АСТРОФИЗИКА

TOM 40

НОЯБРЬ. 1997

ВЫПУСК 4

УДК: 524.312.7-323.7

РАСПРЕДЕЛЕНИЕ В-ЗВЕЗД В НАПРАВЛЕНИЯХ НЕКОТОРЫХ ЮЖНЫХ ЦЕФЕИД

Р.Х.ОГАНЕСЯН

Поступила 3 января 1997 Принята к печати 21 июля 1997

На основании U, B, V данных изучено распределение B-звезд в окрестностях 9 южных долгопериодических цефсил (P > 11 дней). Определены параметры Q, нормальные показатели цветов (B-V), и (U-B), и збытки цветов E(B-V), спектральные классы и модули расстояний этих звезд.

1. Введение. С целью обнаружения ОВ-ассоциаций вблизи южных долгопериодических цефсид (P > 11 дней) ван ден Берг и другие [1-3] исследовали области вокруг 14 цефеид по материалам U, B, V-фотометрии и пришли к выводу, что большинство долгопериодических цефеид расположены за пределами ядер богатых ассоциаций.

Еще в 50-х годах Амбарцумян [4], исходя из распределения долгопериодических цефеид и ОВ-ассоциаций в Галактике, отмечал, что оба эти объекта принадлежат плоской составляющей Галактики, но распределение цефеид совершенно безразлично по отношению к О-ассоциациям. По его мнению, цефеиды следует считать некоторыми стадиями развития объектов, возникающих в О-ассоциациях, и свойства цефеид приобретаются на сравнительно позднем этапе развития.

Обнаружение цефсид в расссянных скоплениях позволило Сандиджу [5] предположить, что цефеиды являются стадией развития массивных звезд на эволюционном пути от В-звезд к красным сверхгигантам. Исходя из этой гипотезы, Копылов [6,7] отметил, что цефеиды и В-звезды, возможно, находятся в генетическом родстве, поэтому цефеиды должны иметь массы от 3 до $11\,M_{\odot}$, а их предки были звездами типа В1-В6 на главной последовательности. Подробности о периодах и показателях цвета, а также эволюции цефенд, можно найти в книге Ефремона [8].

Если принять эту точку зрения, то в окрестностях цефеид следует искать не O-B2 звезды, а группировки звезд, состоящих из сравнительно поздних типов В-звезд (ВЗ-В9), возможно, даже звезд типов А и F.

С целью обнаружения этих группировок, на основании *U*, *B*, *V*-данных ван ден Берга и других [1,2], нами определены спектральные классы и классы светимостей В-звезд, наблюдавшихся в областях долгопериодичес-

ких цефеид-WZ Car, YZ Car, KK Cen, OO Cen [1], CT Car, UU Mus, VZ Pup, SV Vel, EZ Vel [2]. Для этого мы использовали значения наблюдаемых показателей цвета U-B и B-V и независимый от межзвездного поглощения параметр:

$$Q = (U - B) - E(U - B)(B - V) / E(B - V).$$
 (1)

Согласно работам Джонсона и др. [9], а также Яшека и др. [10], пля звезд спектральных классов O-B-A2 отношение избытков цвета E(U-B) / E(B-V) постоянно и в среднем равно 0.72 ± 0.03 для всего неба, а параметр Q и нормальные истинные показатели цвета (U-B), и (B-V), для этих же типов звезд хорошо коррелируются со спектральными классами. Поэтому, при определении параметров звезд, находящихся в областях вышеуказанных цефеид, была использована формула Q = (U-B) - 0.72(B-V).

Для спектральной классификации и определения избытков цвета E(B-V) исследуемых звезд мы использовали значения нормальных показателей цвета $(U-B)_0$ и $(B-V)_0$, а также Q - параметры для звезд спектральных подклассов от О8 до А1 всех классов светимостей, взятые из работы Страйжиса [11]. Они приведены в табл.1.

