АСТРОФИЗИКА

TOM 43

МАЙ, 2000

ВЫПУСК 2

УДК: 524.47

КИНЕМАТИКА И ГАЛАКТИЧЕСКИЕ ОРБИТЫ ШАРОВЫХ СКОПЛЕНИЙ. І. КИНЕМАТИКА

Л.П.ОСИПКОВ, А.А.МЮЛЛЯРИ Поступила 17 декабря 1999 Принята к печати 7 февраля 2000

Определены пространственные скорости 24 шаровых скоплений. Исследована корреляция между скоростями скоплений, их положением в Галактике и показателем металличности. Определен средний эллипсоид скоростей, оказавшийся близким к сфере. Отдельно рассмотрены скопления, относящиеся к различным группам голубизны горизонгальной ветви по Миронову, Расторгуеву и Самусю.

1. Введение. Кинематику подсистемы шаровых скоплений нашей Галактики изучали многие авторы. До недавнего времени эти исследования могли основываться только на лучевых скоростях скоплений. Паренаго [1] критически проанализировал первые работы, в которых статистически изучались движения шаровых скоплений, включая статьи Эдмондсона [2] и Минера [3]. Из более поздних отметим публикации [4-9]. В старых работах (напр., [1]) делался вывод, что скорость галактического вращения подсистемы шаровых скоплений представляется одновершинной кривой, причем в окрестности Солнца скорость вращения достигает 60 км/с. Современные авторы (напр., [6]), как правило, постулируют постоянство линейной скорости вращения. Согласно Армандрофу [8] величина этой скорость равна 43±23 км/с. Никифоров [9], как ранее Минер [3], представляя скорость вращения в виде полинома по цилиндрическим координатам. Целью его работы было определение галактоцентрического расстояния Солнца R_{0} из условия минимума отклонений наблюдаемых скоростей от получающихся по предложенной формуле.

Для понимания происхождения и динамической эволюции шаровых скоплений, а также ранней эволюции Галактики, значительный интерес представляет определение оскулирующих орбит шаровых скоплений. Лучевые скорости не позволяют найти индивидуальные орбиты, поэтому широкое распространение получили косвенные критерии, изложенные, например, в монографии Холопова [10]. Обычно эти критерии указывали на сильную вытянутость орбит скоплений (напр., [11-14]). С этим согласуются указанная выше низкая скорость галактического вращения скоплений, а также большое значение дисперсии лучевых скоростей (80-120 км/с, согласно Шарову [4]). В некоторых случаях, однако, более вероятным оказались круговые орбиты [2,15-17]. Возможно, такое расхождение объясняется неоднородностью подсистемы шаровых скоплений, на которую указывает ряд авторов (см. [4,5,18,19]).

Уже давно предпринимались попытки использовать собственные движения для прямого вычисления орбит шаровых скоплений [20-24]. До недавнего времени полученные результаты не вызывали большого доверия, главным образом, из-за недостоверности абсолютных собственных движений. В последние годы, в ходе выполнения Боннской и Ликской программ определения собственных движений с использованием новых методов их абсолютизации, удалось найти новые собственные движения примерно 20 шаровых скоплений [25,26]. Эти собственные движения уже использовались для расчета орбит скоплений в нескольких моделях гравитационного поля Галактики [26-31]. В статье [26] собственные движения впервые использовались и для исследования кинематики подсистемы шаровых скоплений.

Основной целью данного исследования было определение орбит шаровых скоплений в двухкомпонентной модели гравитационного потенциала Галактики [32,33]. Ранее, в заметках [34,35] нами приводились предварительные результаты. Вычисление орбит требует нахождения пространственных скоростей скоплений. Эти же величины могут использоваться для более детального изучения кинематики подсистемы шаровых скоплений. В настоящей статье приводятся основные результаты кинематического исследования, а следующая статья будет посвящена статистическому анализу элементов галактических орбит скоплений. Результаты данной работы основываются на более подробной статье [36].

В самое последнее время авторам стали известны результаты определения собственных движений и вычисления орбит шаровых скоплений по измерениям, полученным на HIPPARCOS [37]. В частности, впервые была найдена пространственная скорость скопления NGC 6779. В данном исследовании работа [37] уже не могла быть использована.

