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We discuss the question whether the way of finding the conservation laws based on the varia­
tional formalism is applicable to the multilevel problems of the radiative transfer in a homogeneous 
atmosphere. For expository reasons, the simplest one-dimensional model case is considered. For the 
special three-level problem treated in the paper the Lagrangian approach allows to derive not only the 
H- and K-integrnls, but also the nonlinear integral which is an analog of the Q-integrals previously 
obtained for the classical transfer problems. It is shown that, in general, the constraints imposed 
by the variational principle on the symmetry properties of the transfer equations are too stringent to 
be satisfied.

1. Introduction. It was first Rybicki's paper [I], which called attention 
to the quadratic and bilinear integrals of the radiative transfer equation. The 
concept of "bilinear integrals" was introduced for quadratic integrals that 
connect the radiation fields of two separate transfer problems referred to the 
same optical depth. Somewhat more general results for monochromatic, 
isotropic scattering in the plane-parallel atmosphere was given later by Ivanov 
[2]. Quite recently the present authors [3,5] applied the Lagrangian formalism 
[6] to several transfer problems of astrophysical interest, and used the Noether 
theorem to derive the proper conservation laws. It was shown that these laws 
correspond to the quadratic integrals obtained by Rybicki in [I], and are the 
direct consequence of the form-invariance of the Lagrangian with respect to 
the translation transformation t -> t + Ar of the optical depth.

In paper [4] it was suggested a physical interpretation of the resulting Q- 
relations (we use here the terminology adopted in [1]) that allows one to derive 
these immediately. The underlying physical reasonings are, as a matter of 
fact, a further generalization of those in deriving the classical principle of 
invariance (see e.g., [7]). It was shown that the invariance property of the 
radiation field is due to the homogeneity assumption made for an atmosphere. 
This fact sets one thinking that this property may appear to be characteristic 
of the multilevel problems as well.

The present paper concerns the one-dimensional transfer problems for 
three-level atoms. This relatively simple configuration of the energy levels is 
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a constituent of any multilevel system, and hence the conclusions we arrive 
at in the paper are of importance for any multilevel transfer problem. It will 
be demonstarated that in some special cases the Lagrangian approach is appli­
cable, and leads to the conservation laws similar to those previously obtained 
in [3-5]. In the more general situations the symmetry constraints imposed on 
the differential operators, in the classical context of the calculus of variations, 
are too stringent to be met so that a variational formulation is not possible.

2. A special problem for three-leve! atoms. We start by considering 
the simplest situation when no radiative transitions occur between the two 
upper levels (assigned as levels 2 and 3). Instead, they are assumed to be 
coupled by means of collisional processes, which is the case of multiplets 
such as the lines D, and D2 of Nai, and H and K lines of Call. We shall 
consider the model problem, in which the effects of the induced emission 
are neglected. These effects will be treated later on.

The equations of the statistical equilibrium in this case have the form 
"3(^31+ °3i+ °32) = wi(^i3^i3+ ^13) + 

n2(^2i+ °2i + A3) = ni(^i2f2+ ^12) + n3 a32>

where /։, (/=1,2,3) is the population of atoms in the rth level; Ajt and B։j 
are Einstein's transition coefficients for the spontaneous and radiative absorp­
tion processes, respectively; an and b։j are the rates of the collisional tran­
sitions. In the one-dimensional approximation the quantities Jlt (it = 2,3) are 
expressed in terms of the intensities I*k, in each direction, as follows 
a*=(a*+A*)/2 •

The radiation transfer equations for the problem under consideration read

+ ^12 _ ri , Al n2 . . <H\3 r± , Al n3
qdx Bl2 dx B]3 n։

where the optical depth r is introdused in such a way that
dx = ^-^- nxds֊ 

Av13 c

(2-2)

(2-3)

(v|2Avl32?|2/vl3Av|22?13), vu and Avu are the frequency and the width of the 
lines resulting from transitions between the level 1 and k (it = 2,3).

As it follows from Eq.(2.2), Jn = -qHn, J\3 = -Hi3 (hereafter the primed 
quantities denote derivatives with respect to r), where H.. = (/+ /-JA 
characterizes the radiative flux in each line. Incorporating Eqs.(2.I) and (2.2), 
we arrive at the following system of differential equations of the second order:

/(A2.A2.A2) = , 212 _ ^12+ bl՝li3+ A°2 =
՝ ' dx

s[^\3՝^]3> A3) = j3 ~ Â7I3+ MJ\2+ J°3 = 0, 
՝ 'dx 

(2-4)
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where we introduced the notations

K - (VA)[(^2I+ a21)(°31 + fl32) + fl3l ^23} M = ^31^12^23/513 A> 

Z, = (?2/A)[(^3i+ °3iXc2i + ^23)+ a2i û32]> N = ^^21^13 a32/^i2

J\2 - \ a [^2^3* + a31 + fl32) + ^3fl32}
ZJj2 A l j

c\
^°3 = '^^[^3C'^i+Û2i+^23)+^12^23]’

A = (^21+ fl2iX4։i+ fl31+ °32) + ^23(^31+ a3i)-

It is well known that the system of differential equations of the second 
order of the type Eq.(2.4) may be regarded as the Euler-Lagrange equations 
of a variational principle if the following symmetry properties are satisfied 
(see e.g. [8,9])

dg 5/ dg df d df
dJn ddj3’ dJ12 9Jl3 dtdJX3 (2’6)

