АСТРОФИЗИКА

70M 19

ФЕВРАЛЬ, 1996

ВЫПУСК 1

Y/1K: 524.31.082

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ: МОДЕЛИ ЗОНАЛЬНОЙ ПЯТНИСТОСТИ 13 ЗВЕЗД ТИПА ВУ DRA

И.Ю.АЛЕКСЕЕВ, Р.Е.ГЕРШБЕРГ Поступила 10 декабря 1995 Принията к печати 25 февраля 1996

Модель зональной запятненности звезд, предложенная и развитая нами для представления периодических колебаний блеска карликов типа ВУ Dra, применяется к выборке звезд с длительными рядами *BVRI* наблюдений.

1. Веедение. Как известно, традиционный алгоритм оценки по фотометрии звезды параметров звездных пятен дает иерархическую модель запятненности: сперва определяются параметры "главного" пятна, затем параметры еще одного-двух-трех менее существенных пятен - см. [1]. В работах [2-4] мы отметили принципиальные недостатки этой иерархической модели, се противоречия с наблюдениями красных карликовых звезд и предложили альтернативную модель зональной запятненности. В такой модели рассматриваются не отдельные звездные пятна, а общие характеристики запятненной области в целом: совокупность звездных пятен аппроксимируется двумя симметричными относительно экватора полосами с переменной скважностью темных областей внутри этих полос.

В простейшем случае такая модель может быть описана 4 незанисимыми параметрами: расстоянием полос от экватора $(\pm\phi_0)$, шириной этих полос ($\Delta\phi$), величиной минимальной скважности (f_{min}) и отношенисм яркости пятна к яркости невозмущенной фотосферы (β_{ν}). Используя развитый Дорреном [5] формализм, дающий общий подход к построению кривых блеска запятненных звезд, и предполагая, что скважность полос между двумя экстремальными значениями 1 и f_{min} меняется линейно с долготой звезды, мы предложили алгоритм определения перечисленных параметров модели зональной запятненности звезды по *BVRI* наблюдениям. Этот алгоритм был применен нами к анализу фотомстрии в течение 19 лет хорошо изученной запятненной красной карликовой звезды EV Lac и позволил заключить, что рассматриваемая модель зональной запятненности, действительно, может представить этот длительный ряд наблюдений. При этом представлении параметр $\Delta \phi$ варьируется от нескольких градусов до нескольких десятков градусов, f_{min} от 0.0 до 0.9, а температура пятен оказывается практически посточнной; параметр ϕ_0 во всех случаях оказался не отличим от нуля.

Полученный результат позволяет нам обратиться ко всей совокупности ипятненных красных карликовых звезд, для которых к настоящему времени уже собраны необходимые наблюдательные данные.

2. Выборка звезд для моделирования зональной запятненности. В стать: [2] мы привели список звезд с фотометрическими свидетельствами запятненности. Этот список основан на Базе данных по активности вспыхивающих звезд типа UV Кита и родственных объектов [6] и содержит 70 звезд; кроме EV Lac, 12 из них наблюдались в полосах BVRI и для них существуют достаточно продолжительные ряды наблюдений. позволяющие оценить абсолютный максимум их блеска. Табл. 1 содержит эти объекты и изученную уже нами EV Lac.

В первых трех столбцах табл. 1 приведены порядковые номера объектов, их названия и спектральные классы. В четвертом столбце даны звездные величины наибольшего блеска каждой звезды за время ее фотоэлектрических наблюдений. Как правило, эти оценки были получены после сведения всех имеющихся наблюдений в одну систему. Мы принимаем полученные таким образом величины за абсолютные максимумы блеска звезд, хотя у нас нет доказательств того, что в соответствукищую эпоху яркие полусферы звезд, действительно, были полностью свободны от пятен. Это обстоятельство означает, что получаемые оценки запятненности являются, строго говоря, нижними границами этих величин.

В пятом столбце табл. 1 приведены величины наибольших амплитуд периодических колебаний блеска за счет его вращательной модуляции, зарстистрированных за все время наблюдений каждого объекта. В шестом столбце - максимальные амплитуды колебаний среднего блеска от сезона к сезону, обусловленные медленными изменениями общей картины запятненности. В седьмом - эпохи наблюдений. В восьмом - периоды осевого вращения. В девятом

Таблица 1

ОСНОВНЫЕ ПАРАМЕТРЫ ПРОГРАММНЫХ ЗВЕЗД

N п/п	Название звезды	Sp	V _{aba} mag	∆ <i>V</i> mag	∆ <v> mag</v>	Эпохи наблюдений	Пер.оссы врат (суткн)	Двойст- еснность	і (гра- лусы)	T _{phot} (A)	AB/AV	∆ R /∆V	ΔΙ/ΔΨ
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(5)	(9)	(10)	(11)	(12)	(13)	(14)
1	VY Ari	dG9e	6.68	0.28	0.24	1974-1994	17.4	SB1	60	4860	1.12±0.01	0.80±0.03	10 69±0.01
2	V 775 Her	dK0e	7.79	0.15	0.38	1980-1994	2.90	SB1	80	4950	1.14±0.01	0.68+0.11	0.56±0.01
3	LQ Hya	dK0-2e	7.77	0.19	0.09	1983-1994	1.60	линоч.	70	4800	1.27±0.12	0.77±0.12	0.55±0.12
4	V 838 Cen	dK0-1p	8.82	0.10	0.11	1984-1990	1.84	SB2	75	4700	1.11±0.09	0.75+0.06	0.60±0.08
5	MS Ser	dK2e	8.11	0.18	0.08	1980-1995	9.60	SB2	C C	4800	1.08±0.01	0.75±0.06	0.70±0.02
6	OU Gem	dK3e	6.75	0.09	0.09	1980-1993	7.36	SB2	60	4700	1.05±0.03	0.78±0.18	0.75±0.03
7	EQ Vir	dK5(7)e	9.25	0.15	0.09	1971-1995	3.96	одиноч.	90	4250	1.16±0.04	0.82±0.05	0.63±0.03
8	BY Dra	dK6c(M0c)	8.01	0.20	0.38	1965-1989	3.83	SB2	70	4000	1.17±0.03	0.80±0.02	0.57±0.02
9	V1005 Ori	dM0.5e	9.93	0.16	0.09	1974-1994	4.40	одиноч.	90	3580	1.02±0.04	0.81±0.04	0.62±0.02
10	BF CVn	dM1.5e	10.46	0.07	0.16	1976-1994	3.17	VB	65	3500	0.99±0.05	0.92±0.15	0.69±0.03
11	DT Vir	dM1.5e	9.65	0.05	0.08	1971-1995	1.53	диноч.	35	3550	0.98±0.06	0.84±0.08	0.70±0.01
12	AU Mic	dM2e	8.60	0.32	0.25	1971-1987	4.86	диноч.	90	3730	1.14±0.09	0.86±0.06	0.66±0.07
13	EV Lac	dM4.5e	10.12	0.14	0.25	1971-1995	4.38	одиноч.	90	3300	1.06±0.05	0.60±0.13	0.42±0.01

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ

69

столбце указано, является ли звезда одиночной или компонентом двойной системы. В десятом столбце табл. 1 приведены оценки угла і между лучом зрения и осью вращения звезды; они получены из сопоставления спектроскопически определяемой величины vsini с периодом осевого вращения и радиусом, определяемым по фотометрическим наблюдениям. В двенадцатом столбие приведены температуры, найденные по распределению энергии в спектре звезд [7] или по температурной калибровке показателей цвета V-R и V-I [8,9]; если во время измерений этих показателей запятненность звезды была не слишком велика, то найденная температура соответствует невозмущенной фотосфере. В трех последних столбцах табл. 1 приведены наблюдаемые отношения амплитуд изменения блеска в полосах *BVRI* при его вращательной модуляции.

