


Owsowmnasirvo� tatanowmneri �ekavarman xndir� low�vowm � �o�oxakanneri anjatman me�o{

di mijocov` membranayin �apaveni tatanowmneri te�a�oxow�yown� nerkayacnelov tatanman se�a{

kan � eri  dranc se�akan harmonikneri Fowriei �arqeri mijocov: �ekavarman fownkcian nowynpes

nerkayacvowm � Fowriei �arqeri mijocov: Ezrayin �ekavarman hamar membranayin �apaveni tata{

nowmneri se�akan harmonikner�  �ekavarman fownkciayi harmonikner� ka�owcvowm en mia�amanak`

xndri ezrayin, skzbnakan  verjnakan paymanner� bavararelowc heto:

Ditarkvowm en tarber skzbnakan  verjnakan paymanneri hamar membranayin �apaveni

hnaravor �ekavarman azdecow�yan  tatanowmneri �e�imneri hatowk depqer: Irakanacvowm �

oro�aki depqeri �vayin verlow�ow�yown:

Himnaba�er: membranayin �apaven, ger�aynayin gazi hosq, mia�a� tatanowmner, ezrayin azdecow{

�yown, �ekavarman xndir, �ekavarman fownkciayi harmonikner

A vibration control problem is considered for an in�nite in one direction membrane tape in a

supersonic gas �ow in a �nite time interval is considered. One edge of the membrane tape is rigidly

�xed. A control action is applied to the other edge of the tape using a rigid straight ruler. The

mathematical model of the problem is reduced to a control problem for one-dimensional vibrations

of a string with a boundary control.

The vibration control problem under study is solved via variables separation method by expand-

ing the de�ection of the membrane vibration into Fourier series by natural vibration modes of the

membrane and the function of its harmonics. The unknown function of the boundary control is also

expanded into Fourier series. For the boundary control, the eigenharmonics of the membrane vibra-

tions and the harmonics of the control are constructed simultaneously, after satisfying the boundary,

initial and terminal conditions of the problem.

Particular cases of possible control functions and modes of vibrations of the membrane for di�er-

ent initial and terminal conditions are considered. Numerical analysis of particular cases is carried

out.

Key words: membrane tape, supersonic gas �ow, one-dimensional vibrations, boundary action,

control problem, harmonics of control function.

Introduction

Flexible thin-walled structural elements (plates or shells) made from soft materials,
which are technically modeled as membranes are often used in modern technology.
Naturally, in technical problems of vibration control of membranes, the mathematical
boundary value problem is formulated on the basis of boundary conditions and of the
state of the membrane.

From this point of view, the proposed control problem of vibrations of an in�nite
in one direction membrane in a supersonic gas �ow when one edge of the membrane
is rigidly �xed, and the other edge is controlled, on a �nite time interval is a model.
Supersonic gas �ow streamlines around the membrane along its width, resulting in a
membrane to vibrate.

The problem is mathematically modeled as a problem of one-dimensional forced
transverse vibrations of a membrane with a boundary control. Formally, it coincides
with the problem of boundary control of string vibrations under a distributed trans-
verse external action [1]. Forced vibrations of the membrane and issues of its stability
in the aerodynamics of high supersonic gas velocities were investigated in the mid-
dle of the last century [2,3]. However, to the best of our knowledge, the issues of
controlling such a membrane vibrations were not considered so far.
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The solution to the mathematical boundary value problem of damping string vi-
brations with two control functions are given in the monograph [4].The problem is
solved by the method of Fourier series expansion applied to the string de�ection. For a
string without a distributed transverse load, a similar mathematical boundary value
problem is solved in [5], using D'Alembert method. However, D'Alembert method
does not allow to solve similar boundary value problems in cases where the general
solution of the problem cannot be represented in an integral forms containing the
given initial and terminal conditions explicitly. In the problem of boundary control
of vibrations of a string with given states at intermediate moments [6], the control of
a string with two acting control functions depending on time at the two ends of the
string is investigated.

In well-known monographs [7-10], some of the existing methods and those under
intensive development can be found for the solution of model problems of controllabil-
ity of dynamic systems or for the analysis of the nature of control of physicomechanical
dynamic processes.

