АСТРОФИЗИКА

TOM 38

НОЯБРЬ, 1995

ВЫПУСК 4

DIRECT AND INVERSE PROBLEMS OF RADIATIVE TRANSFER

N.B. YENGIBARIAN, M.G.MOURADIAN

Byurakan Astrophysical Observatory

The operator approach to the linear problems of Radiative Transfer (RT) and corresponding apparatus of analytical semigroups (see [1,2]) are very flexible and general means for solution of Direct and Inverse problems of RT, which are of a great importance in astrophysics. Here we present some results, which are mainly taken from [3].

The integral differential equation of stationary RT in a homogeneous slab $\Pi(\tau_{o})$ of thickness $\tau_{o} \leq +\infty$ admits of the following operator representation

$$\pm \frac{d \mathbf{J}^{\pm}}{d \tau} = -\mathbf{A} \mathbf{J}^{\pm} + \mathbf{L}^{+} \mathbf{J}^{\pm} + \mathbf{L}^{-} \mathbf{J}^{\mathsf{m}}$$
(1)

where the vector functions J^+ and J^- describe the radiation intensities at a depth τ in directions of increasing and decreasing τ respectively. J^+ may depend on the direction ω , frequency ν and etc. A and J^+ are operators: A describes absorption of radiation by infinite thin slab and J^+ describe redistribution by ω , ν of emitted radiation.

Let $R(\tau_0)$ and $T(\tau_0)$ be the reflection and transmission operators for a slab $\Pi(\tau_0)$. *Problem* 1. By given of $R(\tau_0)$ and $T(\tau_0)$ to find $R_{\perp} = R(m\tau_0)$ and $T_{\perp} = T(m\tau_0)$, $m \ge 2$. This problem can be solved by multiple application of well known formulas of addition of layers.

Here we describe a more effective approach to this problem. Let $W=W(\tau_{s})$ is the Canonic solution (CS) of the equation

$$W = (R + TW)(T + RW).$$
 (2)

The CS is the limit of natural iteration W_{μ} , with $W_{\mu}=0$. We have $W \ge 0 ||W|| \le$

1 and

$$\rho = R + TW, X = T + RW$$
(3)

where $p=R(\infty)$, and $X(\tau)=exp(-G\tau)$ is the semigroup of operators with generator

$$G = -A + L^{T} + L^{T}\rho, X(0) = I$$

We have

$$X(m\tau_{o}) = X_{m}(\tau_{o})$$
⁽⁴⁾

R_ and T_ may be determined by formulae

$$R_{m} = (\rho - X_{m})W_{m}(I - W_{m}^{2})^{-1}, T_{m} = (I - \rho)X_{m}(I - W_{m}^{2})^{-1}$$
(5)

where $W = \rho X(m\tau)$.

Problem 2. (Division slab in half). By given of $R(\tau_o)$, $T(\tau_o)$ to find $R\left(\frac{\tau_0}{2}\right)$, $T\left(\frac{\tau_0}{2}\right)$.

Problem 3. By given of $R(\tau_{o})$, $T(\tau_{o})$ to find local properties of the medium. Solution of the problem 2. We determine W, ρ and X from (2), (3), then we

extract the root from $X(\tau_0)$: $X(\tau_0/2) = [X(\tau_0)]/2$. Operators $R\left(\frac{\tau_0}{2}\right), T\left(\frac{\tau_0}{2}\right)$ are determined from (5) at m=1/2.

Solution of the problem 3. Applicating *n* times repeated operation of division in half the operators $R(2^{n} \tau_{o})$ and $T(2^{n} \tau_{o})$ are created, which for enough large *n*, describe local properties of the medium. The operators A and L^{*} participating in (1) may be found by means of them.

The operator $\rho=R_{\rm is}$ is the CS of Ambartsumian's equation

$$A\rho + \rho A = L^{+} + \rho L^{+} + L^{+}\rho + \rho L^{-}\rho$$
. (6)

At $L^+ = L^- = L$ we obtain

$$L=(I+\rho)^{-1} (A\rho+\rho A)(I+\rho)^{-1}$$

(7)

The formula (7) solves inverse problem 4. *Problem* 4. By given ρ to determine L(L=L = L⁻).

710

From Eq. (7) and well known connection between A and L may be determined A and L by iteration way.

In work [4] a matrix representation of L^{*} in case of coherent anisotropy scattering were found.

Above mentioned results may be applied to the problems of distance probe for atmosphere of earth and other planets.

Прямые и обратные задачи переноса излучения. На основании операторного подхода к линейным задачам переноса (ЛЗП) и соответствующего аппарата аналитических полугрупп предлагаются некоторые методы решения ЛЗП и задач по восстановлению локальных оптических свойств плоского слоя по наблюдамым характеристикам всей среды.

REFERENCES

- 1. A.Shimitzu, K.Aoki, Applic. of invariant embedding, Acad. Press. New York. 1972.
- 2. N.B. Yengibarian, M.A.Mnatsakanian, Docl. Acad. Sc. USSR, 217, 3, 1974.
- 3. N.B.Yengibarian M.G.Mouradian, DAN Arm. SSR, 36, 122, 1988.
- 4. M.G.Mouradian, Comput. Math. and Math. Phys; 33, No.2, 241, 1993.