10 из перечисленных программных звезд наблюдались в Крыму, и ранее не публиковавшиеся результаты этих наблюдений приведены в табл. 2. Эти данные были учтены при составлении табл. 1.

Таблица 2

Звезда	Эпоха	<1>>	۵V	U-B	B-V	V-R	V-I
VY Ari	1994.8	6.927	0.207	0.64	0.94	0.77	1.43
V 775 Her	1994.7	8.29	0.09	0.64	0.91	0.80	1.34
MS Ser	1994.5	8.25	0.18	0.67	1.04	0.74	1.44
State of	1995.5	8.25	0.15	0.66	1.03	0.72	1.41
LQ Hya	1994.3	7.844	0.056	0.59	0.88	0.78	1.33
EQ Vir	1993.3	9.38	0.09	1.05	1.19	1.04	1.89
	1994.3	9.39	0.04	1.06	1.19	1.05	1.90
	1995.3	9.37	0.01	1.04	1.17	1.04	1.88
V 1005 Ori	1994.8	9.93	0.00	1.16	1.39	1.30	2.38
BF CVn	1993.3	10.59	0.01	1.00	1.47	1.37	
	1994.3	10.58	0.02	0.98	1.47	1.38	
DT Vir	1993.3	9.70	0.07		1.42		
	1994.3	9.68	0.07		1.43		
	1995.3	9.68	0.06		1.43		
EV Lac	1995.7	10.26	0.04	0.98	1.55	1.67	

НАБЛЮДЕНИЯ ПРОГРАММНЫХ ЗВЕЗД НА АЗТ-11 В КрАО

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ

3. Расчет моделей зональной запятненности звезды состоит в простейшей модели зональной запятненности звезды состоит в определении таких значений 4 указанных выше параметров, при которых наилучшим образом представляются 5 получаемых из наблюдений в рассматриваемую эпоху величин: разность абсолютного максимихма блеска звезды и ес максимального блеска в данную эпоху $V_{\rm abs}^{\rm max} - I_{\rm season}^{\rm max}$ амплитуду периодических колебаний блеска ΔV , обусловления вращательной модуляцией блеска запятненной звезды, и отношения амплитуд периодических колебаний блеска $\Delta B/\Delta V$, $\Delta R/\Delta V$ и $\Delta I/\Delta V$.

Согласно [³], для проведения таких расчетов необходимо располагать коэффициентами потемнения к краю диска звезды и отношениями яркости пятен и невозмущенной фотосферы во всех рассматриваемых фотометрических полосах. Как и в [3], мы воспользовались коэффициентами линейного потемнения к краю звезды, рассчитанными для *BVRI* полос ван Хамме по моделям Куруча для температур от 3500 до 6000 К и lgg=5 и любезно присланных нам. Далее, как было показано в [3], если считать, что распределение энергии в спектре пятна подобно распределению энергии в фотосфере более холодной звезды, то для карликовых звезд в диапазоне спектральных классов от G8 до M6 имеют место соотношения

$$\beta_{R} = \beta_{V}^{1.17}, \quad \beta_{R} = \beta_{V}^{0.70}, \quad \beta_{I} = \beta_{V}^{0.40}, \quad (1)$$

которые оставляют в задаче один свободный параметр β_ν. Наконец, определение параметров модели зональной запятненности - это решение обратной задачи, которому должен предшествовать расчет большого числа вариантов прямой задачи, то есть, вычисление ожидаемых значений 5 определяемых из наблюдений величин при различных значениях 4 параметров молели. В расчет прямой задачи через температурную зависимость коэффициента потемнения к краю диска звезды входит температура фотосферы. Поскольку в табл. 1 входят объекты с различными температурами, то прямая задача решалась для каждой из них независимо.

Перейдем к рассмотрению результатов расчетов моделей для каждой из программных звсзд.

<u>VY An</u> - спектрально-двойная система с наблюдаемыми спектральными линиями только одного компонента. Это обстоятельство позволяет предполагать слабый блеск вторичного компонента и отнести наблюдаемые

периодические колебания блеска только за счет запятненности яркого компонента. Температура звезлы оценена по температурной калибровке [9] показателей цвета V-R и V-I, определенных в [10], период осевого вращения и оценка і взяты из [11]. В табл. З представлены результаты расчетов параметров моделей зональной запятненности звезды по данным разных авторов и нашим наблюдениям. В первых четырех столбцах представлены эпохи наблюдений, разности абсолютного максимума блеска Vats - Vata , обозназвезлы и се максимального блеска в эти эпохи ченные как АУ амплитулы периодических колебаний блеска АУ и сылки на источники этих данных. Столбцы 5 - 10 содержат рассчитанные нами параметры моделей ϕ . $\Delta \phi$, f_{min} и β_{ν} и максимальные и минимальные площади запятненных областей S_ и S_, соответствующие минимальному и максимальному блеску звезды и выраженные в процентах полной повсрхности звезды. Как следует из табл. 3, в рассчитанных моделях запятненности VY Ап параметр ф, заключен в пределах от 8 до 20°, ширина поясов запятненности - от 11 до 24°, параметр f меняется в широких пределах от 0.0 до 0.9, и все это обеспечивает сезонные

Таблица З

Эпоха	ΔV _{cmax}	Δ٧	Источник	\$ 0	∆ф	ſ _{min}	β,	Smax	Smin
1974.1	0.230	0.072	[12]	11	17	0.69	0.13	12.8	10.7
1974.7	0.225	0.017	[12]	15	14	0.91	0.14	11.0	10.5
1984.8	0.070	0.100	[10]	20	12	0.24	0.15	7.6	4.0
1986.8	0.000	0.137	[13]	21	11	0.00	0.14	6.4	2.1
1987.9	0.191	0.024	[11]	16	13	0.85	0.14	10.1	9.3
1988.1	0.110	0.281	[11]	11	24	0.11	0.11	14.9	6.4
1989.0	0.093	0.276	[11]	11	23	0.08	0.11	14.2	5.7
1990.0	0.186	0.106	[11]	13	17	0.53	0.13	12.1	8.9
1991.0	0.248	0.134	[11]	8	21	0.56	0.12	15.4	11.6
1992.7	0.211	0.138	[14]	11	20	0.50	0.13	14.2	10.1
1993.7	0.241	0.136	[14]	8	21	0.55	0.12	15.3	11.4
1994.8	0.144	0.207	наст.	11	21	0.27	0.12	13.9	7.7
			иссл.						

МОДЕЛИ ЗАПЯТНЕННОСТИ VY ARI

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ

вариации блеска звезды до 0^m.25 и изменения амплитуды вращательной модуляции от 0^m.02 до 0^m.28. Как и в [3], рассчитанные модели воспроизводят ΔV и ΔV с точностью до 0^m.01 и отношения амплитуд ΔB , ΔV , ΔR и ΔI - с точностью до 0.04. Если распределения энергии в спектрах спокойной фотосферы и пятна аппроксимировать функцией Планка, то, согласно [3], температура пятна определяется соотношением

$$T_{\rm mod} = (1.4388 / \lambda) / \ln\{1 + [\exp(1.4388 / \lambda T_{\rm phot}) - 1] / \beta_{\lambda}\}.$$
 (2)

Для T_{инос}=4860К и β_г в интервале от 0.11 до 0.15 получаем, что пятна VY Агі холоднее се фотосферы, соответственно, на 1410К и 1260К. Максимальная степень запятненности звезды достигает 27%.