In the proposed work, we seek a solution to the control problem by expanding all
functions, including the function of the boundary control in the form of Fourier series
with respect to natural modes of vibrations of the membrane and with respect to its
natural harmonics. After satisfying the boundary, initial and terminal conditions, the
modes and harmonics of the vibrations of the membrane, as well as the corresponding
control function are determined.

1 Statement of the problem. Formulation of the

mathematical boundary value problem

Consider the possibility of control of an in�nite in one direction membrane vibrat-
ing in a supersonic gas �ow, when one edge of the tape is rigidly �xed, and the other
edge is controlled (Fig. 1). The membrane has a width 0 ≤ x ≤ l and a very long
length (considered to be in�nite).

Figure 1: Diagram of supersonic gas �ow around the membrane
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The supersonic gas stream �ows around the membrane along its width, vibrating
the membrane. Vibrations of the membrane in a supersonic gas �ow are modeled as
parallel one-dimensional vibrations of the membrane[1]:

∂2W

∂x2
− β

∂W

∂x
− α2 ∂

2W

∂t2
= 0 , 0 ≤ x ≤ l, t ≥ 0. (1.1)

Here,β = χρ∞MN−1
x is a physical parameter characterizing the gas �ow along the

membrane, α2 = ρ0hN
−1
x is the inverse of the square of the speed, N−1

x is the tensile
force in the direction of the width of the membrane, ρ0 is the membrane material
density, χ is the aerodynamic constant, ρ∞ is the gas density, M is the Mach number,
h is the membrane thickness.

The edge x = 0 of the membrane is rigidly �xed. The induced vibrations of the
membrane are controlled by means of a rigid rectilinear ruler applied on the moving
edge x = l of the membrane and represented by the function µ(t) depending only on
time. The boundary conditions will therefore be

W (0, t) = µ(t) , W (l, t) = 0. (1.2)

According to the classical formulation, based on equation (1.1) and boundary con-
ditions (1.2), the boundary control µ(t) will be considered in the class of functions
µ(t) ∈ L2[0 ≤ t ≤ T0]. It is assumed that at the initial moment t = 0, the shape of
the membrane de�ection and the distribution of the rate of change of the de�ection
are known:

W |t=0 = ϕ(x) ,
∂W

∂t

∣∣∣∣
t=0

= ψ(x). (1.3)

It is required to �nd such a boundary control µ(t) for which equation (1.1) is trans-
mitted from the initial state (1.3) to the terminal state

W (x, T0) = ϕ̃(x) ,
∂W

∂t

∣∣∣∣
t=T0

= ψ̃(x), (1.4)

over the interval t ∈ [0;T0].
De�ection functions ϕ(x) and ϕ̃ (x) , as well as functions of the vibration speed

ψ(x) and ψ̃(x), at the initial moment of time t = 0 and at the �nal moment of time
t = T0 respectively, are considered to be elements of L2[0 ≤ x ≤ l]. The solution of
the formulated mathematical boundary value problem is obtained by introducing a
new displacement function V (x, t) such that

V (x, t) =W (x, t)−
(
1− x

l

)
µ(t). (1.5)

Substituting(1.5) into (1.1), boundary control µ(t) will move into the equation of
vibration of the membrane. The mathematical boundary value problem in the form
of homogeneous equation (1.1) subject to inhomogeneous boundary conditions (1.2)
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is reduced to inhomogeneous equation of forced vibrations

∂2V (x, t)

∂x2
− β

∂V (x, t)

∂x
− α2 ∂

2V (x, t)

∂t2
= −β

l
µ(t) + α2

(
1− x

l

)
µ̈(t) (1.6)

with �external in�uence� −(β/l) · µ(t) + α2 (1− x/l ) · µ̈(t), subject to homogeneous
boundary conditions for the unknown function of the reduced displacement V (x, t):

V (0, t) = 0, V (l, t) = 0. (1.7)

The initial and terminal conditions are respectively reduced to

V (x, t)|t=0 = ϕ (x) −
(
1− x

l

)
· µ (0) ,

∂V (x, t)

∂t

∣∣∣∣
t=0

= ψ(x)−
(
1− x

l

)
µ̇(0).