Затем, по данным $(B-V)_0$ и величине Q из табл. 1 была получена линейная зависимость между этими параметрами для O-B-A1 звезд в виде:

Таблица 1 НОРМАЛЬНЫЕ ПОКАЗАТЕЛИ ЦВЕТА (В-V) $_{0}$ И ПАРАМЕТРЫ Q ДЛЯ ЗВЕЗД РАЗНЫХ СПЕКТРАЛЬНЫХ КЛАССОВ И СВЕТИМОСТЕЙ

	V			IV			III			II					
S	(B-V) _e	(<i>U-B</i>) _e	Q	(B-1).	(U-B).	Q	(B-V).	$(U-B)_{6}$	Q	(B-V) ₄	(<i>U-B</i>) _a	Q	(B-V)	(U-B),	Q
08	-0.31	-1.14	-0.92	-0.31	-1.14	-0.92	-0.31	-1.13	-0.91	-0.31	-1.13	-0.91	-0.31	-1.13	-0.91
09	-0.31	-1.13	-0.91	-0.31	-1.13	-0.91	-0.31	-1.12	-0.90	-0.29	-1.12	-0.91	-0.27	-1.12	-0.93
BO	-0.30	-1.08	-0.86	-0.30	-1.08	-0.86	-0.30	-1.09	-0.87	-0.28	-1.09	-0.89	-0.23	-1.09	-0.92
B1	-0.27	-0.95	-0.76	-0.27	0.96	-0.77	-0.27	-0.97	-0.78	-0.26	-0.98	-0.79	-0.19	-0.99	-0.85
B2	-0.25	-0.85	-0.67	-0.24	-0.86	-0.69	-0.24	-0.88	-0.71	-0.23	-0.92	-0.75	-0.16	-0.94	-0.82
B3	-0.21	-0.71	-0.56	-0.20	-0.73	-0.59	-0.20	-0.75	-0.61	-0.20	-0.84	-0.70	-0.11	-0.85	-0.76
B4	-0.19	-0.64	-0.50	-0.185	-0.65	-0.52	-0.18	-0.67	-0.54	-0.18	-0.77	-0.67	-0.11	-0.81	-0.73
B5	-0.17	-0.57	-0.45	-0.17	-0.58	-0.46	-0.16	-0.59	-0.47	-0.16	-0.70	-0.58	-0.09	-0.77	-0.70
B6	-0.15	-0.50	-0.39	-0.15	-0.51	-0.40	-0.14	-0.52	-0.42	-0.14	-0.63	-0.53	-0.07	-0.71	-0.66
B7	-0.13	-0.43	-0.34	-0.13	-0.44	-0.35	-0.12	-0.44	-0.35	-0.12	-0.47	-0.56	-0.05	-0.65	-0.61
B8	-0.10	-0.33	-0.26	-0.10	-0.34	-0.27	-0.10	-0.34	-0.27	-0.10	-0.45	-0.38	-0.03	-0.58	-0.56
B9	-0.07	-0.19	-0.14	-0.07	-0.20	-0.15	-0.07	-0.21	-0.16	-0.07	-0.30	-0.25	-0.01	-0.52	-0.51
A0	-0.02	-0.02	-0.01	-0.02	-0.04	-0.03	-0.02	-0.06	-0.05	-0.02	-0.15	-0.14	-0.01	-0.33	-0.34
Al	0.02	0.03	0.02		0.03						-0.08				

нейная зависимость между этими параметрами для O-B-A1 звезд в виде: $(B-V)_0 = a + bQ. \tag{2}$

Численные значения коэффициентов a и b были определены методом наименьших квадратов для звезд каждого класса светимостей. Они приведены в табл.2. Параметр Q для каждой исследуемой звезды был определен с использованием наблюдавшихся значений (U-B) и (B-V) из

Таблица2

ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ а и b В ФОРМУЛЕ (2) ДЛЯ РАЗНЫХ КЛАССОВ СВЕТИМОСТЕЙ

14.17	V	I	V	I	II	11	73/1/15	Land I amend		
а	b	а	ь	<i>a</i> .	ь	а	b	а	b	
-0.021	0.327	-0.016	0.326	0.010	0.332	0.030	0.349	0.350	0.640	

работ [1,2]. Значение $(B-V)_0$ было вычислено по формуле (2). Имея наблюдаемый (B-V) и нормальный $(B-V)_0$ показатели цвета, мы определили избытки цвета $E(B-V)=(B-V)-(B-V)_0$ для исследуемых звезд, а затем значения $(U-B)_0$ были вычислены по формуле: $(U-B)_0=(U-B)-0.72\,E(B-V)$.

После этого, сравнивая вычисленные значения $(B-V)_0$, $(U-B)_0$ и Q с теми значениями, которые приведены в табл.1, были определены спектральные классы и классы светимостей наблюдаемых звезд.