Уместно сопоставить наши результаты с предыдущими исследованиями VY An.

Итон и По [10], используя развитый ими ранее формализм [15], представили полученные кривые блеска в *BVRI* полосах с помощью полярного пятна и двух пятен, расположенных на широте 40°. По их оценке, температура пятен на 800К ниже температуры фотосферы и общая площаль пятен близка к 6% полной поверхности звезды, что вдвое меньше нашей оценки. Заметим, что Итон и По и позднее Бопп и др. [13] рассматривали VY Ал как переменную типа RS CVn.

Штрассмайср и Бопп [11] дстально проанализировали свои наблюдения VY Ап во время двух сезонов и получили схемы запятненности в каждом из 22 охначенном наблюдениями периодов обращения звезды вокруг оси. Оценив по вариациям показателей цветов $\Delta(V-R)$ и $\Delta(V-I)$ температуру пятен на 1200К ниже температуры фотосферы, они представили кривые блеска звезды с помощью полярного пятна и 2-4 пятен на средних широтах. Общая площадь этих пятен составляет от 10% до 15% полчой поверхности звезды. Как показывает табл. 3, наши оценки и в эти ссзоны дают в полтора-два раза большую площадь запятненной поверхности звезды. (По-видимому, это расхождение обусловлено арифметической ошибкой, вкравшейся в [11]: Штрассмайер и Бопп пишут, что квадратное пятно со стороной в 60° покрывает около 4% поверхности звезды, тогда как в действительности оно превышает 8%; если учесть это обстоятельство, то суммарные площади пятен в наших моделях и в моделях [11] оказываются довольно близки).

Наконец, в эпоху 1986.8 Бопп и др. [13] проводили измерение магнитного поля VY Агі и нашли, что замагниченная область занимает 66%

73

поверхности при напряженности поля 2 кГс. По нашим расчетам, площадь запятненных областей в эту эпоху достигала 9%.

<u>V 775 Нег</u>также является звездой SB1, у которой можно пренебречь блеском вторичного компонента. Комбинируя значения периода 2⁴.9 [16], радиуса 0.85 R₀ [17] и vsin = 15км/с [18], оцениваем угол = 80°. Температура фотосферы оценена по калибровкс [9] показателей цвета, определенных в [18].

Вычисленные параметры моделей зональной запятненности звезды представлены в табл. 4.

Из табл. 4 следует, что наблюдаємые сезонные вариации блеска V 775 Нег, которые достигают почти 0^m.5, и его вращательная модуляция от 0^m.06 до 0^m.15 могут быть представлены в рамках зональной модели запятненности при значениях параметра ϕ_0 от 0 до 16°, величинах $\Delta\phi$ от 12 до 29° и значениях f_{min} от 0.0 до 0.8. Для T_{phot} =4950K величины β_{μ} от 0.27 до 0.33 соответствуют температуре пятен ниже температуры фотосферы на 980 и 860K. Максимальная запятненность звезды достигает 42%.

<u>LO Нуа</u> является одиночной звездой. Для оценки угла *і* мы воспользовались параметрами, приведенными в [24]: vsin=25±2 км/с,

Таблица 4

Эпоха	AV	۵V	Источник	φ ₀	∆ ¢	f _{min}	β,	Scalar	S _{min}
1980.4	0.24	0.12	[16]	5	20	0.59	0.32	15.0	11.6
1980.8	0.27	0.06	[16]	7	19	0.77	0.33	14.9	13.1
1980.9	0.26	0.09	[19]	6	20	0.67	0.32	15.3	12.6
1981.4	0.25	0.13	[20]	2	20	0.58	0.31	15.2	11.6
1984.7	0.00	0.14	[21]	16	12	0.00	0.39	7.3	2.4
1988.3	0.30	0.14	[20]	8	25	0.62	0.31	18.3	14.5
1988.4	0.27	0.14	[20]	0	21	0.58	0.30	16.0	12.3
1988.7	0.31	0.09	[20,22]	9	23	0.72	0.32	17.4	14.8
1989.4	0.31	0.15	[20]	8	26	0.60	0.31	18.9	14.7
1991.7	0.40	0.11	[14,23]	1	29	0.75	0.27	22.6	19.6
1994.7	0.46	0.09	наст.иссл.	8	29	0.8	0.28	22.0	19.8

МОДЕЛИ ЗАПЯТНЕННОСТИ V 775 Her

R=0.79*R*₀, *P*= 1⁴.601136. Для оценки температуры звезды использованы показатели цвета, измеренные нами и взятые из [25, 26], и их температурная калибровка [9]. Вычисленные параметры моделей запятненности LQ Нуа представлсна в табл. 5.

Табл. 5 показывает, что в рамках рассматриваемой модели сезонные изменения блеска до 0^m.1 и его вращательная модуляция с амплитудами от 0^m.05 до 0^m.19 могут быть представлены при $\phi_0=0$, значениях $\Delta\phi$ от 9 до 20° и f_{min} от 0.0 до 0.5. Иными словами, вращательная модуляция блеска этой звезды может быть обусловлена единой экваториальной полосой шириной в 2 $\Delta\phi$. Для T_{phot} =4800К величины β_{p} от 0.42 до 0.50 соответствуют пятнам на 660-540К холоднее фотосферы. Максимальная запятненность фотосферы звезды достигает 20%.

Таблица 5

Эпоха	∆V _{mmx}	۵V	Источник	\$ 0	Δ φ	f _{min}	βŗ	Smax	S _{min}
1983.00	0.014	0.075	[27]	0	9	0.00	0.49	5.9	2.0
1984.05	0.020	0.076	[28]	0	9	0.03	0.49	5.9	2.1
1984.07	0.000	0.119	[27]	0	11	0.00	0.46	7.2	2.4
1984.95	0.020	0.088	[29]	0	10	0.01	0.48	6.5	2.2
1985.10	0.034	0.055	[29]	0	9	0.22	0.50	6.3	3.2
1985.23	0.022	0.072	[29]	0	9	0.06	0.49	6.0	2.3
1987.12	0.078	0.120	[24]	0	17	0.25	0.45	11.9	6.4
1987.27	0.053	0.189	[24]	0	20	0.05	0.42	13.0	4.9
1987.95	0.083	0.066	[25]	0	13	0.43	0.48	9.6	6.4
1989.20	0.110	0.080	[26]	0	16	0.46	0.46	11.9	8.2
1990.03	0.065	0.075	[24]	0	13	0.32	0.48	9.3	5.5
1990.16	0.056	0.047	[24]	0	10	0.41	0.50	7.4	4.8
1990.29	0.042	0.063	[24]	0	10	0.24	0.50	7.0	3.7
1990.96	0.012	0.114	[24]	0	12	0.00	0.46	7.8	2.6
1991.36	0.014	0.154	[24]	0	15	0.00	0.44	9.7	3.2
1991.83	0.056	0.085	[24]	0	13	0.24	0.48	9.1	4.8
1992.30	0.027	0.113	[24]	0	13	0.01	0.46	8.5	2.9
1994.30	0.043	0.056	наст.иссл.	0	9	0.28	0.50	6.4	3.6