(1.8)

V (x, T0) = ϕ̃ (x)−
(
1− x

l

)
· µ(T0),

∂V (x, t)

∂t

∣∣∣∣
t=T0

= ψ̃ (x)−
(
1− x

l

)
· µ̇(T0)

(1.9)

2 Solution of the mathematical boundary value

problem

The new formulation of the mathematical boundary value problem in the form of
equation (1.6) and homogeneous boundary conditions (1.7) allows the representation
of the solution of the problem by the method of variable separation as follows:

V (x, t) = X(x) · f(t) =
∞∑

n=1

X0n(x)fn (t) , (2.1)

using the expansion of the reduced displacement of the membrane in the form of a
Fourier series in terms of its eigenmodes of the vibration.

2.1 Decomposition of the forced vibration of the membrane

tape on its own forms

Taking into account homogeneous boundary conditions (1.7) and the homogeneous
part of equation (1.6), the de�ection of the membrane can be represented as a Fourier
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series in terms of its eigenmodes as follows:

X(x) =

∞∑
n=1

X0n(x), where X0n(x) = Bn exp

(
βx

2

)
· sin

(nπ
l
x
)
, n ∈ N (2.2)

with corresponding eigenharmonics

f0(t) =

∞∑
n=1

θ0n (t) , and θ0n (t) = A0n · sin (ωθnt) +B0n · cos (ωθnt) . (2.3)

In this case, the eigenvalues of the vibrational motion are de�ned as

ω2
0n = (nπ/αl )

2
+ (β/2α )

2
, n ∈ N. (2.4)

It is obvious that the frequencies of eigenharmonics are determined by the physical
and geometric parameters of the vibratory system: αl, β = χρ∞MN−1

x and α2 =
ρ0hN

−1
x . The maximum value of the eigenfrequency, at a certain value of the tensile

force Nx/l =
(
χ2ρ2∞M

2/8π2l
)1/3

, is achieved for the �rst eigenmode X01(x) =
B01 exp(βx/2 ) · sin (πx/l ). Due to the inhomogeneity of equation (1.6), the newly
formed vibration modes on the segment x ∈ [0; l] will be represented by the proper
vibration modes (2.2), and the dynamics of these forms is already will be represented

by another function of time θ(t) =
∞∑

n=1
θn (t). Decomposing also the factors in the

terms on the right-hand side of the inhomogeneous equation (1.6) into the Fourier
series with respect to eigenmodes (2.2),

1 = −
∞∑

n=1

CnXn(x) and (1− x/l ) =

∞∑
n=1

DnXn(x), (2.5)

we obtain an equation for the n�th form of vibration of the membrane, in the form
of a sequential in�nite system of ordinary di�erential equations

θ̈n (t) + (λ2n/α
2) · θn (t) = −Dn ·

[
µ̈ (t) + (β/α2l) · (Cn/Dn) · µ (t)

]
. (2.6)

In expansions (2.5), Fourier coe�cients CnandDn are de�ned as

Cn =[4 exp(−βl/2 ) · (2 exp(βl/2 )− 2(−1)
n
) · nπ]/

(
4n2π2 + l2β2

)
,

Dn =
8 exp(−βl/2 ) ·

[
exp(βl/2 ) ·

(
4n2π2 + l2β2 − 4lβ

)
+ 4lnπβ(−1)

n] · nπ
(4n2π2 + l2β2)

2

(2.7)
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2.2 Control of the natural forms oscillations by harmonics of

the edge action

The right-hand sides of the ordinary di�erential equations of the in�nite system
(2.6) include the boundary control action µ(t) corresponding to the oscillations of the
eigenforms of the true de�ection (2.2), one for all orthogonal forms with its secondary
derivatives. The introduction of a new designation for the frequency of the edge
control action

ω2
µn =

βl · Cn

(lα)
2 ·Dn

=

=
βl ·

(
4n2π2 + (βl)

2
)
[1− (−1)

n
exp(−βl/2 )]

4(lα)
2 ·

[
(nπ + (βl/2) )

2 − βl − nπβl · [1− (−1)
n · exp(−βl/2 )]

