АСТРОФИЗИКА

TOM 39

МАЙ, 1996

ВЫПУСК 2

УДК: 520.84

СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ ПАРСАМЯН 21

э.С.ПАРСАМЯН, К.Г.ГАСПАРЯН, Г.Б.ОГАНЯН

Поступкка 15 ноября 1995 Прянята к нечати 5 апреля 1996

Приводится слектральные наблюдения звезды Парсамин 21, которая, как нежавно показаля Штауде и Некся, является фуором. Дан список отождествленных линий поклошения. Результаты сравнивного с госимения слектральными наблюдениями за пермод 1966-1990гг. Показано, что профиць линии Н_а за этот перяод изменияся, причем по наблюдениям 1986г. центр линии поклошения Н_а бых смещен на -140 км/с от 1₀ и доходил до -600 км/с у края линии. Из приведенной кривой блеска следует, что звезда подвержена переменности, доходищей почти до трех звездими величин и явление фуора произошно, вероигнее всего, до 1902 г.

1. Введение. Кометарная туманность Парсамян 21 (Р21, РР88) [1-3], более чем другая, по внешнему виду похожа на протогии кометарных туманностей NGC 2261. Сходство с туманностью Хаббла не ограничивается лишь формой самой туманности; звездообразное ядро, вытянутое с севера на лог также напоминает R Mon.

Спектр звезды Р21 впервые был получен в 1966 г. Дибаем и Есиповым [4]. Согласно их наблюдениям бальмеровская серия водорода, начиная с $H_{\rm p}$, была в поглощении, а линия $H_{\rm q}$, возможно, присутствовала в слабой эмиссии. Спектральный тип звезды был оценен приблизительно как А5еа [4].

Согласно каталогу НВС [5] в спектре звезды Парсамян 21 в 1974 г. наблюдалась линия Н_{_} в поглощении.

Спектральные наблюдения звезды, проведенные Парсамян и Петросян в 1978г. [3], обнаружили абсорбционные линии НІ, NaI, FeI, FeII, TiII, CaII. Главный компонент абсорбционной линии Н_α был смещен на -270 км/с, кроме того, наблюдались эмиссионные линии Н_α и λ 6584 [NII], прослеживающиеся в направлении север - юг от звезды. Такая протиженность эмиссионных линий позволила предположить наличие околозвездной оболочки и зменссии в туманности. Было замечено также, что спектральный тип звезды более поздний, чем А5ес.

Согласно дальнейшим наблюдениям Петросян спектральный тип звезды в 1982 г. был F2-F5V, а основной компонент абсорбционной динии Н₂ в центре линии смещен на -170 км/с [6].

Переменность звезды Парсамян 21, порядка одной звездной величины, была установлена по наблюдениям 1966-1977 гг. Однако наблюдения туманности не обнаружили ожидаемой переменности. Интегральный цвет в 30° от звездообразного ядра *U-B*=0.5, *B-V*=1.37 [2].

Поляриметрические измерения туманности, проведенные Дрепером и др. [7], обнаружили высожий процент поляризации (30–40%), радиальную относительно ядра, характерную для кометарных туманностей NGC 2261, NGC 2245 и др. [8, 9].

Наблюдения окиси углерода Тореллесом и др. [10], Балли и Лада [11] показали, что T_4 (СО)≤0.5К и ΔV =3км/с. Наблюдения Тернера и Терзяна в радиоконтинууме [12] и Уайта и Гии на 6 см [13] не дали положительных результатов.

Инфракрасные наблюдения Коэна [14], относящиеся к туманному пятну у апекса, показали, что распределение энергии у 10 и 18 мкм позволяет отнести ядро к тому же типу, к которому он относит R Моп. Изофоты в ЈНК показывают, что максимум инфракрасного излучения в туманности совпадает с освещающей звездой [15]. Дальнейшие наблюдения звезды и туманности показали, что Парсамян 21 является ярким инфракрасным источником [16].

В 1990 г. Штауде и Некел обнаружили, что Парсамян 21 новый, десятый фуор, спектральный тип которого F51ab [17]. Согласно им, главный компонент линии На смещен в коротковолновую часть спектра, от 0 до -600 км/с. Обнаружены линии $\lambda\lambda$ 6497, 6678, 6707 ÅÅ. Эмиссионные линии На, [OI], [NII], [SII], обнаруженные в направлении С-Ю от звезды, согласно Штауде и Некелю принадлежат биполярному НН выбросу. Теперь, после результатов Штауде и Некеля, стало ясно, что Дибай в Есипов в 1966 г. [4], Парсамян и Петросян в 1978 г. [3] наблюдали эмиссионную линию На, принадлежащую выбросу НН.

В настоящей работе приводятся результаты спектральных наблюдений звезды Парсамян 21, проведенные в 1986 г.