МОДЕЛИ ЗАПЯТНЕННОСТИ LQ Нуа

<u>V 838 Ссп</u> является спектрально - двойной системой, состоящей из компонентов одинаковой светимости: dK1e + dK1e [26]. В этом случае в исходное соотношение Доррсна [5]

$$\Delta m_{\lambda} = -2.5 \log[1 - (A_{\lambda} I + B_{\lambda} J) / \pi (1 - \kappa_{\lambda}^{\text{ph}} / 3)], \qquad (3)$$

(где $A_{\lambda} = 1 - \kappa_{\lambda}^{\text{ph}} - \beta_{\lambda} (1 - \kappa_{\lambda}^{\text{sp}}), \quad B_{\lambda} = \kappa_{\lambda}^{\text{ph}} - \beta_{\lambda} \kappa_{\lambda}^{\text{sp}},$ $I = \int f(\psi) (\cos i \sin \phi + \sin i \cos \phi \cos \psi) \cos \phi \, d\phi \, d\psi,$

 $J = \int f(\psi) (\cos i \sin \phi + \sin i \cos \phi \cos \psi)^2 \cos \phi \, d\phi \, d\psi,$

 $\kappa_{\lambda}^{\rm ph}$ и $\kappa_{\lambda}^{\rm sp}$ - коэффициенты потемнения к краю диска невозмущенной фотосферы и пятна соответственно, β_{λ} - отношение поверхностных яркостей пятна и невозмущенной фотосферы, ι - утол наклон оси вращения звелы к лучу зрения), которое используется для расчета прямой задачи, во второе слагаемое под знаком логарифма необходимо ввести поправочный множитель $[1 + L_2(\lambda) / L_1(\lambda)]^{-1}$, учитывающий замывание вторичным компонентом вращательной модуляции блеска первичного запятненного компонента; L_i - светимости компонентов системы в соответствующих фотометрических полосах, и для одинаковых компонентов $L_2/L_1 = 1$ В работе [30] было найдено значение vsint=23км/с, исходя из которого мы оцениваем t=75°. Используемые для определения температуры показатели цвета были определены в [26,31,32,34]. Результаты расчетов парамстров зональных моделей приведены в табл. 6.

Для описания переменности V 838 Сеп достаточна модель зональной запятненности, в которой параметр ф. изменяется от 2 до 12°. Ширина

Таблица б

	Эпоха	ΔV _{max}	۵V	Источник	φ ₀	∆ ∳	f _{min}	β,	S _{rmar}	Smin
	1984.4	0.11	0.08	[31,32]	3	21	0.46	0.23	15.3	10.5
Ì	1985.5	0.13	0.05	[33]	2	19	0.64	0.23	14.7	11.8
I	1987.2	0.08	0.08	[34]	6	19	0.37	0.24	13.4	8.3
	1989.1	0.13	0.04	[26]	4	18	0.69	0.23	14.1	11.7
l	1990	0.00	0.10	[30]	12	14	0.00	0.23	8.6	2.9

МОДЕЛИ ЗАПЯТНЕННОСТИ У 838 Cen

запятненных областей составляет 14 - 21°, параметр *Г*_{тив} изменяется от 0.0 до 0.7, и это паст площадь запятненных областей, доходящую до 27%. Запятненные области холоднее спокойной фотосферы на 1000К.

MS Ser - также спектрально-льойная звезда, состоящая из компонентов классов К2 и К6 [35]. Отношения их светимостей мы определили из характерных значений М., и показателей прета, приведенных в [9]. Измерения vsin для данной звезды нам не известны, и мы будем предполагать, что 1=90°. Лля оценки ожидаемого влияния на полученные результаты этого довольно произвольного допушения, мы провели аналогичные расчеты для 1 =70°. 50° и 30° и не рассматривали меньшие углы, поскольку при 1=0° вращательная модуляция блеска запятненной звезлы полностью исчезает, и сам факт наблюдения эффекта пятен означает, что угол и не слишком мал. Вычисления показали, что с уменьшением 1 до 30° оценки Δф систематически возрастают в несколько раз; оценки f. проходят через небольшой максимум около 1=70° и затем несколько уменьшаются: оценки В. возрастают на величины, соотдетствующие возрастанию чернотельных температур примерно на 100 К. Таким образом, предположение 1=90° дает оценку наименьшего значения Дф. которое может заметно отличаться от соответствующего реальной величина врассматринаемой звезды, несколько заниженное значение в. и практически не влияет на величину параметра скважности. Температура MS Ser была оценена по определенным нами показателям цвета с помощью калибровки [9]. Вычисленные параметры моделей зональной запятненности MS Ser приведсна в табл. 7.

Как следует из табл. 7, для описания переменности MS Ser достаточна модель, в которой ф =0. При этом полная ширина экваториальной полосы

Таблица 7

Эпоха		۵V	Источник	\$o	∆ ∳	f _{min}	β _r	S	S _{min}	
1980.5	0.00	0.13	[16]	0	6.0	0.00	0.08	4.6	1.5	
1991.5	0.01	0.15	[23]	0	7.2	0.00	0.08	5.5	1.8	
1994.5	0.06	0.18	наст. ис-	0	10.0	0.08	0.07	8.0	3.2	
1995.5	0.08	0.15	следование	0	9.5	0.19	0.08	7.8	3.8	

МОДЕЛИ ЗАПЯТНЕННОСТИ MS Ser

запятненности 2 $\Delta\phi$ у MS Ser изменяется от 12 до 20°, параметр f_{min} от 0.0 до 0.2, и это дает площадь запятненных областей не больше 12%. Запятненные области довольно холодные - их контраст составляет 0.08, что соответствует разности температур фотосферы и пятен 1500К.

<u>OU Gem</u> - двойная система, состоящая из звезд КЗ и К5 [36]. Отношения светимостей компонент определялись аналогично MS Ser, для определения температуры использовались показатели цвета, определенные в [25]. Параметр vsint = 5.6 км/с, необходимый для оценки угла наклона оси вращения, был определен в [37].

У ОU Gem обычно наблюдалась вращательная модуляция малой амплитуды: 0^m.02-0^m.05. В данном случае полная ширина запятненной области 2Δф небольшая - от 4 до 14^e. Отмеченная Родоно и Кутиспото [20] быстрая переменность формы кривой блеска выражается в нашей модели прежде всего в переменности параметра f_{\min} в пределах от 0.0 до 0.7. Контрастность пятен у OU Gem составляет $\beta_{\mu}=0.07$, что соответствует разности температур фотосферы и пятен 1500К. Площадь запятненных областей сравнительно невелика и достигает 12% площади поверхности. В сезон 1982-83 года Саар и Линский [37] измерили магнитное поле OU Gem. Согласно их наблюдениям, замагниченная область занимает 50% поверхности звезды при напряженности поля 2.4 кГс.

<u>EQ Vir</u> - одиночная звезда. Ес температура была определена Петтерсеном [7]. Для оценки угла і мы воспользовались vsini=10.8 км/с из [37]

Таблица 8

Эпоха		۵V	Источник	• 0	∆ ¢	f _{reen}	βŗ	Smax	S _{min}
1980.4	0.013	0.016	[38]	0	1.6	0.28	0.07	1.6	0.9
1980.7	0.000	0.046	[38]	0	2.7	0.00	0.06	2.6	0.9
1987.9	0.065	0.026	[25]	0	4.6	0.62	0.07	5.3	4.2
1988.3	0.046	0.042	[20]	0	4.6	0.38	0.07	4.9	3.1
1988.9	0.070	0.026	[20]	0	4.8	0.63	0.07	5.5	4.4
1989.1	0.001	0.090	[20]	0	5.2	0.00	0.06	5.0	1.7
1989.8	0.050	0.075	[20]	0	6.6	0.24	0.06	6.8	3.6
1989.9	0.075	0.050	[20]	0	6.3	0.48	0.07	7.0	4.9
1993.3	0.070	0.022	[14]	0	4.6	0.67	0.07	5.3	44

МОДЕЛИ ЗАПЯТНЕННОСТИ ОU Gem

и радиусом R,=0.74R₀ из [7]. Вычисленные параметры моделей запятненности EQ Vir приведена в табл. 9.