One can easily verify that the second condition fails by giving M=N. Nev­
ertheless, the symmetry condition will be met if we multiply preliminarily the 
first of Eqs.(2.4) by M, and the second one by N. Then the Lagrangian 
corresponding to this new system of equations may be derived immediately

1
£ — J>f|2^X MJX2— X LMJX2+ X MN "fi3+ MJ°-^d X + 

0
1 /9

+ J713(x NJj'3- XKNJ{3+ XMNJn+ NJ^dK, 
0

or
£ = MJ?2+ NJ£+ LMJ&+ KNJf3-2MNJi2Ji3-2MJ^Jl2-2NJ^3Jl3. (2.8)

Since the optical depth does not appear explicitly in the Lagrangian (2.8) 
Noether's theorem leads to the conservation law of the form

^12+ W'i3- LMJh- KNJX3+ 2 MN JnJX3+ 2 MJ?2 Jn+ 2 NJ?3Ji3 = const. (2.9) 

The conservation law (2.9), resulting from translational invariance of £ with 
respect to the variable t, may be considered as the analog of the Q-integrals 
of the transfer equation previously derived in [1,3-5]. Using the procedure 
developed in [4,5], one may derive the so-called 'two-point' integrals, which 
connect the radiation fields at two different depths in the atmosphere. 
Moreover, it is easy to obtain also the bilinear integrals relating with each 
other two different problems of the considered type.

If the collisional processes in the lines 1 _> 2 and 1 _> 3 are neglected we 
have J°2 = J։°3, so that now
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£ = MJ՝^+ NJ'ti+ LMJ\2+ KNJ^- 2 MN JnJx3, (2.10)

and, as easily seen from Eq.(2.5), KL= MN. Consequently the Lagrangian 
may be represented in the form

z №&!L(NJn- KJ^\ (2.11)
A

We notice that the Lagrangian (2.11) remains invariant with respect to 
the infinitesimal transformation of the field variables J]t (k = 2,3):

/12->/I2+e, (2֊12)
A

Making s an added field variable, and performing the transformation (2.12), 
we obtain [10]

£ e'. (2.13)

The Euler-Lagrange equation associated with e is

d 5£ d£
dt dz'

= ^-(MJl2+ 
a t v

hence

MJ|2+ LJu — const.

(2.14)

(2-15)
Taking into account Eq.(2.5), we are led to the flux conservation law

Æ|2+ — const,
where =(Avu/vu)Æu.

From Eq.(2.15) we find also

•62+ ?2(^b/^12)^i3 = Ct + Z),

(2-16)

(2.17)
where C and D are the integration constants. Equation (2.17) may be 
interpreted as the analog of the well-known K-integral.

3. Multilevel atoms, the general case. Now the question arises 
whether or not the Lagrangian approach adopted in this paper may be 
applied to the more general multilevel problems for finding conservation 
laws. This section demonstrates that the constraints imposed by the symmetry 
requirement for a system of equations are very stringent, and may be satisfied 
only in extremely specific situations. Even for the simple model problem 
investigated above, in which the radiative transitions between levels 2 and 
3 are forbidden, allowance for the induced emission processes render the 
Lagrangian method unapplicable. In this case the problem becomes essen­
tially nonlinear and is reduced to the solution of the following system of 
differential equations
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(3-1)

for the functions J12 = J\i/h v12 and Jn = J^/h v12 , where

y = b =---------- 2«---------- , b=bq2-g-3A” ,
^3a32 ^3i+fl32_Y^23 m £2^21

m _ ^21(^31+ g32) + ^23-^31 y _ ^21(4>|+ g3z) + ^23-431 (3-2)
^21՜ (^37^2)7 g32 4zi (^1+ Y a32)

It can be checked that even the simplest symmetry condition (the first of 
Eqs.(2.6)) is not satisfied, therefore the system (3.1) is not derivable from 
a variational principle. A similar situation is encountered in the more 
general case when all the radiative transitions are permitted. This conclusion 
is obviously valid for any multilevel transfer problem with the larger number 
of levels, for which the three-level problem we investigated can be regarded 
as a special case. It should be noted however that this fact alone does not 
exclude the existence of conservation laws. It is easy to show, for instance, 
that any multilevel source-free problem will admit the flux-conservation laws 
similar to that given by Eq.(2.16).

It should be emphasized in conclusion that one may generally use a 
convolution bilinear form, which render the operator symmetric, and pro­
vides a variational formulation for every system of differential equations. In 
this approach the Lagrangian is no longer a function but an operator. For 
this reason, we limited ourselves to considering the problem within the 
framework of the classical theory.
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ЗАКОНЫ СОХРАНЕНИЯ ДЛЯ МНОГОУРОВЕННЫХ 
ЗАДАЧ ПЕРЕНОСА ИЗЛУЧЕНИЯ

А.Г.НИКОГОСЯН1, Р.А.КРИКОРЯН2

В работе обсуждается вопрос о том, является ли способ нахождения 
законов сохранения, основанный на вариационном формализме, 
применимым в случае многоуровенных задач переноса излучения в 
однородной атмосфере. Для наглядности рассматривается простейшая 
одномерная задача. Для одной частной трехуровенной задачи 
лагранжиановский подход позволяет вывести не только Н- и К-интегралы, 
но и нелинейные интегралы, являющиеся аналогом Р-интегралов, 
полученных ранее, для ряда классических задач переноса. Показывается, 
что в общем случае ограничения, накладываемые вариационным принципом 
на свойства симметрии уравнений переноса излучения, являются слишком 
жесткими и не удовлетворяются.
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