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The paper presents a part of new result։ concerning the generalization and physical 
interpretation of Rybicki’։ quadratio and bilinear relations. The fundamental equations obtained 
on the base of Ambartsumian’s invariance principle and regarded as its extension to all depths 
in the atmosphere, imply the Q- and R- relations with more general structure than thoae known 
up to the present These equations admit a simple probabilistic interpretation. Some bilinear 
relations are derived to connect the transfer problems of different sorts. For the sources distrib­
uted in the semi-infinite atmosphere by exponential law, the separate Q-and R-relations are 
obtained.

1. Introduction. As it was shown in the G.B. Rybicki's paper [1], for some cases 
the transfer equation admits integrals that involve quadratic moments of the radiation 
field. They permit one to generalize to all depths in the atmosphere some surface 

results as the Hopf-Bronstein equation or the Jl.-'k -law. The cases treated encompass 

the exponential and power laws for distribution of internal sources of energy. The more 
general conception of “bilinear integrals” were introduced for quadratic integrals that 
connect the radiation fields of two separate transfer problems. Although the bilinear 
integrals were not derived in [1], they obviously were known to the author by that 
time. Later we shall see that the quadratic and bilinear integrals follow from the 
simple relations between well-defined physical quantities, in deriving of which no 
integration is required so that in further discussion we shall prefer the term "relations'1 
to "integrals".

Some generalization of G.B. Rybicki’s results for the plane-parallel medium was 
given by V.V. Ivanov [2], The so-called "two-point" relations were found that couple the 
intensities of equally directed radiation at two difierent depths in the atmosphere. 
While the author calls them also "bilinear relations”, by its sense they are out of 
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keeping the definition given in [1]. Similar results were obtained in [3].
Regardless of the new results, the main question on the physical nature of the such 

kind quadratic relations remains still abstruse. This point is of particular concern also 
for the second-order escape probability methods recently developed for computational 
radiative transfer [4].

It is the purpose of this paper to demonstrate the profound connection of the 
quadratic and bilinear relations with the invariance principle, what suggests a statis­
tical interpretation for these relations. For the first time, there derived two fundamental 
equations that enable to generalize the major part of hitherto known results for the 
semi-infinite atmosphere. Bilinear relations for some important transfer problems are 
given.

2. The invariance principle and basic equations. We start with treating the 
case of monochromatic, isotropic scattering in a semi-infinite, plane-parallel atmo­
sphere. Assume also that the atmosphere is homogeneous and does not contain energy 
sources. One of the most important characteristics of an atmosphere is its reflectivity 
that involves also an information on the internal field of radiation established in the 
presence of initial energy sources.

It is well known [5-7] that the function p referred to as «reflection coefficient» or 
"reflection function" can be found from the separate functional equation obtained on 
the basis of the Ambartsumian’s invariance principle (hereafter we are concerned with 
the azimuth-averaged quantities)

(n+0p(n.0 = (V2)<KTM9 CD
where

<p(ti) = 1 + rj p(q, rf ) d Ti' (2)

o

is known as Ambartsumian’s <p- function. The incidence and reflection angles cos 'lj 

and cos ։r] are referenced correspondingly from inward and outward normal direc­

tions. The reflection coefficient possesses asymmetry property p(r|,Ç) = p(^,T]), re­
sulting from the reciprocity principle of the optical phenomena. Taking together, equa­
tions (1) and (2) lead to the separate equation for the function <p(r])

<p(T|) = 1 + (X / 2)rJ <p(n)<p(r)' ) d + ti’ ) (3)

o
which implies the zero-moment of
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“o = i <P(n) n = 2(1 - V1 - X] / k (4)

o
Making use (4), equations (2) and (1) can be rewritten as follows

Vl-Mri) = 1-1 Pfon' >1' d n (5)

o

and

(1 - X)p(tvO = (x 12)[1 - j pOvn >1’ dTil[1" 1 P&ri'>1’ dri! (6)

o 0
Now let us introduce into consideration the function P(t,ri,p) to denote the 

surface value of the Green function (i.e. one of its depth arguments is taken to be zero); 
[8]. In the probabilistic language P(t,t|, p) characterizes the probability of the photon 
exit from the atmosphere in direction p, if originally it was moving at depth r with 
directional cosine T]. All the angles are referenced from outward directed normal to the 
surface of a medium The symmetry property of the P-fonction ensues from the 
reciprocity principle and can be written in the form:

H M) = ImI = |p| mn). (7) 

Here we introduced for brevity the function P with angular arguments referenced from 
the inward normal direction. This function also admits a probabilistic interpretation 

such that P(t, p,ri)rfri is the probability that a photon incident on the atmosphere 

with the directional cosine p will move (in general, as a result of multiple scatterings) 
at depthrwithin the directional interval (i%r| + drj). Keepinginmind the probabilistic 

meaning of the reflection coeefficientr]p(ri,£)dr| gives the reflection probability for the 

photon with the angle of incidence cos-1£), we see that P(0, p,r|) = rjp(r|, M-)

