АСТРОФИЗИКА

TOM 38

НОЯБРЬ, 1995

выпуск 4

NEW APPROACHES TO SOME CLASSIC METHODS OF RADIATIVE TRANSFER

N.B. YENGIBARIAN, E.A. MELKONYAN

Byurakan Astrophysical Observatory

1. About the Method of Discrete Ordinate (MDO). Let us consider the well known integral Equation of Radiative Transfer (RT).

$$S(\tau) = S_0(\tau) + \frac{\lambda}{2} \int_0^{\tau_0} K(|\tau - t|) S(t) dt \qquad (1)$$

where

$$K(\tau) = E_1(\tau) = \int_1^{\infty} e^{-\tau s} \frac{ds}{s}$$

Application of MDO leads to the following reduction

$$K(\tau) \approx T(\tau) = \sum_{m=1}^{n} a_m e^{-|\tau|s_m}$$
(2)

where $\frac{1}{s}$ are the positive roots of Legandre polynomial $P_{2n}(\eta)$ and $a_{m} > 0$.

Such choice of nodes of discretization (2) does not correspond to the essence of the problem.

Let S be the solution of (1) when K is replaced by T. For deviation $|S-\bar{S}|$ we have the estimate

$$S - \widetilde{S} \le (1 - \lambda)^{-1} (1 - \lambda - \delta)^{-1} \delta S_0$$

where

$$\delta = \delta(s_1, s_2, \dots s_n, a_1, a_2, \dots a_n) = 2 \int_0^\infty |K(\tau) - T(\tau)| d\tau.$$

In [4] the problem of minimization of δ for fixed *n*, when *K* is arbitrary superposition of exponentials

$$K(\tau) = \int_{0}^{0} e^{-|\tau|s} G(s) \, ds, \quad G \ge 0$$

was solved.

2. About the Method of Spheric Harmonics (MSH). Consider the problem of anisotropic scattering. MSH is based on the reduction

$$g(\mu) \approx \widetilde{g}(\mu) = \sum_{m=0}^{n} c_m P_m(\mu)$$

where $g(\mu)$ is the indicatrix of scattering, P_{\perp} are Legandre polynomials, and c_{\perp} are the corresponding Fourier coefficients. It was shown that the choice of this coefficients, based on requirement of minimization of quantity

$$\delta = \delta(c_0, c_1, \dots, c_n) = \int_{-\infty}^{1} \left[g(\mu) - \sum_{m=0}^{n} c_m P_m(\mu) \right]^{-1} d\mu$$

is more effective. The problem of minimization of δ for fixed *n* can be solved by numerical methods.

3. About Principle of Invariance (PI). Consider the general linear Transfer Equation in homogeneous half-space $\Pi(0, +\infty)$ (see [5]).

$$\pm \frac{d \mathbf{J}^{\pm}}{dt} = -\mathbf{A}\mathbf{J}^{\pm} + \mathbf{L}^{+}\mathbf{J}^{\pm} + \mathbf{L}^{-}\mathbf{J}^{\pm}$$
(3)

where the vectors J^+ and J^- are the desired radiation intensities at the optical depth τ in directions of increasing and decreasing τ respectively.

The operators A and J^* describe the absorption and redistribution of radiat r_i by infinite thin slab.

N.B.YENGIBARIAN, E.A.MELKONYAN

Ambartsumian's equation corresponding to (3) has the form

$$A\rho + \rho A = L^{-} + \rho L^{+} + L^{+}\rho + \rho L^{-}\rho$$
⁽⁴⁾

where ρ is the operator of reflection from $\Pi(0, +\infty)$. It was shown, that the Eq. (4) has always unique physical solution (PS), which is the limit of iterations ρ_{μ} , determined by

$$A\rho_{n+1} + \rho_{n+1}A = L^{-} + \rho_{n}L^{+} + L^{+}\rho_{n} + \rho_{n}L^{-}\rho_{n}, \rho_{0} = 0.$$

PS is the minimal positive solution of (4).

Новые подходы к некоторым классическим методам теории переноса излучения. Предлагаются новые, математически обоснованные, подходы к Принципу инвариантности Амбарцумяна, методу дискретных ординат Чандрасекара и методу Сферических гармоник.

REFERENCES

- 1. V.A.Ambartsumian, S.c. Works I, Yerevan, 1960.
- 2. S. Chandrasekhar, Radiative Transfer, Oxford, 1950.
- 3. V. V.Sobolev, Radiative Transfer, Moscow, 1956, (in Russian).
- 4. N.B. Yengibarian, E.A.Melkonian, DAN SSSR, 292, 322, 1987.
- 5. N.B. Yengibarian, E.A. Melkonian, Principle of invariance and its Applic., Proc. of the 1981 Sympossium in Byurakan, Yerevan, 1989.