У EQ Vir полная ширина экваториальной полосы запятненности 2Δф меняется от 8 до 20°, параметр скважности $f_{\rm men}$ изменяется в широких пределах от 0.1 до 0.9, и это дает площадь запятненных областей до 14%. Параметр контрастности β_{μ} составляет в среднем 0.10, что соответствует разности температур 1160К. Для этой звезды также проводились магнитометрические наблюдения [37], согласно которым поле напряженностью 2.5 кГс занимает 80% поверхности звезды.

Таблица 9

Эпоха	∆V _{max}	۵V	Источник	φ ₀	∆ ¢	f _{nain}	β _r	S	Smin
1971	0.04	0.11	[39,40]	0	7.0	0.09	0.10	4.7	1.9
1972	0.05	0.11	[39]	0	7.4	0.14	0.10	5.1	2.3
1973	0.02	0.06	[39]	0	3.9	0.07	0.11	2.6	1.0
1976.2	0.07	0.08	[41]	0	6.8	0.32	0.10	4.9	2.9
1977.3	0.07	0.15	[42]	0	9.9	0.16	0.09	6.8	3.2
1978.4	0.15	0.10	[43]	0	10.5	0.49	0.09	8.0	5.6
1993.3	0.09	0.09	наст.	0	8.0	0.36	0.10	5.8	3.6
1994.3	0.12	0.04	иссле-	0	6.8	0.67	0.10	5.4	4.4
1995.3	0.12	0.01	дование	0	5.4	0.89	0.11	4.6	4.3

МОДЕЛИ ЗАПЯТНЕННОСТИ EQ Vir

ВУ <u>Dra</u> - наиболсс изученная пятнистая звезда, наблюдаемая различными авторами с 1965 года. Ее сводная кривая блеска была построена Родоно и Кутиспото [20]. Угол наклона оси вращения, следуя [15, 44], будем считать равным 70°. Температуру фотосферы обычно принимают равной 4000К. Определенный по кривой блеска абсолютный максимум хорошо согласуется с результатами фотографических измерсний [45]. ВҮ Dra - спектрально - двойная звезда, и отношения светимостей компонентов были взяты нами из [46]. Они удовлетворительно согласуются с данными [15]. Вычисленные параметры запятненности звезды приведены в табл. 10.

79

И.Ю.АЛЕКСЕЕВ, Р.Е.ГЕРШБЕРГ

Таблица 10

Эпоха	∆V _{mmx}	۵۷	∳a	Δ φ	J _{min}	βŗ	S _{max}	Smin
1965.8	0.23	0.24	0	27.1	0.38	0.04	19.2	12.2
1966.7	0.39	0.08	0	24.7	0.79	0.04	19.8	17.6
1967.4	0.33	0.06	0	20.9	0.81	0.04	17.0	15.3
1968.8	0.14	0.08	0	13.2	0.53	0.05	10.1	7.4
1970.5	0.03	0.04	0	4.7	0.26	0.06	3.3	1.8
1971.9	0.10	0.06	0	9.9	0.51	0.06	7.5	5.4
1973.0	0.06	0.04	0	6.4	0.47	0.06	4.8	3.3
1973.7	0 04	0.04	0	5.3	0.35	0.06	3.9	2.4
1974.7	0.06	0.08	0	9.1	0.27	0.06	6.5	3.6
1975.8	0 06	0.07	0	8.4	0.31	0.06	6.0	3.5
1976.3	0.09	0.08 .	0	10.7	0.39	0.05	7.9	5.0
1977.7	0.15	0.08	0	13.7	0.55	0.05	10.5	7.8
1979.4	0.13	0.12	0	15.2	0.39	0.05	11.1	7.1
1981.5	0.17	0.09	0	15.3	0.56	0.05	11.7	8.8
1983.6	0.08	0.12	0	12.7	0.24	0.05	8.9	4.7
1985.6	0.14	0.06	0	11.9	0.61	0.05	9.3	7.3
1986.6	0.17	0.06	0	13.4	0.66	0.05	10.6	8.6
1988.4	0.18	0.14	0	18.8	0.45	0.04	13.9	9.5
1989.4	0.18	0.10	0	16.4	0.54	0.05	12.5	9.2

МОДЕЛИ ЗАПЯТНЕННОСТИ ВУ Dra

Вариации величин 2 $\Delta\phi$ в пределах от 10 до 54°, f_{\min} от 0.2 до 0.8 и β_{ν} от 0.04 до 0.06 воспроизводят весьма разнообразное фотометрическое поведение звезды, включая глубокий минимум 1966-67 годов, когда блеск звезды ослабевал на 0^m.4, и амплитуды вращательной модуляции блеска звезды от 0^m.04 до 0^m.24. Запятненные области чаще всего занимают 10-20% поверхности звезды, а при глубоком минимуме - до 38%. Температура запятненных областей на 1250К ниже температуры фотосферы.

Запятненность ВУ Dra неоднократно моделировалась в рамках различных теоретических полходов. Торрес и Мелло [47] моделировали запятненность звезды в эпоху 1965 года, принимая излучение пятна и звезды чернотельным; согласно их расчетам, запятненная область занимала

7% поверхности и была холоднее фотосферы на 500 К. Чугайнов [48] моделировал запятненность в 1965-74 годы без учета потемнения к краю по наблюлениям в полосах V и В. Он также получил довольно теплые пятна, отличающиеся от фотосферы на 400 К, полученные им плошали запятненных областей несколько больше наших результатов. Осканян и лр. [49] моделировали запятненность до эпохи 1975 года с помощью абсолютно холодных пятен: определенные ими плошади пятен неплохо согласуются с нашими результатами. Дэвидсон и Нефф [44], считая излучения пятна чернотельным, определяли температуру пятен из отношений амплитуд переменности $\Delta B/\Delta V$, $\Delta R/\Delta V$ и $\Delta I/\Delta V$, которые также используются нами. Согласно их расчетам, пятно холоднее фотосферы всего на 200К. Фогт [50], не учитывая потемнение к краю диска звезды. оценил разность температур в 500К. Для сезона 1981 года Родоно и др. [51] построили исрархическую модель из двух пятен, одно из них оказалось околополярным; по их расчетам пятна холоднее фотосферы на 600К и занимают 15% поверхности. По и Итон [15] также получили теплые пятна (ΔT >200K), которые в 1.5-2 раза меньше, чем в наших расчетах. Недавно запятненность ВУ Dra была рассмотрена Ола и Ковари [52]. Они принимали, что пятна покрывают оба компонента системы, и нашли. что разность температур между пятнами и фотосферой 200-500К, плошаль пятен составляла 5% в 1992 году и до 40% в 1965 году. Таким образом, наши результаты удовлстворительно совпадают с данными других авторов по площади пятен, сильно отличаясь от них по температуре. ВУ Dra также наблюдалась для измерения магнитного поля [53]. Согласно измерениям, поле напряженностью 2.8 кГс занимает 60% поверхности звезды.