] (2.8)

the function µ(t) is also represented as a series of corresponding harmonics

µ(t) =

∞∑
n=1

µn(t), where µn (t) = Anµ · sin (ωµnt) +Bnµ · cos (ωµnt) (2.9)

The in�nite system of ordinary di�erential equations for the vibrations of the mem-
brane (2.6) can be written in the form of an in�nite system of equations for forced
vibrations

f̈θn (t) + ω2
0n · fθn (t) = −Dn ·

(
ω2
µn − ω2

0n

)
· µn (t) , (2.10)

or in the form
f̈µn (t) + ω2

µn · fµn (t) =
(
ω2
µn − ω2

0n

)
· θ0n (t) . (2.11)

with respect to reduced harmonics fθn (t) or fµn (t) of displacement V (x, t)

fθn (t) = θn(ωθnt) +Dn · µn(ωµnt), fµn (t) = µn (ωµnt) +D−1
n · θn (ωθnt) (2.12)

This harmonics is the direct composition eigenmodes of the membrane vibrations and
the harmonics of the boundary action. It is obvious from the equations (2.10) and
(2.11) that the true frequencies of the reduced harmonics of the eigenmodes of the
membrane vibrations are formed in di�erent ways.

According to the equation (2.10), the frequencies of the harmonics of the reduced
eigenforms of the membrane are formed on the basis of the eigenfrequencies ωθn = ω0n,
undergoing the harmonics of the boundary action µn(t) with frequency ωµn.

According to the equation (2.11), the frequencies of the harmonics of the reduced
natural forms of the membrane are formed on basis of the "eigenfrequencies" of the
boundary action ωµn, undergoing the in�uence of eigenharmonics of the membrane
vibrations. From equations (2.10) and (2.11) it is also obvious that the vibration of
the membrane subjected to boundary control will be stable or unstable depending on
the values of the frequencies ωθn < ωµn or ωθn > ωµn.

The general solution of (2.10) for n-th harmonic fn(ωθnt) is obtained by the
method of variation of parameters in the form of addition of harmonics of eigen
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and forced vibrations of the membrane:

fθn(ωθnt) = A∗
θn · sin(ωθnt) +B∗

θn · cos(ωθnt)+

+Dn · [Anµ · sin(ωµnt) +Bnµ · cos(ωµnt)]
(2.13)

Similarly, the general solution of (2.11) for the n-th harmonic,fn(ωµnt),is obtained as

fµn(ωµnt) = A∗
µn ·sin(ωµnt)+B

∗
µn ·cos(ωµnt)+Aθn ·sin(ωθnt)+Bθn ·cos(ωθnt) (2.14)

It is evident from expressions (2.4) and (2.8) that the frequency characteristics of
the system, ωθn and ωµn, are determined by physical and mechanical parameters
βl = χρ∞lMN−1

x and α2 = ρ1hN
−1
x . Formally, these frequencies can be equal under

the condition

[1− (−1)
n · exp(−βl/2 )] =

[
4 (nπ · (−1)

n − 1) + lβ/4α2
]
+

(
n2π2

)
/
(
α2βl

)
(2.15)

It follows from equations (2.10), (2.11) and from the corresponding general solutions
(2.13), (2.14) that in this case the system vibrates with the eigenfrequency of the
reduced forms

fθn(ωθnt) = (A∗
θn +Dn ·Anµ) · sin(ωθnt) + (B∗

θn +Dn ·Bnµ) · cos(ωθnt) (2.16)

In that case, neither a control problem nor a resonance of vibrations of the membrane
occur. According to (1.5), (2.1), (2.2)and (2.12), for the de�ection function W (x, t)
we obtain

W (x, t) =

∞∑
n=1

Bn [θn(ωθnt) +Dn · µn(ωµnt)] · exp
(
βx

2

)
· sin

(nπx
l

)
.

