астрофизика, 1, 78, 1965.
- 10. Д.Я. Мартынов, Курс практической астрофизики, Наука, М, 1977.
- 11. D.C.Morton, Astrophys. J., 158, 629, 1969.
- 12. V.S. Tamazian, Astron, Astrophys. Suppl. Ser., 139, 537, 1999.
- С.А.Каплан, С.Б.Пикельнер, Межзвездная среда, ГИЗ физ-мат. литературы, М., 1963.
- V.S.Tamazian, G.Theureau, N.Coudreau-Durand, Astron. Astrophys. Suppl. Ser., 126, 471, 1997.
- 15. J.M.Mazzarella, V.A.Balzano, A Catalog of Markarian Galaxies, Astrophys. J. Suppl. Ser., 62, 751, 1986.
- 16. T.M. Heckman, Astron. Astrophys., 87, 152, 1980.