<u>V 1005 Огі</u> - одиночная звезда. Еє температура была определена Петтерсеном [7]. По величине vsini=8.7км/с [54], известного периода и радиуса $R=0.51R_0$ [7], оцениваем $i=90^\circ$. Результаты вычислений параметров моделей приведены в табл. 11.

Полная ширина экваториальной зоны запятненности $2\Delta\phi$ у V 1005 Оп изменяется от 10 до 16°, параметр f_{\min} - от 0.0 до 0.5, что дает площади запятненных областей, доходящие до 11% поверхности звезды. Контраст запятненной области составляет 0.07, что соответствует разности температур фотосферы и пятен 930 К.

<u>BF CVn</u> входит в состав широкой визуально двойной системы, спутник находится на расстоянии 17" и при наблюдениях отсекался диафрагмой.

И.Ю.АЛЕКСЕЕВ, Р.Е.ГЕРШБЕРГ

Таблица 11

Эпоха	۵V _{max}	۵۷	Источник	φ ₀	∆∳	f _{min}	β,	S	S _{min}
1974.7	0.060	0.056	[55]	0	5.0	0.37	0.08	3.6	2.3
1975.9	0.090	0.060	[41,55]	0	6.3	0.48	0.07	4.8	3.3
1976.3	0.090	0.056	[55]	0	6.1	0.50	0.07	4.6	3.3
1981.0	0.076	0.128	[56]	0	8.7	0.21	0.07	6.1	3.1
1981.8	0.130	0.078	[56]	0	8.3	0.51	0.07	6.3	4.6
1983.9	0.140	0.078	[57]	0	8.6	0.53	0.07	6.6	4.8
1992.9	0,05	0.11	[14]	0	7.1	0.14	0.07	4.8	2.2
1993.8	0.03	0.11	[14]	0	6.4	0.02	0.08	4.2	1.5
1994.8	0.00	0.00	наст.иссл.					0.0	0.0

МОДЕЛИ ЗАПЯТНЕННОСТИ V 1005 Оті

Температура звезды взята нами из [58]. Для этой звезды vsint=8 км/с [59], $R = 0.52R_0$, и мы оцениваем t=65°.

Величина 2 $\Delta\phi$ у BF CVn составляет от 10 до 18°, параметр скважности меняется от 0.0 до 0.9, и площадь запятненных областей доходит до 15%. Контраст запятненной области 0.03 соответствует разности температур 1100 К. Списман и Хаули [58] проводили моделирование запятненности звезды по наблюдениям в полосах V и R, и, согласно их расчетам, запятненная область занимает 9% поверхности при разности температур фотосферы и пятен 500 К.

Таблица 12

Эпоха		۵V	Источник	φ ₀	∆∳	f _{min}	β,	Smax	Smin
1976.2	0.20	0.01	[41]	0	8.8	0.93	0.03	7.5	7.2
1978.4	0.00	0.10	[43]	0	5.4	0.00	0.03	3.5	1.2
1979.4	0.07	0.06	[60]	0	6.2	0.39	0.03	4.6	2.9
1981.4	0.08	0.07	[58]	0	7.0	0.39	0.03	5.2	3.3
1993.3	0.12	0.01	наст.иссле-	0	5.7	0.89	0.03	4.8	4.6
1994.3	0.12	0.02	дованис	0	6.2	0.80	0.03	5.1	4.6

МОДЕЛИ ЗАПЯТНЕННОСТИ BF CVn

<u>DT Vir</u> - малои ученная одиночная звезда. Ее температура определена Петтерсеном [7], данные о скорости вращения vsini=10 км/с мы взяли из [59], *R*= 0.52R₀. Тогда i=35°. Вычисленные параметры моделей зональной запятненности везды приведена в табл. 13.

Полная ширина экваториальной зоны запятненности 2Δφ у DT Vir составляет от 13 до 25°, параметр скважности меняется от 0.0 до 0.8, и площадь запятненных областей лоходит до 23%. Контраст запятненной области 0.06 соответствует разности температур фотосферы и пятен 1000 К.

Таблица 13

Эпоха	۵V _{mmx}	۵V	Источник	ф <u>,</u>	Δφ	f _{min}	β,	Smax	S _{min}
1971	0.16	0.02	[39]	0	14.7	0.84	0.06	12.2	11.2
1976.2	0.09	0.05	[41]	0	12.5	0.51	0.06	9.5	6.8
1978.4	0.08	0.03	[43]	0	9.8	0.62	0.06	7.7	6.1
1993.3	0.01	0.08	наст.	0	9.3	0.00	0.06	6.1	2.0
1994.3	0.00	0.07	иссле-	0	7.6	0.00	0.06	5.0	1.6
1995.3	0.00	0.06	дование	0	6.6	0.00	0.06	4.3	1.4

МОДЕЛИ ЗАПЯТНЕННОСТИ DT Vir

<u>AU Mic</u> - хорошо изученная одиночная звезда, наблюдаемая с 1971г. Ее температура была определена Петтерсеном [7]. По величине vsint= 8.2 км/с [54], известным периоду и радиусу $R = 0.40R_0$ [7], мы оценили 1~90°. Абсолютный максимум блеска AU Mic, определенный по данным электрофотометрии. подтверждается фотографическими результатами [45]. Результаты вычислений параметров моделей приведены в табл. 14.

Полная ширина экваториального пояса запятненности $2\Delta\phi$ у AU Міс варьируется в пределах от 18 до 30°, а параметр скважности f_{min} - от 0.0 до 0.7. Максимальная площадь запятненных областей составляет 17% и имела место в сезон 1981г. Параметр контраста β_{ν} в среднем равен 0.07, что соответствует разности температур в 1000 К. Торрес и Мелло [47] моделировали запятненность звезды в сезон 1971 г., используя наблюдения в полосах *В* и *V*. Согласно их расчетам, пятно занимало 10% поверхности звезды и было холоднее фотосферы на 400 К. Родоно и др.

И.Ю.АЛЕКСЕЕВ, Р.Е.ГЕРШБЕРГ

Таблица 14

									_
Эпоха	ΔV _{ress}	۵V	Источник	¢٥	∆∳	f _{min}	βr	Small	Smith
1971	0.00	0.32	[61]	0	15.0	0.00	0.06	9.7	3.2
1974	0.00	0.30	[62]	0	14.1	0.00	0.06	9.1	3.0
1975.9	0.10	0.15	[63]	0	11.4	0.25	0.07	8.0	4.3
1979	0.15	0.10	[51]	0	10.9	0.49	0.07	8.2	5.8
1980	0.15	0.18	[51]	0	13.9	0.32	0.07	10.0	5.9
1981.9	0.14	0.23	[51,64]	0	15.6	0.24	0.06	10.9	5.8
1983.9	0.10	0.09	[65]	0	9.1	0.39	0.08	6.7	4.3
1985.9	0.15	0.11	[32]	0	11.4	0.46	0.07	8.5	5.9
1986.8	0.16	0.04	[25]	0	9.0	0.73	0.08	7.3	6.2
1986.9	0.09	0.16	[66]	0	11.5	0.20	0.07	8.0	4.0
1987.9	0.11	0.15	[65]	0	11.8	0.28	0.07	8.4	4.7

МОДЕЛИ ЗАПЯТНЕННОСТИ AU Mic

[51] моделировали запятненность AU Mic в рамках исрархической модели для эпох 1980 и 1981 гг. Разность температур фотосферы и пятен они оценили в 850 К, и пятна занимали 13-14% поверхности звезды. В обоих случаях наши модели дают более холодные и несколько более общирные запятненные области. Саар [53] измерил магнитное поле AU Mic, согласно его данным, поле напряженностью 4 кГс занимает 90% поверхности звезды.