In order to ful�ll initial and terminal conditions (1.3) and(1.4),respectively, func-
tions ϕ(x) and ψ(x), as well as ϕ̃(x) and ψ̃(x)are also expanded into Fourier series as
follows:

ϕ(x) =

∞∑
n=1

γn ·Xn(x), ψ(x) =

∞∑
n=1

δn ·Xn(x) (2.17)

ϕ̃(x) =

∞∑
n=1

γ̃n ·Xn(x), ψ̃(x) =

∞∑
n=1

δ̃n ·Xn(x) (2.18)

Taking into account the representation (2.17) of the de�ection function W (x, t) and
expansions (2.18) and (2.19), initial and terminal conditions (1.8) and (1.9) for vibra-
tions of the membrane with boundary control are written in the form of an in�nite
system of four algebraic equations for the amplitudes of the harmonics of the mem-
brane vibrations and the boundary control,

θn(0) +Dn · µn(0) = γn

θ̇n(0) +Dn · µ̇n(0) = δn

θn(ωθnT0) +Dn · µn(ωµnT0) = γ̃n

θ̇n(ωθnT0) +Dn · µ̇n(ωµnT0) = δ̃n
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In the case of general solution (2.13), the in�nite system of algebraic inhomogeneous
equations (2.20) can be written in an expanded form with respect to four unknown
harmonic coe�cients A∗

θn, B
∗
θn, Anµ and Bnµ:

B∗
θn +Dn ·Bnµ = γn

A∗
θn + (ωµn/ω0n) Dn ·Anµ =

δn
ωθn

sin(ωθnT
0
θn) ·A∗

θn + cos(ωθnT
0
θn) ·B∗

θn+

+Dn · sin(ωµnT
0
θn) ·Anµ +Dn · cos(ωµnT

0
θn) ·Bnµ = γ̃n

cos(ωθnT
0
θn) ·A∗

θn − sin(ωθnT
0
θn) ·B∗

θn+

(ωµn/ωθn) Dn · cos(ωµnT
0
θn) ·Anµ − (ωµn/ωθn) Dn · sin(ωµnT

0
θn) ·Bnµ =

δ̃n
ωθn

Evaluating these four unknown constant coe�cients A∗
θn, B

∗
θn, Anµ and Bnµ, it will

become an easy problem to determine the boundary control function µ(t) according
to (2.9) and the de�ection functionW (x, t) of the membrane vibrating in a supersonic
gas �ow according to (2.17) on the �nite interval t ∈ [0;T0θ].

In the case of general solution (2.14), in�nite system of algebraic inhomogeneous
equations (2.20) can be reduced to an expanded form with respect to four unknown
harmonic coe�cients Aθn, Bθn, A

∗
nµ and B∗

nµ:

Bθn +B∗
µn = γn

Aθn + (ωµn/ωθn) A
∗
µn =

δn
ωθn

sin(ωθnT
0
µn) ·Aθn + cos(ωθnT

0
µn) ·Bθn + sin(ωµnT

0
µn) ·A∗

µn+

+cos(ωµnT
0
µn) ·B∗

µn = γ̃n

cos(ωθnT
0
µn) ·Aθn − sin(ωθnT

0
µn) ·Bθn+

+(ωµn/ωθn) · cos(ωµnT
0
µn) ·A∗

µn − (ωµn/ωθn) · sin(ωµnT
0
µn) ·B∗

µn =
δ̃n
ωθn

Finding four unknown constant coe�cients Aθn, Bθn, A
∗
µn and B∗

µn, it will be an easy
task to build the boundary control µ(t) according to (2.9) and the de�ection function
W (x, t) of the membrane tape vibrating in a supersonic gas �ow according to (2.17)
on the �nite interval t ∈ [0;T0µ]. In each of these cases, the required time of the
boundary control is de�ned as

Tθ0 = max

{
T 0
θn =

2π

ωθn

}
, Tµ0 = max

{
T 0
µn =

2π

ωµn

}
.

3 Numerical analysis for di�erent initial and termi-

nal states

Consider a membrane in�nite in one direction vibrating in a supersonic gas �ow
which streamlines the membrane along its width. One edge of the membrane is
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rigidly �xed, while the other edge is controlled in the direction parallel to the de�ec-
tion of the membrane (Fig 1). In numerical calculations, in order to determine the
physical and geometric characteristics of the dynamic system, the following charac-
teristics of the membrane material and the gas �ow are consider: ρ0 = 1500 kg/m3 ,
Nx = 1/50 N/m , χ = 0.32, M = 2.0, l = 2 m, h = 0.0001 m,ρ∞ = 0.01 kg/m3 ,
α = 2.738613, βl = 0.64. Obviously, depending on the physical and geometric charac-
teristics of the system,the behavior of the fundamental harmonics θ0n(t) of eigenforms
of the membrane tapeand the corresponding harmonics of the boundary action µn(t)
will be di�erent.