It is obvious that [6]

H) = i PM > H)p(n , nhl'd x\ (8)

o

p,֊n) = J P(t, mn )p(n,ri’) d n (9)

՝ o
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Multiplying equation (1) by 7’(t,£,p.)P('t’>T|,p’) and integrating over £ and rp 

from 0 to 1, we arrive at the first fundamental result

J P(r, Ç, pi) P(t’ ,-ç, pi' ) d ç = (1 / 2)(/ P(t, Ç, pi) d ç)(/ P(t' , ç, pi' ) d ç) (10)

-1 -1 -1

in which the relations (8) and symmetry property of the reflection coefficient p were 
used. We shall see later that this formula implies, in particular, all the Q-quadratic 
and bilinear relations given in [1,2]. To make clear՜ the probabilistic meaning of this 

equation, we rewrite it in the form
= 1/2 (11)

where
+1 / +1 +1

X(t, pg x’, pi՛ ) = J P(x, ç, pi) P(x' ,-^\L)dç, (f P(x, ç, g) d ç) ( J P(x', ç, pi' ) d ç)

-1 / -1 ֊1

It is seen that X can be regarded as the correlation coefficient of two random 
events so that this result can be stated in the following probabilistic language.

Two random events consisting in two photons exit from the semi-infinite atmo­
sphere in certain fixed (diverse, in general) directions, if originally they were moving 
at some different optical depths in opposite directions, are correlated with the corre­
lation coefficient equaled to À/2.

The second fundamental result, generating all the R-quadrctic and bilinear rela­
tions, can be found by similar manner from equation (6). Multiplying (6) by 

P(x, H)Pl?, pi',^) 311(1 integrating over T| and Ç in the range (0,1), we use equa­

tion (9) to obtain

+1
(1 ֊ X)f P(t, m q) P(x', pi' ,-ç) d ç =

-i

= 07 2)(I At, P,ç)ç^ ç / ld)( / At’ , g' ,ç)ç d ç / |q|)
-i -i

(12)

To assign a probabilistic sense to this result, we rewrite (12) in the form

X(T,pi;x','pi') = Xk(t,h)k(t',pi')/(1 - X) (13)
whçre
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«CmO = (J Id)! (J P(T,mq)dq).

Thus, it is seen that c also can be regarded as the correlation coefficient for the 
ingoing radiation, and now it is not constant as for upward directed radiation, but is 
given by much more complex expression. As should be expected, the upward and in­
ward di-rections are not tantamount So, this result also can be formulated in probabilis­
tic language.

Two random events, consisting in that two photons incident on the semi-infinite 
atmosphere in certain fixed (diverse, in general) directions, will move at some (differ­
ent) depths in opposite directions, are correlated with the correlation coefficient given 
by (13).

Utilizing the reciprocity principle (7) in (10) and (12), one can write another 

pair of equations for the functions P and P.

+1

-J

=(X / 2)dp(t, H, 5) d « / ld)(*/ A’՛. I*՛. 5) rf«/ kl)

and

(1 ֊ X)Ïp(t,ç, g) P(t' ,-ç, Ji')?2 d ç = 

֊1
7 V (is)

= (X/ 2)(J P(T,ç,n)çrfç)(J P(t’,ç,|l'Ms)
-1 -1

Equations (10), (12) (alongside with (14) and (15)) involve four free parameters, 
so that they are pithy and have many consequences. In particular, letting in these 
equations t=ti and p = n՛, we obtain quadratic relations that are the prototypes of 
those obtained in [1].

3. Some consequences and applications. This section demonstrates how can 
be found and generalized the existing results and presents some new results.

i. Ambartsumian’s invariance equation. Setting in (10) t=t* and taking into 
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account the condition P(0,£,ji)=8(£ —p.) (5 is the Dirac 8-function), we arrive at the 
well-known invariance functional equation (l)for the reflection coefficient p. To elu­
cidate the similarity of equations (1) and (10), it is expedient to rewrite them as fol­
lows:

(H+§)P(T14) = (2/X)p(0,n)P(0,O. (16)

7P(T,g,T]) P(t’ ,-q,0 d ? = (2 / X) p(z,ri) p(x ,Q (17)

-t
where p(x,r\) is the photon exit probability [7] designed for the photon absorbed at 
optical depth t. It is seen that these two relations are constructed by similar fashion 
with the latter having more general meaning, so that relation (17) (i.e. (10)) can be 
regarded as the extension of the Ambartsumian’s invariance equation to the all depths 
in the atmospheres concerned with two separate transfer problems.

ii. The problem of diffuse reflection. