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The field to particle method of H.P.Robertson as applied by Noonan, in order to obtain 
the general relativistic equations describing the trajectory of a photon in a refractive medium, 
is compared with Synge's general relativistic Hamiltonian theory of waves and rays. For a 
photon in vacuum it is known that both approaches yield the same equation for the trajectory 
i.e. a null geodesic. However for a photon in a medium, in contradistinction to the 
Hamiltonian theory, the field to particle method (a) yields equations of the photon trajectory 
valid only in a non-dispersive medium, (b) the time component u° of the tangent to the ray 
remains an undetermined quantity, (c) agreement with the Hamiltonian theory is achieved by 
substituting into Noonan's equations the Hamiltonian expression for u°.

1. Introduction. The properties of light rays in the presence of both 
gravitation and refraction may be investigated by applying Synge's Hamiltonian 
theory of rays and waves [1]. This general relativistic theory of geometrical optics 
has received wide physical applications. It is at the base, for instance, of the 
treatment of the transfer of radiation in a dispersive medium in a curved space
time [2,3]. In this Hamiltonian approach the behavior of light rays is governed 
by the medium equation 

n(x,Jp) = |[^P,Py֊(n2-lXP/r/)2] 

and the ray equations
dx‘ dQ 
dx dPj (4 gQ

dx‘
(b)

(1.1)

(1.2)
SP, 
d t

where T is a parameter, n the refractive index (the reciprocal of the wave speed u) 
is a given function of the coordinates and frequency, V is the 4 velocity of the 
medium and Pt the frequency 4 vector which Synge identifies with the 4 momentum 
of the photon associated with a system of waves. Further, to comply with concepts 
of causality it is required that the rays should be timelike (or null for a photon in 
vacuum), mathematically this requirement reads g,, & & <, 0, with a signature 

v dt dv
+2 of the metric. However, there exists in the literature a quite different method 
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(1-3)

(1-4)

for obtaining the trajectory of any particle. This method known as "the field to 
particle method" [4] has been applied by Noonan to obtain the general relativistic 
equation of motion for a photon in a refractive medium [5]. The gist of this 
method is to derive the equation of motion from the conservation law for the stress- 
energy tensor by going to the limit as this tensor can be localized along a single 
world line. Noonan found that when the electromagnetic stress-energy tensor 5 
* in a medium is localized into a world line x/(x), the equation describing this 
world line, when (/) the medium is linear (if) the wavelength is short compared 
with variations in the permittivity and permeability, are

֊ + T'* «'? + ^Ln n)1 + ^1 - SjVf = 0,

where u‘ = along the trajectory x'(x\ s' = S10 dV, C, = U/V1, <p = S/V1,

n and P having the same meaning as in eq (1.1). For a photon in vacuum the field 
to particle method and the Hamiltonian theory are equivalent in the sense that they both 
yield the same equation for the trajectory, Le. a null geodesic. The fact that the 
trajectory is a geodesic and the null nature of u1, in Robertson's method, stems from the 
symmetry requirement of the electromagnetic stress-energy tensor S' and the property 
S', = 0. However for a photon in a medium only S1, = 0 is true and the equivalence 
of the two theories remains an open question.

The main purpose of this note is to present such a discussion. We shall 
assume that we are dealing with an isotropic refractive medium in a static spheri
cally symmetric universe with world lines along the x° lines.

In sec.2 we briefly recall the field to particle method as applied by Noonan 
to the general relativistic Maxwell equations in a medium. We note that his 
description of the photon in a medium is correct only for a non dispersive 
medium. In sec.3 we compare the equations of the photon trajectory-obtained by 
application of the field to particle method to those resulting from Synge’s Hamil
tonian theory. It is shown that agreement between the two sets of equations is 
achieved only if in Noonan’s eqs (1.3, 1.4) we substitute for u° the expression 
given by the Namiltonian theory.

2. The field to particle method. Assuming that the medium is linear, 
i.e. it possesses a scalar electric permittivity E and a scalar magnetic permeabil
ity the skew symmetric tensors Fv and H11 entering in the definition of 
Maxwell’s equations

(2.1a)

Fy^FJkj+FUJ = Q (2.1b)
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are related by

(2-2)

where

HiJ = C^F»

C* = e0 —glkgJI + f— - —+gJ'v'v*
M le0 HP (2.3)

The semi-colon in eq 2.1a denoting the covariant derivation of /7* with 
respect to x1. Interpreting the force density

/' =JkF{ (2-4)

as the force on the free charges in the medium, Noonan using eq 2.2 writes eq 
2.4 in the form

(2.5)

where

S» = FlkHJk + ֊gIJFklHkl (2.6)

Rf = -W'-f' (2.7)

with

^=^aFm„{cUm")-,i. (2.8)

Titus separating in eq (2.5) the contribution of the field derivatives from that of 
the gradients of permittivity and permeability. When the fields are localized into 
a particle, the Robertson’s method applied to eq (2.5) yields the following result

» /0
-^- = -w°(p'+I^) (2.9)

^=«M=«V° (2.10)

where and p' denote respectively the volume integrals

ct'7 = iy[gSIJdV, p' = ^R‘dV (2.11)

with the aid of eq 2.10, the elimination of in eq (2.9) gives

^- + r'JkuJsk =r‘ (2.12)
at J

where r' = w° pz and s' = ct/0- Since a photon has zero charge r'in eq 2.12 is 
simply equal to -w1 where

w/ = -<?C,(Ln «); i- ç(l - n՜2)SjV.J (2.13)

is the corpuscular limit of as given by eq 2.8 when there is equipartition of 
electric and magnetic energy. An important relation characterzing the 4 vectors 
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u1 and s' follows from the property Sj = 0 used in the from = 0, eq 2.10 gives

A=0. (214)

Eq (2.10) can also be used to give

As to eq (1.4), it simply states that in the local rest frame (LR.F) of the medium 
u" is parallel to s° and is defined by

> Q
«o=4ôj“ (2-16)

ns
This relation results from eqs (2.6) and (2.15). Evaluation of eq (2.6) in the LRF 
gives 5°“ = E0p0 Sa, Sa0 = ep.5“ , where 5 is the Poynting vector. Therefore

in the corpuscular limit sa = n2 ծ0“, n2 = -E-—, substitution of էհե result into 
EoPo

eq (2.15) gives eq (2.16). We shall see in the next section that the orthogonality 
condition (2.14) is restricted to non dispersive media and follows directly from 
the ray and medium equations (1.1, 1.2a). The components of s' in the LRF are 
given by

J°=-y, j“=ehx№ (2.17)
c

where է = ± j(e£2+p/f2)t/K is the corpuscular limit of the electromangnetic 

eneigy density and xNa represents the corpuscular volume integral of the Poynting 
vector with X = f | dV and Na the unit 3 vector in the direction of propagation.

ua
Moreover Noonan shows that the eneigy flow and the 3 velocity va = of 

the light corpuscule satisfy the relations

v' (a)

v'
epx

(b)
(2-18)

the product of which yields

v2 =
1 c2

EH Ո2 '
(2-19)

Consequently within the framework of Noonan’s theory the transport of eneigy, 
in the LRF, occuis with a 3 velocity v equal to the phase velocity. Noonan’s 
theory is therefore restricted to non dispersive media, a fact already mentioned 
in connection with the condition u's/ = 0 - To connect Noonan’s work with the 
Hamiltonian theory it is useful to write, with the aid of eq (2.18), the compo
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nents of s' in the following from:

J°=?՜ (2-20)

with the special relation (2.21) holding at each event within the medium
r2

s's^^l-n2) (2.21)

3. Comparison of the fields to particle and Hamiltonjan ap
proaches. The equations of the trajectory for a photon in a medium supplied 
by Noonan’s theory are valid only when the medium is non dispersive. To com
pare with Synge’s theory we shall therefore consider a non dispersive isotropic 
medium in a static universe with a spherically symmetric metric

ds2 = goo(^°)2 + £a₽ dx^ (3.1)

and with world lines along the x° lines so that its 4 velocity V' satisfies

^ = 0, y° = ^\ (3.2) 

where the coefficients g^may be written in the form

£oo= ec® gn=eeA g-n^er2 g33=cr2sin2e (3.3)

-1 for a signature (-+ + +)

+ 1 for a signature (+—)

with © and a functions of r only.
The ray equations now read

e■֊- = g‘JPr{n2- l)r'(Py K') (3.4a)