EV Lac была подробно рассмотрена нами в [3]. Мы дополнили это рассмотрение данными для двух эпох: нашими наблюдениями 1995г. и недавно опубликованными наблюдениями, выполненными в Катании в 1971г. [67]. Сводная кривая блеска была построена нами в [68]. Для оценки и мы воспользовались величинами vsint= 4.5 км/с [69] и R= 0.36R₀. В результате, табл. 15, где собраны параметры моделей зональной пятнистости EV Lac, представляет собой расширенный вариант табл. 2 в [3].

Полная ширина экваториального пояса запятненности 2Δ¢ EV Lac изменяется от 12 до 40°, параметр скважности - от нуля до единицы. Максимальная площадь запятненных областей наблюдалась в 1975г. и достигала 27% поверхности звезды. Контрастность пятен заключена в

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ

Таблица 15

	_			_				-	_
Эпоха	ΔV _{max}	۵V	Источник	\$ 0	Δ φ	f _{min}	β _r	S	S.
1971.6	0.13	0.11	[67]	0	20.0	0.42	0.54	14.6	9.7
1972.6	0.05	0.14	[70,71]	0	16.5	0.07	0.53	10.9	4.3
1973.7	0.00	0.12	[70,71]	0	13.6	0.00	0.57	8.8	2.9
1974.6	0.11	0.07	[70-73]	0	13.9	0.46	0.51	10.4	7.1
1975.6	0.30	0.01	[70,71]	0	16.4	0.90	0.37	13.8	13.0
1976.6	0.04	0.02	[70,71]	0	6.1	0.54	0.62	4.7	3.5
1979.6	0.08	0.08	[74]	0	13.4	0.33	0.53	9.6	5.8
1980.7	0.06	0.08	[73-75]	0	12.5	0.25	0.55	8.8	4.7
1981.7	0.10	0.06	[73-76]	0	12.8	0.47	0.52	9.6	6.6
1983.7	0.08	0.06	[73,74]	0	11.9	0.41	0.54	8.8	5.7
1984.7	0.06	0.11	[73]	0	14.7	0.16	0.53	10.0	4.7
1985.5	0.11	0.05	[73,74]	0	12.6	0.55	0.52	9.7	7.2
1986.7	0.06	0.12	[73,74,77,78]	0	15.5	0.14	0.53	10.5	4.7
1987.7	0.09	0.06	[73,74,77]	0	12.4	0.44	0.53	9.2	6.5
1988.8	0.13	0.00	[73]	0	9.9	0.94	0.53	8.5	8.2
1990.0	0.10	0.08	[73]	0	14.2	0.39	0.51	10.4	6.6
1991.7	0.11	0.02	[68,73]	0	10.3	0.76	0.54	8.4	7.3
1992.7	0.11	0.06	[68]	0	13.2	0.50	0.51	10.0	7.1
1993.7	0.12	0.02	[68]	0	10.9	0.76	0.53	8.9	7.8
1994.7	0.09	0.02	[68]	0	9.3	0.71	0.56	7.5	6.3
1995.7	0.12	0.04	наст.иссл.	0	13.9	0.66	0.58	11.0	8.9

МОДЕЛИ ЗАПЯТНЕННОСТИ EV Lac

пределах от 0.40 до 0.61, чему соответствует разности температур фотосферы и пятен от 340 К до 190 К. Отметим, что проведенное нами в [68] моделирование запятненности без учета потемнения к краю диска давало близкие результаты. В [69] производились измерения магнитного поля звезды, согласно которым поле напряженностью 5.2 кГс занимает до 90% поверхности звезды.

4. Заключение. Предложенный нами в работах [2-4] алгоритм определения по многоцветным фотометрическим наблюдениям

параметров простейшей модели зональной пятнистости звезды был применен для анализа пятнистости 13 красных карликовых вспыхивающих звезд. Используя опубликованные работы и собственные наблюдения, мы собрали необходимые для вычислений исходные данные для 140 эпох наблюдений этих звезд. Все эти наблюдения вполне удовлетворительно представляются в рамках рассматриваемой модели зональной запятненности.

Крымская астрофизичская обсерватория

ON THE SPOTTEDNESS OF RED DWARFS: MODELS OF A ZONAL SPOTTEDNESS FOR 13 BY DRA-TYPE STARS

I.Yu.AIEKSEEV, R.E.GERSHBERG

A zonal spottedness model of stars that was proposed and developed by us to represent periodical brightness variations of the BY Dra type dwarfs is applied to a sample of stars with long-term series of BVRI observations.

ЛИТЕРАТУРА

- 1. P.B.Byrne, D.J.Mullan (eds.), Surface inhomogeneities on late-type stars, (Proc.Coll.July 24-27, 1990, Armagh), Springer, Berlin, Lecture Notes in Physics, 397, 1992.
- 2. И.Ю.Алексеев, Р.Е.Гершберг, Астрон.Ж. (в печати).
- 3. И.Ю.Алексеев, Р.Е.Гершберг, Астрон.Ж. (в печати).
- 4. I.Yu.Alekseev, R.E.Gershberg, Cool stars, stellar systems, and the Sun, (Proc. 9th Cambridge Workshop. Oct.3-6, 1995, Florence), A.Dupree and R.Pallavicini (eds.), Astron. Soc. Pacif. Conf. Ser. (in press).
- 5. J.D. Dorren, Astrophys.J., 320, 756, 1987.
- R.E. Gershberg, A.V. Terebizh, N.I. Shakhovskaya, M.M. Katsova, in "Cool stars, stellar systems, and the Sun" (Proc.8th Cambridge Workshop. Oct.9-13, 1993, Athens), J.P. Caillault (ed.), Astron. Soc. Pacif. Conf. Ser., 64, 411, 1994.