2. Исходные величины. Для 24 скоплений мы составили сводку определений абсолютных собственных движений (15µ_a cosô, µ_b), лучевых скоростей v, и гелиоцентрических расстояний r. В настоящей работе нами не учитывались старые определения собственных движений (А. ван Маанена, Н.В.Гамалей, Й.Мойрерса и Л.Халлерман и др.), поэтому в отличие от авторов статьи [26] мы не рассматривали скопления NGC 6254 и NGC 6779. Составляя различные комбинации из исходных величин, мы нашли в [36] несколько сотен орбит. Сравнение результатов, относящихся к одному скоплению, показало [36], что в большинстве случаев такие характеристики орбит, как их вытянутость и возвышение над галактической плоскостью качественно оказались одними и теми же для различных вариантов исходных данных.

Для каждого скопления были выбраны оценки собственных движений,

лучевых скоростей и гелиоцентрических расстояний, которые мы считали предпочтительными. Они приведены в табл.1 и в большинстве случаев близки использованным в [26]. Источники, из которых были взяты эти величины, указаны в [36]. Исключение составляет скопление NGC 6218. Относящиеся к нему величины по ошибке оказались выпущенными в табл.1 в [36].

Был вычислен коэффициент корреляции расстояния скопления от Солнца *r* и тангенциальной скорости 4.74µ*r*, где $\mu = \left[(15\mu_{\alpha}\cos\delta)^2 + \mu_{\delta}^2 \right]^{1/2}$. Оказалось, что этот коэффициент сог(4.74µ*r*,*r*)=0.23. Малое значение этой величины косвенно указывает на надежность использованных собственных движений. Для сравнения мы нашли, что сог $(|v_r|, r) = 0.36$. В то же время мы нашли, что среднее значение 4.74 $\langle \mu r \rangle = 2072$ км/с, а $\langle |v_r| \rangle = 114$ км/с, т.е. в 18 раз меньше. По формулам Клейбера отношение этих средних должно равняться $\pi/4$. Следует, однако, иметь в виду, что формулы Клейбера определенно неприменимы к совокупности шаровых скоплений Галактики.

Таблица 1

No	Скопление	154 0088		81	,
145	CROIDICHAC	104π	μ ₈ ,	در ⁰	′,
		10 /год	10 /год	KM/C	КПК
1	NGC 104	+55	-16	-14	4.6
2	288	+50	-68	-46	8.4
3	362	+35	-26	+232	8.7
4	Palomar 3	+33	+3	+22	87.9
- 5	NGC 4147	-27	+9	+182	17.3
6	5024	-3	-4	-79	18.5
7	5139	-22	-73	+228	5.2
8	5272	-31	-23	-147	10.4
9	5466	-54	+6	+120	15.5
10	Palomar 5	-244	-87	-56	21.4
11	NGC 5904	+67	-78	+52	7.6
12	6121	-116	-163	+64	2.1
13	6171	-7	-31	-37	6.2
14	6205	-9	+55	-248	7.2
15	6218	+31	-75	-44	5.3
16	6341	+44	+11	-120	7.7
17	6397	+33	-152	+19	2.2
18	6626	+3	-34	+16	5.0
19	6656	+86	-51	-148	2.8
20	6712	+42	-20	-107	6.5
21	6838	-23	-51	-19	4.4
22	6934	-11	+14	-412	14.9
23	7078	-10	+102	-107	10.5
24	7089	-68	-26	-6	10.8

ИСХОДНЫЕ ДАННЫЕ О СКОПЛЕНИЯХ

Л.П.ОСИПКОВ, А.А.МЮЛЛЯРИ

Преэстранственные скорости скоплений. Стандартным образом исходные величины были преобразованы в галактические цилиндрические координаты R, θ, z и скорости v_R, v_e, v_z. При этом принималось, что R₀=8.23 кпк, а компоненты галактоцентрической скорости Солнца s_R = -9 км/с, s_θ = 238 км/с, s_z = 7 км/с.

Полученные значения v_{R} , v_{θ} , v_{z} , приведенные в [36], в принципе позволяют исследовать кинематику подсистемы шаровых скоплений.

Скопления Pal 3 и Pal 5 значениями своих координат и скоростей резко отличаются от остальных скоплений. Поэтому данные скопления были исключены из всех статистических исследований.