По данным [11] для звезд спектральных классов O-B5 параметр Q < -0.44 однозначно определяет спектральный класс звезды. Следовательно, для тех звезд в областях вышеупомянутых цефеид, для которых Q < -0.44, можно принять соотношение (2).

Определенные с помощью соотношения Q = (U-B) - 0.72(B-V) значения параметра Q по наблюдаемым значениям (B-V) и (U-B) в окрестностях этих цефсид показали, что для нахождения группировок B-звезд в области КК Сеп звезд с Q < -0.44 оказалось слишком мало. Кроме того, из наблюдательных значений величин (B-V) и (U-B), приведенных в табл. 7,8 и 10 работы ван ден Берга и др.[1], а также в табл. 8-12 работы тех же авторов [2], видно, что некоторые звезды относятся к более ранним спектральным классам, чем A2. Поэтому для определения $(B-V)_0$ и E(B-V) таких звезд также использовалось соотношение (2). При этом, для звезд V-III классов светимостей можно использовать соотношение $(B-V)_0$ =-0.021+0.327 Q, так как для этих светимостей численные значения $(B-V)_0$ для каждого спектрального подкласса (табл.1) мало отличаются друг от друга.

В итоге, с помощью соотношений (1) и (2) были вичислены параметры Q, избытки цвета $E\left(B-V\right)$ и нормальные показатели цвета

 $(B-V)_0$ и $(U-B)_0$ для 303 звезд, из них - для 86 звезд в области вокруг WZ Саг, для 40 - в окрестности YZ Саг, для 39 звезд - вокруг ОО Сеп, для 21 звезды - вокруг СТ Саг, для 22 звезд - вокруг UU Мих, для 29 звезд - вокруг VZ Рир, для 31 звезды - вокруг SV Vel и для 35 звезд - вокруг EZ Vel.

Допуская, что в направлении этих областей межэвсэдное поглощение нормальное $A_{\rm v}=3.3\,E(B-V)$, согласно Аллену [12], и имся избытки цвета E(B-V), можно определить свободные от межэвездного поглощения звездные величины $V_{\rm o}$ для упомянутых 303 звезд.

Для оценки спектральных классов этих звезд были использованы параметры Q и нормальные показатели цвета $(B - V)_0$ и $(U - B)_0$.

Используя эти оценки спектральных классов и звездные величины $V_{\rm o}$ (в $V_{\rm o}$ лучах), на основании средних абсолютных величин звезд каждого спектрального подкласса по Готтлибу [13], можно определить для них истинный модуль расстояния $V_{\rm o}-M_{\rm v}$.

Таким образом, были определены параметры Q. избытки цвета E(B-V), оценены спектральные классы и модули расстояний V_0-M , B-звезд в областях WZ Car, YZ Car, UU Mus, OO Cen, CT Car, VZ Pup, SV Vel и EZ Vel.

На рис. 1-6 графически приведены зависимости E(B-V) от модули расстояния V_0-M_{τ} только для тех группировок B-звезд, где по модулю расстояния находятся соответствующие цефеиды.

Из рис. 1 и 2 видно, что звезды No 1, 27 и 34 из области WZ Car. а также звезда 259 из YZ Car (нумерации взяты из соответствующих

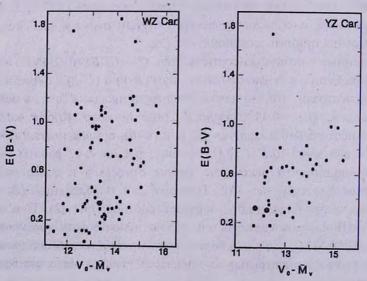
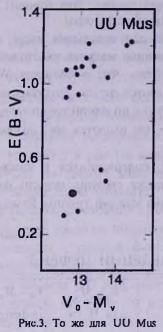



Рис.1. Зависимость избытков цвети $E\left(B-V\right)$ от модуля расстояния $\left(V_{q}-M_{q}\right)$ B-звезд в направлении WZ Car.

Рис.2. То же для YZ Саг

областей - [1]) имеют слишком большие поглощения (A_{τ} для них равны 6.1, 5.8, 5.5 и 5.8, соответственно). Значения этих поглощений были

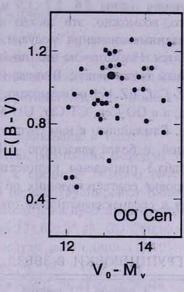
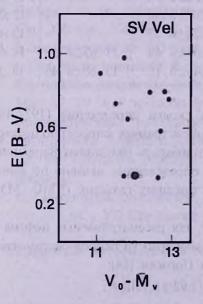



Рис.4. То же для ОО Сеп

сопоставлены с поглощениями таких звезд (имеющих те же расстояния от нас) в их окрестности, для которых величины A, гораздо больше, чем поглощение других звезд соответствующих областей, и для них они равны

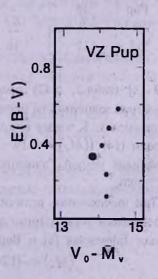


Рис.5. То же для SV Sel.