2. Наблюдения. Спектральные наблюдения Парсамян 21 были проведены 15.06.1986 г. на 6-м телескопе САО Академии Наук России с SP-124 планетарным спектрографом в интервале длин волн № 3800-7200 АА с дисперсией 1.8 А/квнал и разрешением ≅ 4Å.

Таблица 1 ОТОЖДЕСТВЛЕНИЕ ЛИНИИ В ПАРСАМЯН 21

λ	Элементы	W ₁ (A)	λ	Элементы	W ₁ (A)
3775	FeI+NII		4812	Crii	15.36
3797	H _{in}		4833	FeII	
3825	Fel	SCHOOL STORY	4861	H, FeI	10.4
3835	H,+MgI	1100012	4891		
3860	FeI+NiI		4924	FeII	
3890	H_+FeI+MgI		4984	FeI	
3900	Fel	7	5018	FeII	
3934	Call (K)	10.3	5081	NiI+ScI+FeII	
3968	Ca(H)+H,	15.9	5168	MgI+FeI+FeII	
3997	Fel		5598	Слі+Ті	
4032	Mnl+Fel		5603	Fel+Cal	1 3 5 16
4046	FeI	1.5	5619	Fel	
4078	Sril	2.4	5652	Fel	
4101	H,	5.6	5688	NaI	
4132	FeI	3 / 11 16	5714	Til	
4152	Fel	- Comment	5749	Nil	
4179	FeI+FeII		5811	Til+FeII	
4184	FeI+TiII+Cr	Contraction -	5893	NaI	4.9
4227	Cal+Fel	40.00	5963	Fel+FeII	
4247	ScII+FeI		5991	FeII	
4279	FeI+TiI	NAME OF THE OWNER, WHEN	6017	MnI+FeI	
4306	G band	7.3	6026	Nil	37 149
4325	ScII+FeI	Struck .	6065	FeI	
4340	H	7.2	6150	Fel+FeII	
4416	FéI+ScII+		6169	Cal	
	+FeII+Till	and the last	6253	Fel	100000
4443	FeI+Till	and the second	6328	Nil	
4467	FeI+Till	TOWN TOWN	6344	FeI	PATOTA
4490	FeI+FeII	State of the last	6359	Fei	
4531	FeI+FeII		6400	FeI	15 3 5
4541	FeII	11 1 1 168	6496	FeI+Bal	1.2
4549	FeII+TiII	and the second	6519	Fel+Mal+SII	Selling.
4593	FeI		6563	H	5.7
4633	Fel	SOMEON CA	6573	Cal+FeI	
4670	FeII+ScII	to part of the	6644	Nil	S VAN
4703	MgI	100	6678	FeI	The state of
4731	FeII	The state of the	6708	Ш	Brita 4.
4742	FeI	33.	6718	Cal	7. 3. 4. 4.
4764	ТШ	Maria Con Service	6844	Fel	

3. Обсуждение. Спектрограммы звезды в коротковолновом и длинноволновом диапазонах воли приведены на рис. 1а и в. В табл. 1 приводятся наблюденные длины воли, отождествления и эквивалентные ширины немногих линий поглощений. Спектральные линии в основном бленды. Главный компонент абсорбционной линии Н_а был смещен от

-140 км/с у пика линии до -600 км/с.

В области Н_а наблюдаются бленды λ 6497 и $\lambda\lambda$ 6678, 6707 Å. Кроме бальмеровских линий особенно интенсивными являются линии Call, Nal, Fel, Feli. Наличие линий $\lambda\lambda$ 4172, 4179, 4415-8 Å, интенсивной полосы G (λ 4302 Å), а также λ 6497 (характерная для сверхгигантов бленда металлических линий, включая Fel, Bal, Cal, Mnl, Col, Til, Till, Nil [18]) подпверждает класс светимости, определенный Штауде и Некслем [17].

Нестационарные процессы, происходящие в фуоре Парсамян 21, можно проследить, в частности, на поведении линии H_{α} . Так, спектральные наблюдения звезлы в течение 1978, 1982, 1986 и 1990 гг. показали, что главный компонент линии H_{α} сместился с -270 км/с в 1978 г. до -120 км/с в 1990 г.

Приведенные данные спектральных наблюдений звезды в течение 1966-90 гг. пожазывают, что за этот интервал времени звезда, возможно, изменила спектральный тип от А5 до F5lab, как это наблюдается у фуоров в ранней стадии после вспышки. Если это так, то можно допустить, что явление фуора имело место несколько раньше 1966 г. К сожвлению, низкая дисперсия спектров Дибая и Есипова [4], полученных с ЭОП, не позволяла с удовлетворительной точностью определить спектральный тип, в частности, отличить тип А от F.