Немногочисленность шаровых скоплений в Галактике делает неприменимым к их подсистеме понятие макроскопического элемента объема. Поэтому мы считаем, что для данной подсистемы не имеет смысла говорить о локальной скорости центроида и локальном эллипсоиде скоростей в обычном смысле [38]. Теоретически можно ввести понятие наиболее вероятной скорости в данной области. Оно получается усреднением во времени по ансамблю стационарных орбит, проходящих через эту область (см. сходные рассуждения в §123 книги Уинтнера [39], а также в статье [40]). Однако непосредственное определение такой скорости по данным наблюдений невозможно.

Мы нашли коэффициент линейной корреляции сог (v_{θ} , R) азимутальной скорости v_{θ} с расстоянием от оси вращения Галактики R, коэффициенты a, b регрессионного уравнения

$$v_{\theta} = a + bR$$

и величину V_{θ} , получающуюся при подстановке в это уравнение $R=R_{\theta}$. Рассматривались как все скопления, так и три группы, выделенные по величине параметра металличности [Fe/H]: 1) скопления с наиболее высоким содержанием металлов, [Fe/H] >-1.4; 2) промежуточная группа с [Fe/H] \in [-1.7,-1.4); 3) скопления с наименьшей металличностью, [Fe/H] \leq -1.7. Результаты приведены в табл.2.

Таблица 2

ВРАЩЕНИЕ ГРУПП СКОПЛЕНИЙ С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ МЕТАЛЛОВ

Параметр	[Fe/H]<-1.4	-1.4≥[Fe/H]>-1.7	[Fe/H]≤-1.7	Все скопления
Число		1 H	100 5 50	
скоплений	6	9	7	26
<[Fe/H]>	-0.98	-1.54	-2.02	-1.54
<r>, KIIK</r>	4.3	8.7	10.6	8.3
< <i>R</i> >,кпк	5.6	6.4	7.2	6.5
$\operatorname{cor}(v_{\mathbf{e}}, R)$	-0.14	-0.65	+0.31	-0.31
a, KM/C	131	354	-27	214
<i>b</i> ,(км/с)кпк ⁻¹	-6	-47	20	-20
V ₀ , км/с	78	-35	138	48

Как и следовало ожидать, корреляция v_{θ} с R оказалась слабой (кроме скоплений с промежуточной металличностью). Околосолнечное значение ожидаемой скорости вращения оказалось равным 48 км/с, что совпадает с результатом Армандрофа [8] и близко к полученному в [26] значению 37±28 км/с. По-видимому, быстрее всего вращается в Галактике группа скоплений, наименее богатых металлами. Только для этой группы средняя азимутальная скорость слегка растет с R. Скопления промежуточной группы в среднем движутся в обратную сторону. Ранее аналогичный вывод сделали Роджерс и Палтоглу [7]. Он рассматривался ими и другими авторами (напр., [41-43]) как аргумент в пользу гипотезы Сирла и Цинна [44], согласно которой наружные части нашей Галактики образовались путем аккреции галактик-спутников.

Как и в [26], были отдельно рассмотрены 4 скопления (NGC 362, NGC 4147, NGC 5272, NGC 6934), относящиеся по классификации Цинна [45] к "молодому гало" (см. табл.3). По-видимому, эта группа скоплений практически не вращается в Галактике.

Интересно было бы выявить, какое влияние оказывает на кинематику так называемый "второй параметр" горизонтальной ветви на диаграмме "показатель цвета - видимая величина" для скоплений (напр., [5,42,43,46]). Поэтому были рассмотрены также скопления, относящиеся к "группам голубизны" I и II по Миронову и др. [5]. Результаты приведены в табл.3. Скопления группы I, по-видимому, в среднем являются более старыми и менее богатыми металлами. Как оказалось, эта группа характеризуется бі лышими значениями V_a.

Таблица 3

Параметр	Группа I	Группа II	Молодое гало
Число		1	
скоплений	9	11	4
<[Fe/H]>	-1.73	-1.31	-1.57
<г>, кпк	10.3	6.6	12.8
< <i>R</i> >, кпк	6.8	5.5	8.8
$\operatorname{cor}(v_{e}, R)$	+0.12	-0.53	-0.20
а, км/с	4	247	168
b,(км/с)кпк ⁻¹	11	-25	-20
V _e , км/с	96	37	6

ВРАЩЕНИЕ РАЗЛИЧНЫХ ГРУПП ШАРОВЫХ СКОПЛЕНИЙ

4. Средний эллипсоид скоростей. Для всей выборки из 22 скоплений и для шести описанных выше групп были найдены средние значения скоростей $\langle v_{R} \rangle$, $\langle v_{q} \rangle$, $\langle v_{q}$

Эти величины не являются локальными, а определяют положение центра, форму и размеры "среднего" эллипсоида скоростей данной группы шаровых скоплений (искаженные за счет эффектов селекции и неполноты выборки). Вследствие известного "эффекта расстояния" [47,48] "средние" кинематические параметры должны заметно отличаться от соответствующих локальных значений. Показательно в этом отношении различие между v_{0} (табл. 4,5) и V_{0} (табл. 2,3).