The boundary control problem a)
In the case when the membrane is transmitted from the initial state

W |t=0 = ϕ(x) = sin(10x) , Ẇ
∣∣∣
t=0

= ψ(x) = cos(10x) (3.1)

to the terminal state of rest,

W (x, T0) = ϕ̃(x) ≡ 0 , Ẇ
∣∣∣
t=T0

= ψ̃(x) ≡ 0 (3.2)

for the boundary control µ(t) corresponding to general solution (2.13), in the case of
n = 15, we obtain

µ1 (t) = −0.08858 · sin [0.57654 · t]− 0.348088 · sin [1.14863 · t]−
− 0.792535 · sin [1.72171 · t]− 0.05522 · cos [0.57654 · t]−
− 0.550381 · cos [1.14863 · t]− 0.5624 · cos [1.72171 · t] + ...+

+ 1.15872 · sin [7.456687 · t] + 0.88594 · sin [8.030245 · t] +
+ 0.944 · sin [8.6038 · t] + 1.23084 · cos [7.456687 · t]−
− 0.59297 · cos [8.030245 · t] + 1.0624 · cos [8.6038 · t]

(3.3)

On the other hand, for the boundary control µ(t) corresponding to the general solution
(2.14), in case of n = 15, we obtain

µ2 (t) = −0.024935 · sin [0.57654 · t] + 0.011172 · sin [1.14863 · t]−
− 0.01416 · sin [1.72171 · t] + 0.01911 · cos [0.57654 · t] +
+ 0.030467 · cos [1.14863 · t]− 0.0299 · cos [1.72171 · t] + ...+

− 0.0266 · sin [7.456687 · t] + 0.034766 · sin [8.030245 · t] +
+ 0.022 · sin [8.6038 · t] + 0.03 · cos [7.456687 · t]−
− 0.01449837 · cos [8.030245 · t] + 0.01334 · cos [8.6038 · t]

(3.4)
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(a) membrane width l = 2 m (b) membrane width l = 5 m

Figure 2: Edge control functions in the case of damping vibrations of the membrane:
transition of the system from state (3.1) to state (3.2)

Despite the di�erence of expressions (3.3) and (3.4), in the case of the given
physical and geometric characteristics of the dynamic system, their graphical repre-
sentations match exactly (Fig. 2a). In the case of a wide tape, when l = 5 m, the
boundary control µ(t) for n = 15 has the following form:

µ3 (t) = −0.02999 · sin [0.23675 · t]− 0.035520 · sin [0.46256 · t]−
− 0.234953 · sin [0.69076 · t] + 0.004589 · cos [0.23675 · t]−
− 0.04559 · cos [0.46256 · t] + 0.025341 · cos [0.69076 · t]−
− 3.634929 · sin [2.98315 · t]− 1.711715 · sin [3.21254 · t]−
− 48.79411 · sin [3.44193 · t] + 1.867593 · cos [2.98315 · t] +
+ 1.075299 · cos [3.21254 · t] + 16.53303 · cos [3.44193 · t]

(3.5)

Boundary control problem b)
In the case when the vibrating membrane is transmitted from the initial state

W |t=0 = ϕ(x) = sin(10x) , Ẇ
∣∣∣
t=0

= ψ(x) ≡ 0 (3.6)

to the terminal state

W (x, T0) = ϕ̃(x) = sin(2x) , Ẇ
∣∣∣
t=T0

= ψ̃(x) = 2 cos(2x) (3.7)

for the boundary control µ(t) corresponding to general solution (2.13) when n = 15
we obtain