Since n (x,P) is independent of xP, Po is constant along each ray. From eqs 
(3.4a,b) we get

֊ = -rrjk PjPk + Ar+ PiBkgir, k

(3.5)
Bk =-\n2-\^PjVJ]vk

The energy of the photon measured in the instantaneous rest frame of the medium 
is according to Synge’s definition given by the formula
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E = t(Pj r'). (3.6)

Now, multiplication of eq (3.4a) by Pt gives
=0, (3.7)

which implies the spacelike nature of the frequency 4 vector, and from the medium 
equation (1.1) we obtain

PtP՛ = (l-n2)£2 n = u<l. (3.8)

We thus recover the orthogonality condition (2.14) and the relation (2.21) pro
vided we identify the frequency 4 vector P, with s'. This identification will be 
implicitly understood in the remaining part of this work.

To proceed further in the comparison let us write explicitly the space and time 
components of eqs (3.3a) and (3.4). We have, limiting to just one space com
ponent for P, e.g, P՝.

w0=^i = /։2P°(a) ^- = -^P°P'(c) 
dx v ' Jt dr v '

ua= — = P* (b) ^- + r^P“P₽ =e(<J 
dx v ' dx p

dn n2 d<b 
n dr 2 dr

(3.9)

(4

In the static universe with metric form (3.1) the equations (1.3) and (1.4) 
describing the trajectory of a photon in a medium, according to Noonan’s 
theory, now read explicitly:

ua
dxa _ u° sa 
dx n2 s°

d<t> i
——u s 

dr
J<D m°s։ 
dr n2

(b)

Jj1 1 W° „ a

T" + rà₽-T-ô-J 
dx “p n2s°

1 dn 1 JO 
n dr 2n2 dr (4

(3.10)

o

By eq (1.4), the tangent to the trajectory lies in the 2-element defined by the 
4 vector s'and the 4 velocity V of the medium, as one may expect for isotropy 
and in agreement with the Hamiltonian theory. However, in contradistinction to 
the ray equation (1.2a), eq (1.4) does not determine the time component iP since 
for r=0 it simply reduces to an identity. On account of this undeterminary of 
ip it is not quite correct to say that eqs (1.3) and (1.4) contain a complete 
description of the trajectory. Comparison of the two sets of eqs (3.9) and (3.10) 
shows that we may force eqs (3.10) to reduce to eqs (3.9) by adopting the 
Hamiltonian relation iP=n*&. As a concluding remark it may be interesting to 
recall how we recover the results for the photon in vacuum. In this case the 
symmetry property of the electromagnetic stress-energy tensor 5^ and eq (2.10) 
require that s' be a multiple of u!

sl = Kul. (3.U)
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The substitution of eq (3.11) into eq (2.10) and use of the property 5/ = 0 
give Ku'itj =0, since K=0 presents no physical interest, u1 is a null vector. 
Inserting eq (3.11) into eq (2.12), with r'=0, we obtain the geodesic equation.

College de France - Institut d’Astrophysique, 
Paris

СВЕТОВЫЕ ЛУЧИ В ГРАВИТАЦИОННОЙ И 
ПРЕЛОМЛЯЮЩЕЙ СРЕДАХ: СРАВНЕНИЕ ТЕОРИИ

ВОЛНА-ЧАСТИЦА С ГАМИЛЬТОНОВЫМ ПОДХОДОМ

РАКРИКОРЯН

Метод волна-частица Робертсона, примененный Нунаном при получении 
общих релятивистских уравнений для траектории фотона в преломляющей 
среде, сравнивается с общей релятивистской гамильтоновской теорией Синга 
для волн и световых лучей. Известно, что для фотона в вакууме оба подхода 
приводят к одному и тому же уравнению для траектории, дающему нулевую 
геодезическую линию. Однако для фотона, движущегося в среде, метод 
волна-частица, в противоположность гамильтоновской теории, (а) приводит 
к таким уравнениям для траектории фотона, которые справедливы лишь 
для непреломляющей среды, (б) оставляет неопределенной временную 
компоненту и0 касательной к лучу, (в) согласие с гамильтоновской теорией 
достигается при подстановке в уравнения Нунана гамильтоновского 
выражения для и°.
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