Кроме указанных выше величин были вычислены среднее < $|v_t|$ > и параметр < $v_s \operatorname{gn} z$ >, характеризующий сжатие (расширение) подсистемы и уже рассматривавшийся при изучении кинематики быстролетящих звезд [49]. Вычислялись и коэффициенты линейной корреляции скоростей и [Fe/H].

Полученные результаты приведены в табл. 4, 5. Кратко их можно суммировать следующим образом.

Подсистема шаровых скоплений медленно вращается и не обнаруживает заметных сжатий к оси вращения и к экваториальной плоскости Галактики. "Средний" эллипсоид скоростей мало отличается от сферы, $\sigma_a \approx \sigma_c$.

Для группы скоплений с промежуточными значениями параметра металличности [Fe/H] величина $\langle v_{0} \rangle$ оказалась наименьшей; можно заподозрить сжатие этой группы к плоскости z=0. По этим скоплениям получаем, что $\sigma_{R} \approx \sigma_{z} < \sigma_{0}$. Для скоплений с наименьшими [Fe/H] и $\langle v_{0} \rangle$,

Таблица 4

Параметр	[Fe/H]<-1.4	-1.4≥[Fe/H]>-1.7	[Fe/H]≤-1.7	Все скопления
<υ _R >, κω/c	37	-4	57	26
< ₀₈ >, км/с	95	50	118	84
<v_>, KM/c</v_>	-37	-26	-2	-21
<ussinz>, км/с</ussinz>	60	-127	93	9
< U _Z >, KM/C	48	68	135	111
σ _к , км/с	81	142	162	138
σ ₈ , км/с	85	179	118	143
σ _z , км/с	54	149	154	130
$cor(v_R, [Fe/H])$	0.11	-0.59	0.23	-0.06
$cor(v_{\theta}, [Fe/H])$	0.87	0.12	0.69	0.12
$cor(v_{t}, [Fe/H])$	0.36	0.07	-0.19	-0.09
$\operatorname{cor}(v_{z} ,[Fe/H])$	-0.28	-0.14	-0.26	-0.50
cor(v_sgnz,[Fe/H])	-0.36	0.22	-0.14	-0.26

СРЕДНИЙ ЭЛЛИПСОИД СКОРОСТЕЙ ДЛЯ ГРУПП СКОПЛЕНИЙ С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ МЕТАЛЛОВ

Таблица 5

Параметр	Группа І	Группа II	Молодое гало
< <i>v</i> _{<i>R</i>} >, км/с	67	25	53
< ₀ >, км/с	80	107	-7
<u,>, км/с</u,>	9	-54	56
<u_sgnz>, км/с</u_sgnz>	21	5	-70
< uz >, KM/C	132	74	150
σ _R , км/с	128	123	68
σ _е , км/с	162	91	169
σ _ε , κм/c	142	76	154
$cor(v_R, [Fe/H])$	-0.42	-0.13	-0.75
$cor(v_g, [Fe/H])$	0.26	0.39	-0.59
$cor(v_{t}, [Fe/H])$	-0.27	0.01	0.37
$\operatorname{cor}(v_{z} ,[Fe/H])$	-0.48	-0.36	-0.31
cor(v_sgnz,[Fe/H])	-0.35	-0.10	-0.52

СРЕДНИЙ ЭЛЛИПСОИД СКОРОСТЕЙ ДЛЯ ФИЗИЧЕСКИ ВЫДЕЛЕННЫХ ГРУПП ШАРОВЫХ СКОПЛЕНИЙ

и $\langle V_{\theta} \rangle$ неожиданно оказались наибольшими. Возможно, что это группа в среднем расширяется по *z*. Для нее $\sigma_{\theta} \approx \sigma_{s} > \sigma_{\theta}$.

Группа скоплений молодого гало в среднем практически неподвижна в Галактике, хотя нельзя исключить ее сжатие к экваториальной плоскости. По этим скоплениям находим σ_s < σ_s ≈ σ_s.