Как было отмечено выше, Дибай не наблюдал линию H_{α} в поглощении. Если $W(H_{\alpha})$ и $W(H_{\beta})$ не изменились значительно с тех пор, тогда из спектра, полученного в 1966 г., можно предположить, что Дибай не был в состоянии заметить H_{α} в своем спектре; линия была слишком слабой для примененной им дисперсии.

Просмотр коллекции фотографических пластинок Гарвардской обсерватории одним из авторов (Э.П.) показал, что в октябре 1902 г. наблюдался звездообразный объект (m_{gg} ≡ 15.0), который по плотности отличался от звезд. Если считать, что свечение туманности, в которую погружена звезда, является результатом явления фуора, то вспышка произошла, по меньшей мере, раньше 1902 г. Визуальная оценка блеска Парсамян 21 по немногим гарвардским пластинкам в фотографических лучах, точность которых ±0.2-0.3 звездной величины, показала, что в 1926-29 гг. произошло уменьшение блеска звезды по сравнению с 1902г. на ≅0.8-0.9 звездной величины, что могло быть результатом активности околозвездной оболочки или диска, подобно тому, как предложено в

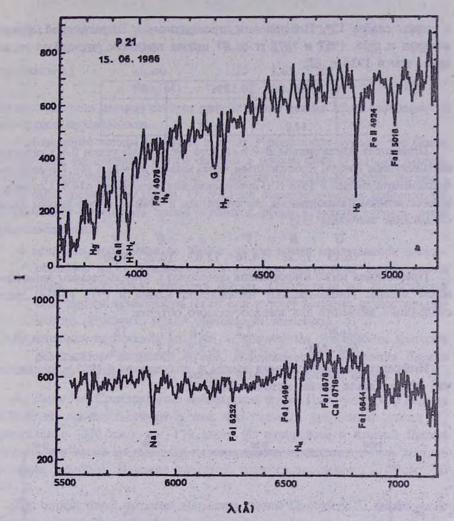


Рис. 1. Спектр звезды Парсамин 21: a) в диапазоне $\lambda\lambda$ 3800-5200 A; b) в днапазоне $\lambda\lambda$ 5500-7000 A

случае V1515 Суд [19, 20]. Установить точно, когда это произошло, по имеющимся данным невозможно, но уже в 1934 г. звезда была почти прежней яркости ≅15•.0 в фотографических лучах, что означает, что околозвездная среда снова стала прозрачной для видимого излучения звезды.

Следующая информация относительно звезды и туманности - это Паломарский атлас (1952 г.), на котором видна кометарная туманность

в звезда слабее 15⁻. Наблюдения, проведенные в Бюраканской обсерватории в 1966, 1967 и 1977 гг. в *BV* цветах показали, что звезда стала ярче, чем в 1934 г. [2]:

	1966 r.	1967 г.	1977 r.
B	14.8	14.1	13.6
V	14.0	13.7	

Показатель цвета звезлы *B-V* в августе 1967 г. был равен 0.4. Согласно наблюдениям Дибая, проведенным через месяц, $m_{pe} = 13.5$ [4]. По данным наблюдений звезды в 1978 г. (Гарвардская коллекция) $m_{pe} \cong 14.9$. Согласно многоцветным наблюдениям, проведенным в 1980 г., блеск звезды имел следующие значения [21]:

Приводимая ниже информация относится к инфракрасным наблюдениям звезды. Инфракрасные наблюдения Коэна в 1973 г. [14] дают следующие значения для звездообразного объекта:

$$\lambda(\mu m)$$
 2.2 3.6 10 18
Flux(M) > 8.7 > 7.8 3.7 1.4

Инфракрасные наблюдения звезды и туманности в 1983 г. пожазали, что P21 является ярким источником [16]:

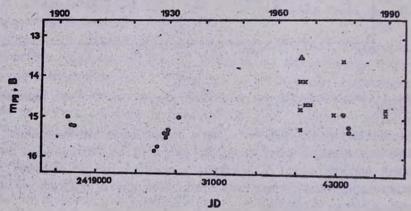


Рис. 2. Крими блески звезды Парсамин 21. Точки - оценки по гарвардским пластинкам, крестики - наблюдения в Бюраканской обсерватории, треугольник - наблюдение Дибая, кружочки - наблюдения Неколя и Штауде [21].

(звезда) λ(μm)		2.2 2.3	3.5	3.6	10	18
Flux(M)		8.7 9.89	8.51	7.8	3.7	1.4
(туманность)	λ(μπ) Flux(M)		1.65 10.26			

Из приведенных данных следует, что на длине волны 2.2µm наблюдается небольшая переменность.