О ЗАПЯТНЕННОСТИ КРАСНЫХ КАРЛИКОВ

- 7. B.R.Pettersen, Astron. Astrophys., 82, 53, 1980.
- B.R.Pettersen, Activity in red-dwarf stars (Proc. 71st IAU Coll. Aug. 10-13, 1982, Catania), P.B.Byrne and M.Rodono' (eds.), Reidel, Dordrecht, 17, 1983.
- 9. H.L.Johnson, Ann. Rev. Astron. Astrophys., 4, 193, 1966.
- 10. J.A. Eaton, C.H. Poe, IBVS, No 2846, 1986.
- 11. K.G.Strassmeier, B.W.Bopp, Astron.Astrophys., 259, 183, 1992.
- 12. П.Ф.Чугайнов, Изв. Крым. астрофиз. обсерв., 54, 89, 1976.
- 13. B.W.Bopp, S.H.Saar, C.Ambruster et al., Astrophys.J., 339, 1059, 1989.
- 14. И.Ю.Алексеев, Астрон.Ж. (в псчати).
- 15. C.H.Poe, J.A.Eaton, Astrophys.J., 289, 644, 1985.
- 16. B.W.Bopp, P.V.Noah, A. Klimke, J.L.Africano, Astrophys.J., 249, 210, 1981.
- 17. R.Glebocki, A.Stawikovski, Acta Astron., 34, 365, 1984.
- 18. F.C.Fekel, T.J.Moffett, G.W.Henry, Astrophys. J. Suppl.Scr., 60, 551, 1986.
- 19. G.W.Henry, IBVS, No 1927, 1981.
- 20. M.Rodono', G.Cutispoto, Astron.Astrophys.Suppl.Ser., 95, 55, 1992.
- 21. J.Kaluzny, IBVS, No 2627, 1984.
- 22. M.C.Akan, Astrophys.Space Sci., 169, 159, 1990.
- 23. И.Ю.Алексеев, Н.И.Шаховская, Изв.Крым. астрофиз. обсерв., 89, 93, 1995.
- 24. L.Jetsu, Astron.Astrophys., 276, 345, 1993.
- 25. G. Cutispoto, Astron. Astrophys. Suppl. Ser., 89, 435, 1991.
- 26. G. Cutispoto, Astron. Astrophys. Suppl. Ser., 102, 655, 1993.
- 27. F.C.Fekel, B.W.Bopp, J.L.Africano et al., Astron.J., 92, 1150, 1986.
- 28. O.J.Eggen, Astron. J., 89, 1358, 1984.
- 29. K.G.Strassmeier and D.S.Hall, Astrophys.J.Suppl.Ser, 67, 453, 1988.
- 30. A. Udalski, E. H. Geier, IBVS, No 2525, 1984.
- 31. A. Udalski, E. H. Geier, IBVS, No 2691, 1985.
- 32. G. Cutispoto, Astron. Astrophys. Suppl. Ser., 84, 397, 1990.
- 33. B.W.Bopp, J.L.Africano, R.Quigley, Astron.J., 92, 1409, 1986.
- 34. G.J.Anders, J.L.Innis, D.W.Coates, K.Thompson, Mon. Notic. Roy. Astron. Soc, 252, 408, 1991.
- 35. R.F.Griffin, Observatory, 98, 257, 1978.
- 36. J.Tomkin, Astron.J., 85, 294, 1980.
- S.H.Saar, J.L.Linsky, Cool Stars, Stellar Systems and the Sun, M.Zeilik and D.M.Gibson (eds.), Springer - Verlag, Lecture Notes in Physics, 254, 278, 1986.
- 38. B.W.Bopp, D.S.Hall, G.W.Henry et al., Publ. Astron. Soc. Pacif., 93, 504, 1981.

- 39. П.Ф.Чугайнов, Изв. Крым. астрофиз. обсерв., 52, 3, 1974.
- 40. C.A.O. Torres, S. Ferraz-Mello, IBVS, No 577, 1971.
- 41. B.W.Bopp, F.Espenak, Astron.J., 82, 916, 1977.
- 42. M. Hoffman, IBVS, No 1878, 1980.
- 43. C.M.Anderson, Publ.Astron.Soc.Pacif., 91, 202, 1979.
- 44. J.K.Davidson, J.S.Neff, Astrophys.J., 214, 140, 1977.
- 45. M.J. Phillips, L. Hartmann, Astrophys. J., 224, 182, 1978.
- 46. D.C.Keenan, Publ.Astron.Soc.Pacif., 92, 548, 1980.
- 47. C.A.O.Torres, S.Ferraz-Mello, Astron.Astrophys., 27, 231, 1973.
- 48. П.Ф.Чутайнов, Изв. Крым. астрофиз. обсерв., 55, 94, 1976.
- 49. V.S.Oskanyan, D.S. Evans, C. Lacy, R.S. McMillan, Astrophys.J., 214, 430, 1977.
- 50. S.S. Vogt, Astrophys.J., 250, 327, 1981.
- 51. M.Rodono', G.Cutispoto, V.Pazzani et al., Astron. Astrophys., 165, 135, 1986.
- 52. K.Olah, Zs. Kovari, Astron. Astrophys. Trans. (submitted).
- 53. S.H.Saar, Solar Photosphere: Structure, Convection and Magnetic Fields, J.O.Stenflo J.O. (ed.), Kluwer, Dordrecht, 427, 1990.
- 54. S.S. Vogt, D.R. Soderblom, G.D. Penrod, Astrophys. J., 269, 250, 1983.
- 55. B.W.Bopp, C.A.O. Torres, I.C. Busko, G.R. Quast, IBVS, No 1444, 1978.
- 56. P.B.Byrne, J.G.Doyle, C.J.Butler, Mon. Notic. Roy. Astron. Soc., 206, 907, 1984.
- 57. M.Mathioudakis, J.G.Doyle, M.Rodono' et al., Astron. Astrophys., 244, 155, 1991.
- 58. W.J.Spiesman, S.L. Hawley, Astron.J., 92, 664, 1986.
- 59. J.R.Stauffer, L.W.Hartmann, Astrophys.J.Suppl., 61, 531, 1986.
- 60. B.R. Pettersen, Publ.Astron.Soc.Pacif., 92, 188, 1980.
- 61. C.A.O. Torres, S.Ferraz-Mello, G.R.Quast, Astrophys. Let., 11, 13, 1972.
- 62. I.C.Busko, C.A.O.Torres, Astron. Astrophys., 64, 153, 1978.
- 63. M.Hoffman, IBVS, No 1977, 1981.
- 64. P.B. Byrne, Physics of solar and stellar coronae, J.L.Linsky and S.Serio (eds.), Kluwer, Dordrecht, 431, 1993.
- 65. G. Cutispoto, Astron. Astrophys. Suppl. Ser., 111, 507, 1995.
- 66. D.A. Quin, J.G. Doyle, C.J. Butler et al., Astron. Astrophys., 272, 477, 1993.
- G.Leto, C.S.Buemi, M.Rodono', I.Pagano, Cool stars, stellar systems, and the Sun (Proc. 9th Cambridge Workshop. Oct.3-6, 1995, Florence), A.Dupree and R.Pallavicini (eds.), Astron. Soc. Pacif. Conf. Ser. (in press).
- 68. И.Ю.Алексеев, Астрон.Ж. (в печати).
- 69. S.H.Saar, J.L.Linsky, M.S.Giampapa, Observational Astrophysics with High

Precision Data (Proc. 27 Liege International Astrophys. Coll.), Cointe-Ougree, Belgique, 103, 1987.

- 70. F.M.Mahmoud, K.Olah, IBVS, No 1943, 1981.
- L.N.Mavridis, G.Asteriadis, F.M.Mahmoud, Compendium in Astronomy, E.G.Mariokoupos, P.S.Theocaris and L.N.Mavridis (eds.), Reidel, Dordrecht, 253, 1982.
- 72. B.R. Pettersen, Astron.J., 85, 871, 1980.
- K.P.Panov, The Cosmic Dynamo (Proc. 157th IAU Symp., Sept. 7-11, 1992, Potsdam), F.Krause, K.H.Racdler and G.Ruediger (eds.), Kluwer, Dordrecht, 157, 1993.
- 74. B.R.Pettersen, K.Olah, W.H.Sandmann, Astron. Astrophys. Suppl.Ser., 96, 497, 1992.
- 75. Г.Ш.Ройзман, Письма в Астрон. Ж., 9, 41, 1983.
- 76. B.R.Pettersen, G.A.Kern, D.S.Evans, Astron.Astrophys., 123, 184, 1983.
- 77. Р.Е.Гершберг, И.В.Ильин, Н.И.Шаховская, Астрон. Ж., 68, 959, 1991.
- 78. S.J.Klienman, W.H.Sandmann, C.W.Ambruster, IBVS, No 3031, 1987.