Для группы скоплений I по [5] $\langle v_R \rangle$ больше, чем для группы II, а $\langle v_e \rangle$ - меньше. На первый взгляд это противоречит тому, что для группы II "локальная" скорость V_e значительно больше. И группа I, и группа II не расширяются и не сжимаются по z. Для обеих групп значения σ_R одинаковы, а σ_e и σ_z больше для группы I. Последнее совпадает с результатами Миронова, Расторгуева и Самуся [5], которые использовали только лучевые скорости, но значительно большего числа скоплений. Для группы скоплений I оказалось, что $\sigma_a \approx \sigma_e < \sigma_e$, а для группы II мы нашли, что $\sigma_a > \sigma_e \approx \sigma_e$.

Вследствие немногочисленности исследованных выборок и возможных эффектов наблюдательной селекции все результаты данного исследования должны рассматриваться только как предварительные, а их статистическую интерпретацию следует производить на основе теории малых выборок [50].

Авторы благодарны И.И.Никифорову, предоставившему необходимые данные о расстояниях и лучевых скоростях шаровых скоплений, Дж.Карраро, обратившему наше внимание на статью [37], М.Оденкирхену, приславшему рукопись статьи [26] до ее опубликования, Дж.Бинни, А.С.Расторгуеву, В.Г.Сурдину и А.М.Эйгенсону, за обсуждение результатов. Значительная часть работы была выполнена совместно с С.А.Кутузовым. Работа была частично поддержана Российским фондом фундаментальных исследований по гранту 95-02-05007.

Санкт-Петербургский государственный университет, Россия Петрозаводский государственный университет, Россия Обсерватория университета Турку, Пииккио, Финляндия

KINEMATICS AND GALACTIC ORBITS OF GLOBULAR CLUSTERS. I. KINEMATICS

L.P.OSSIPKOV, A.A.MÜLLÄRI

We analyze space motions for a sample of 24 galactic globular clusters. Correlations between cluster velocities, their positions and metal-abundunce were studied. The mean velocity ellipsoid was found to be close to a sphere. Clusters belonging to various groups of the horizontal branch according to Mironov, Rastorguev, and Samus' were considered separately.

ЛИТЕРАТУРА

- 1. П.П.Паренаго, Астрон. ж., 24, 167, 1947.
- 2. F.C.Edmondson, Astron. J., 45, 1, 1935:
- 3. H.Mineur, Mon. Notic. Roy. Astron. Soc., 96, 61, 1935.
- 4. А.С.Шаров, Астрон. ж., 53, 702, 1976.
- 5. А.В.Миронов, А.С.Расторгуев, Н.Н.Самусь, Астрон. ж., 53, 1164, 1976.
- 6. C.S.Frenk, S.D. White, Mon. Notic. Roy. Astron. Soc., 198, 173, 1982.
- 7. A.W.Rodgers, G.Paltoglou, Astrophys. J., Lett., 83, L5, 1984.
- 8. T.E.Armandrof, Astron. J., 97, 375, 1989.
- 9. И.И.Никифоров, Вестн. Ленинградск. ун-та. Сер. 1, вып. 4, 108, 1990. 10. П.Н.Холопов, Звездные скопления. Наука, М., 1981.
- TO. II.II. AURONOB, SECONDECKOIDICHEM. Hayka, WI., 1761.
- 11. L. Perek, Zprávy Astron. Ústavy Masarykovy Univ. v Brně, 1, 156, 1954.
- 12. S. von Hoerner, Z. Astrophys., 35, 255.
- 13. A.S. Rastorguev, V.G. Surdin, in "Star Clusters and Associations and Their Relation to the Evolution of the Galaxy", Praha, Publ. Astron. Inst. Czechosl.

Acad. Sci., 1983, p.156.