µ4 (t) = 1.4382355 · sin [0.57654 · t]− 7.03202 · sin [1.14863 · t]−
− 1.68865 · sin [1.72171 · t]− 0.054924 · cos [0.57654 · t]−
− 19.36217 · cos [1.14863 · t]− 0.6583 · cos [1.72171 · t]−
− ...− 0.4129 · sin [7.456687 · t] + 1.3702 · sin [8.030245 · t]−
− 0.3794 · sin [8.6038 · t] + 0.71193 · cos [7.456687 · t]−
− 1.2402 · cos [8.030245 · t] + 0.6841 · cos [8.6038 · t]

(3.8)
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On the other hand, for the boundary control µ(t) corresponding to the general solution
(2.14) when n = 15,we obtain

µ5 (t) = −0.024935 · sin [0.57654 · t] + 0.011172 · sin [1.14863 · t]−
− 0.01416 · sin [1.72171 · t] + 0.01911 · cos [0.57654 · t] +
+ 0.030467 · cos [1.14863 · t]− 0.0299 · cos [1.72171 · t] + ...+

− 0.0266 · sin [7.456687 · t] + 0.034766 · sin [8.030245 · t] +
+ 0.022 · sin [8.6038 · t] + 0.03 · cos [7.456687 · t]−
− 0.01449837 · cos [8.030245 · t] + 0.01334 · cos [8.6038 · t]

(3.9)

Graphical representations of control edge actions µ4(t) and µ5(t) are shown in Figures
3a and 3b, respectively.

Boundary control problem c)
The problem of boundary control of a membrane changes signi�cantly in the case

when the supersonic gas �ow is not taken into consideration. Then, the physical
parameter β = χρ∞MN−1

x = 0. Therefore, the reduced inhomogeneous equation of
forced vibrations (1.6) and the di�erential equation of the fundamental harmonics of
the membrane vibration (2.6) are considerably simpli�ed. As a result, we have forced
vibrations of a stretched membrane with boundary excitation µ̈(t).

Considering that, the dimensionless physical parameter βl in basic calculations is
taken equal to 0.64, then for much smaller values of this parameter, we will have a
weak �ow around the membrane tape.

(a) boundary control µ4(t) in the case of
general solution (2.13)

(b) boundary control µ5(t) in the case of
general solution (2.14)

Figure 3: Boundary controls in the case when the system is transited from state
(3.6) to state (3.7)

In the case, when the vibrating membrane is transmitted from the initial state

W |t=0 = ϕ(x) = sin(10x) , Ẇ
∣∣∣
t=0

= ψ(x) ≡ 0 (3.10)

to the terminal state
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(a) The case of the general solution (2.13)
- boundary control µ∗

1(t) in case of parameter
βl = 0.64,

- boundary control µ∗
2(t) in case of parameter

βl = 0.0001,

(b) The case of the general solution (2.14)
- boundary control µ∗

1(t) in case of parameter
βl = 0.64,

- boundary control µ∗
2(t) in case of parameter

βl = 0.0001,

Figure 4: The functions of edge control of the vibration of the membrane tape in the
case of the system transition from the state (3.10) to the state (3.11)

W (x, T0) = ϕ̃(x) = sin(2x) , Ẇ
∣∣∣
t=T0

= ψ̃(x) = 2 cos(2x) (3.11)

The boundary control µ4(t) for βl = 0.64 and µ5(t) for βl = 0.0001, both corre-
sponding to the general solution (2.13), is shown in the �gure 4a.

The boundary control µ∗
1(t) for βl = 0.64 and µ∗

2(t) for βl = 0.0001, both
corresponding to the general solution (2.14) are shown in the �gure 4b.

Conclusions

In the control problem by edge action of oscillations of the in�nite in one direction
membrane tape in a supersonic gas �ow, both of the de�ection of the membrane tape
and the equivalent e�orts of the edge control action are decomposed into a Fourier
series in terms by eigenforms of the vibration of tape. Mathematically, the problem is
reduced to an in�nite system of the boundary value problems of ordinary di�erential
equations with matching conditions to the initial and �nal states of the tape, relative
to the true harmonics by the oscillations of the eigenforms of the membrane tape and
the corresponding harmonics of the edge action.

The characteristic frequencies both of the true vibration and the control action
in a supersonic �ow have been determined. The edge control action, as well as the
behavior (the law of de�ection change) of the oscillating belt under the given initial
and �nal conditions, are found.
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