Наблюдения звезды в 1994 г. в лучах V позволяют думать, что блеск звезды того же порядка, каким он был в начале века (V ≡ 14.2). Кривая блеска звезды приведена на рис. 2. Амплитуда переменности звезды - более двух звездных в тичин. Отсутствие систематических наблюдений не позволяет определить время вспышки фуора, - можно сделать лишь предположения:

- а) вспышка произошла до 1902 г., в это время наблюдалось звездообразное ядро. Туманность, в которую погружена звезда, могла быть результатом явления фуора. Отсутствие на фотографии кометарной туманности (если она к тому времени существовала) можно объяснить малой светосилой телескопа.
- б) вспышка произошла до 1966 г., кометарная туманность является результатом вспышки фуора. Наблюдаемое повышение блеска звезды в 1966-1977 гг. связано с переменностью фуора.
- 4. Выводы. Спектральные наблюдения фуора Парсамян 21 за период 1978-90 гг. свидетельствуют о том, что главный компонент линии На сместился с -270 км/с до -120 км/с. Из приведенной кривой блеска следует, что звезда подвержена переменности, доходящей почти до трек звездных величин. Явление вспышки произошло, вероятнее всего, до 1902 г.

Для определения времени вспышки звезды Парсамян 21 необходимо больше архивной информации, что в свою очередь поможет понять механизм происхождения кометарной туманности.

Авторы считают своим приятным долгом поблагодарить сотрудников САО АН России за помощь при наблюдениях со сканнером, И.Шапиро за предоставленную возможность работы с Гарвардской коллекцией пластинок, В.Ф.Есипова за информацию о спектральных наблюдениях в 1966г., П.Филлипса за интерес к работе.

Бюраканская астрофизическая обсерватория, Армения

SPECTRAL OBSERVATIONS OF PARSAMIAN 21

E.S.PARSAMIAN, L.G.GASPARIAN, G.B.OHANIAN

We present spectral observations of the star Parsamian 21, a sources which has recently been shown by Stande and Neckel to be a fuor type star. The list of identified absorption lines is given. The results are compared with previous spectral observations during the period 1966-90. It is shown that there were variations in the H_a profile during that period, in which the main component was strongly blueshifted, so the observations during 1986 show that the center of the absorption lay some -140 km/s from λ_0 , and extended over -600 km/s. From the light curve of the star followed that the variation of the brightness reached three magnitudes and the star probably become a fuor before 1902.

ЛИТЕРАТУРА

- 1. Э.С. Парсамян, Изв. АН Арм. ССР, 18, N2, 146, 1965.
- Э.С.Парсамян, В.М.Петросян, Астрофизика, 14, 521, 1978.
- 3. Э.С. Парсамян, В.М. Петросян, Flare Stars, Fuors and HH Objects, Byurakan, Symposium, Ed. L.V. Mirzoyan, Yerevan, 1980, p. 281.
- Э.А.Дибай, Астрофизика, 5, 249, 1969.
- 5. G.H. Herbig, K. Bell, Lick Observ. Bull., N1111, 1988.
- В.М.Петросян, Астрофизика, 20, 523, 1984.
- 7. P.W.Draper, R.F. Warren-Smith, S.M. Scarrot, Mon. Notic. Roy. Astron. Soc., 212, 1P, 1985.
- 8. Э.Е.Хачасян, Сообщ. Бюракан. обсерв., 25, 67, 1958.
- 9. 9. С.Парсамян, Сообщ. Бюракан. обсерв., 32, 3, 1963.
 10. J.M.Torrelles, L.F.Rodriguez, J.Canto, J.Marcialde, A.L.Gyulbudagian, Mex.Astron.Astrofiz., 8, 147, 1983.
- 11. J.Bally, C.J.Lada, Astrophys.J., 265, 824, 1983.
- 12. K.C.Turner, Y.Terzian, Astron.J., 87, 881, 1982.
- 13. G.J. White, G. Gee, Astron. Astrophys., 156, 301, 1986.
- 14. M.Cohen, Publ.Astron.Soc.Pacif., 86, 813, 1974.
- 15. C.Eiroa, K.-W.Hodapp, Astron. Astrophys., 236, 217, 1990.
- 16. W.B. Weaver, G.Jones, Astrophys.J.Suppl.Scr., 78, 239, 1992.
- 17. H.J. Staude, Th. Neckel, Astrophys. J., 400, 556, 1992.
- 18. D.E. Turnshek, D.A. Turnshek, E.R. Craine, C.Boeshaar, Astron Astrophys. Ser., v. I, 1, 1986.
- 19. L. Hartmann, S. Kenyon, P. Hartigan, Protostars and Planets III, eds. E.H.Levy, J.L. Lunine, Univ. Arizona Press, Tucscon, 1993, p. 497.
- 20. Е.А.Колотилов, П.П.Петров, Письма в Астрон. ж., 11, 846, 1985.
- 21. Th. Neckel, H.J. Staude, Astron. Astrophys., 131, 200, 1984.