- 14. J. Colin, in "Dynamics of Star Clusters", Dordrecht, D.Reidel Publ. Co., 1985, p.309.
- 15. Р.М.Дзигвашвили, Г.А.Маласидзе, Препр. Абастуманск. астрофиз. обсерв., [без номера], 1994.
- 16. Г.А. Маласидзе, Р.М. Дзигвашвили, Prepr. Abastumani Astrophys. Observ. on Mt Kanobili, № 4, 1995.
- 17. Р.М.Дзигвашвили, Г.А.Маласидзе, Т.Г.Мдзинаришвили, Астрофизика, 41, 101, 1998.
- 18. Н.Н. Самусь, в сб.: "Итоги науки и техники. Астрономия, т. 27", ВИНИТИ, М., 1985, с.3.
- 19. H.L. Morrison, C. Flynn, K.C. Freeman, Astron. J., 100, 1191, 1990.
- R. Woolley, in "The theory of Orbits in the Solar System and in Stellar Systems", L., Academic Press, 1966, p.93.
- 21. В.В.Сыровой, Учен. зап. Уральск. ун-та, № 111, 43, 1970.
- 22. D.W.Keenan, K.A.Innanen, F.C.House, Astron. J., 78, 173, 1973.
- 23. К.А.Бархатова, А.В.Локтин, А.П.Рязанов, в сб.: "Движения искусственных небесных тел", изд. Уральск. ун-та, Свердловск, с.8.
- 24. C.Allen, M. Martos, Rev. Mexic. Astron. Astrofis., 16, 25, 1988.
- 25. K.M.Cudworth, R.M.Hanson, Astron. J., 105, 168, 1993.
- 26. B.Dauphole, M.Geffert, J.Colin, C.Ducourant, M.Odenkirchen, H.Tucholke, Astron. Astrophys., 313, 119, 1996.
- 27. P.Brosche, M.Geffert, A.R.Klemova, S.Ninković, Astron. J., 90, 2031, 1985.
- 28. M. Odenkirchen, P. Brosche, Astron. Nachr., 313, 69, 1992.
- 29. C.Allen, A.Santillan, Rev. Mexic. Astron. Astrofis., 25, 39, 1993.
- R.-D.Scholz, M.Odenkirchen, M.J.Irwin, Mon. Notic. Roy. Astron. Soc., 264, 579, 1993.
- 31. R.-D.Scholz, M.Odenkirchen, M.J.Irwin, Mon. Notic. Roy. Astron. Soc., 266, 925, 1994.
- 32. С.А.Кутузов, Л.П.Осипков, Астрон. ж., 66, 965, 1989.
- 33. С.А. Кутузов, Л.П. Осипков, в сб.: "Вопросы небесной механики и звездной динамики", изд-во "Наука" Каз ССР, Алма-Ата, 1990, с.110.
- L.P.Ossipkov, S.A.Kutuzov, in "Galactic Bulges", Dordrecht, Kluwer Academic Publ., 1993, p.367.
- 35. L.P. Ossipkov, S.A. Kutuzov, in "Unsolved Problems of the Milky Way", Dordrecht, Kluwer Academic Publ., 1996, p.523.
- Л.П.Осипков, А.А.Мюлляри, С.А.Кутузов, в сб.: "Статистический анализ нелинейных систем", изд. Петрозаводск. ун-та, Петрозаводск, 1996, с.60.
- 37. M.Odenkirchen, P.Broshe, M.Geffert, H.-J. Tucholke, New Astronomy, 2, 477, 1997.
- 38. К.Ф. Огородников, Динамика звездных систем, Физматтиз, М., 1958.
- 39. А.Уинтнер, Аналитические основы небесной механики, Наука, М., 1967.
- 40. Т.А.Агекян, А.С.Баранов, Астрофизика, 5, 305, 1969.
- 41. D.N.C.Lin, H.B.Richer, Astrophys. J., Lett., 388, L57, 1992.

Л.П.ОСИПКОВ, А.А.МЮЛЛЯРИ

- 42. S. van den Bergh, Astron. J., 105, 971, 1993.
- 43. S. van den Bergh, Astrophys. J., 411, 178, 1993.
- 44. L.Searle, R.Zinn, Astrophys. J., 225, 357, 1978.
- 45. R.Zinn, J. Roy. Astron. Soc. Canada, 84, 89, 1990.
- 46. А.В. Миронов, Н.Н. Самусь, в сб.: "Звездные скопления", изд. Уральск. ун-та, Свердловск, 1979, с.118.
- 47. K. Ogorodnikoff, Mon. Notic. Roy. Astron. Soc., 96, 866, 1936.
- 48. S. Kikuchi, Sendai Astron. Raportoj, Ser., II, № 38, 50, 1954.
- 49. Л.П. Осипков, С.А. Кутузов, Вестн. С.-Петербургск. ун-та. Сер. 1, Вып. 1, 105, 1997.
- 50. Т.А.Агекян, Основы теории ошибок для астрономов и физиков, Наука, М., 1972.