Рис.6. То же для VZ Рир.

3.5, 3.6, 3.6 и 3.2, соответственно.

Даже при таком сравнении разности их поглощений ΔA , большие их значения равны 2.6, 2.2, 1.9 и 2.6, соответственно. Это говорит о том, что, возможно, эти звезды имеют пылсвые оболочки.

Численные значения модулей расстояний для отдельных звезд не приводятся. Несмотря на это, по средней величине модулей расстояний отдельных группировок В-звезд (табл. 3) видно, что в областях WZ Car, YZ Car, EZ Vel и, возможно, SV Vel имеются по две группировки В-звезд, а в ОО Сеп, СТ Саг, UU Mus и VZ Pup - по одной группировке В-звезд. Ближайшую к нам группировку (там, где имеются две) назовем I группой, а более удаленную - II группой.

В табл.3 приведены количества В-звезд, содержащихся в каждой группировке соответствующих областей, а также средние модули расстояния и среднеквадратичные отклонения для каждой группы В-звезд.

Тиблца 3 ГРУППИРОВКИ В-ЗВЕЗД В НАПРАВЛЕНИИ ЦЕФЕИД

Звезда	I группа В-звезд	II группа В-звезд	V ₀ − M _v для I гр.	V ₀ - M _v для II гр.	$V_0 - M$, цефеид
WZ Car	59	17	13 ^m .05±0 ^m .65	14ª1.80±0ª1.37	13 ^m .39
Yz Car	22	13	12 .60±0 .45	14 .43±0 .73	12 .64
OO Cen	33	military .	13 .10±0 .61	release -	13 .01
CT Car	15	- Maria	12 .58±0 .39	-	15 .24
UU Mus	16		13 .07±0 .38	-	12 .75
VZ Pup	18		12 .24±0 .53	-	13 .69
SV Vel	7	22	12 .05±0 .49	13 .65±0 .52	11 .99
EZ Vel	11	16	12 .46±0 .19	13 .68±0 .43	15 .10

В [8] (табл.3, с.42) представлена сводка определения (1977-1987) параметров зависимости период-светимость (разных авторов) по цефеидам в скоплениях. К этому списку можно добавить результаты Варданяна и Погосян [14] $(\langle M_{\rm v} \rangle = -1.10 - 3.07 {\rm ig}\,P)$, определенные недавно по данным о цефеидах нашей Галактики и трех внешних галактик (БМО, М31 и NGC 300):

При вычислении величины $\langle M_{\rm v} \rangle$ для рассматриваемых цефеид мы использовали усредненные значения зависимости период-светимость по данным Ефремова [8] и Варданяна и Погосян [14]:

$$\langle M_{\rm v} \rangle = -(1.24 \pm 0.21) - (2.92 \pm 0.13) \text{Ig } P.$$
 (3)

Для определения избытков цвета E(B-V), величины истинных

показателей цвета для цефеид вычислены по соотношению из работы [15]:

$$(\langle B \rangle - \langle V \rangle)_0 = 0.27 + 0.46 \lg P. \tag{4}$$

При вычислении величины $\langle M_{\rm v} \rangle$ и $(\langle B \rangle - \langle V \rangle)_0$ для рассматриваемых цефеид значения их периодов были взяты из работ Дина и др. [15].

Имся $\langle M_v \rangle$ и $(\langle B \rangle - \langle V \rangle)_0$ для этих цефеид были определены их модули расстояния, для чего использовались фотометрические данные $\langle V \rangle$ и $\langle B - V \rangle$ из работы Мадора [16].

Результаты вычислений $\langle V_0 \rangle - \langle M_v \rangle$ приведены в табл. 3.

Из табл.3 и рис.1-6 видно, что модуль расстояния цефеиды WZ Car ($13^{m}.39$) по своему значению близок к среднему модулю расстояния ($13^{m}.05\pm0^{m}.65$) и находится в пределах первой группировки В-звезд, YZ Car (модуль расстояния 12.64) также находится в пределах I группировки В-звезд со средним модулем расстояния $12^{m}.60\pm0^{m}.45$; ОО Сеп находится в пределах сгущения В-звезд и ее модуль расстояния ($13^{m}.01$) очень близок к модулю расстояния сгущения $V_0 - M_v = 13.10 \pm 0.61$.

В области UU Миз имеется группировка В-звезд со средним модулем расстояния 13^{тв}.07±0^{тв}.38, в пределах которого находится эта цефеида, се модуль расстояния равен 12^{тв}.75. Модуль расстояния SV Vel совпадает с группой, состоящей из 7-и В-звезд со средним модулем расстояния 12^{тв}.05±0^{тв}.49, а цефеиды CT Car, VZ Pup и EZ Vel не принадлежат соответствующим группировкам В-звезд. На основании вышесказанного можно сделать следующие выводы:

- 1. Найдены по две группировки В-звезд в направлениях цефеид WZ Car, YZ Car, EZ Vel и, возможно, в направлении SV Vel.
- 2. В направлениях же ОО Сеп, СТ Саг, UU Mus и VZ Рир имеется по одной группировки В-звезд.
- 3. По модулю расстояния цефеиды WZ Car, YZ Car, OO Cen, UU Mus и SV Vcl находятся в пределах модуля расстояний соответствующих группировок В-звезд.
- Группировки В-звезд в направлениях цефеид СТ Саг, VZ Рир и EZ Vel находятся гораздо ближе к нам, чем соответствующие цефеиды.
- 5. Предполагается, что звезды N 1, 27 и 34 из области WZ Саг и No 259 из YZ Саг имеют околозвездные пылевые оболочки.

Бюраканская астрофизическая обсерватория, Армения

THE DISTRIBUTION OF B-STARS IN THE DIRECTIONS OF SOME SOUTHERN CEPHEIDS

R.Kh.HOVHANNESIAN

Using the photometric U, B, V data by method of the spectral clasification with the photometric parameters Q = U - B - 0.072(B - V) and the intrinsic colour indices B - V and U - B the distribution of B-stars is studied near 9 southern long-period Cepheids (P > 11 days). The parameters Q, the normal colours $(B - V)_0$ and $(U - B)_0$, the colour excesses E(B - V) and the distance moduli $(V_0 - M_V)$ of these stars are determined.

ЛИТЕРАТУРА

- 1. S. van den Berg, E.B.F. Brosterhus, G.Alcaino, Astrophys. J. Suppl. Scr., 50, 529, 1982.
- 2. S. van den Berg, P.F. Younger, E.B.F. Brosterhus, G. Alcaino Astrophys. J. Suppl. Ser., 53, 765, 1983.
- 3. S. van den Berg, P.F. Younger, D.G. Turner, Astrophys. J. Suppl. Ser., 57, 743, 1985.
- В.А.Амбарцумян, Научные труды, т.2, 60, изд. Ан Арм. ССР, Ереван, 1960 (Доклад на VIII съезде МАС, Рим, 1952, Изд. АН СССР, М. 1952)
- 5. A.R.Sandage, Astrophys., J, 127, 513, 1958.
- И.М.Копылов, Вопросы космогонии, 7, 258, 1960.
- 7. И.М.Копылов, Изв. Крым. астрофиз. обсерв, 33, 286, 1964.
- 8. *Ю.Н.Ефремов*, Очаги звездообразования в галактиках. Наука, М., Глав. ред. физ-мат. лит., 1989.
- 9. H.L.Johnson, W.W.Morgan, Astrophys. J., 117, 313, 1953.
- 10. C.Jaschek, A. Valbousquet, F. Ochsenbein, Astron. Astrophys., 312, 815, 1996.
- 11. В.Страйжие, Многоцветная фотометрия звезд. Мокслас. Вильнюс. 1977, с. 107.
- 12. К.У.Аллен, Астрофизические величины. Мир. М., 1977.
- 13. D.M. Gottleib, Astrophys. J. Suppl. Scr., 38, 287, 1978.
- 14. Р.А. Варданян, А.В. Погосян, Астрофизика, 36, 417, 1993.
- 15. J.F.Dean, P.F. Warren, A.W. Cousins, Mon. Notic Roy. Astron. Soc., 183, 569, 1987.
- 16. B.F.Madore, Astrophys. J. Suppl. Ser., 29, 219, 1975.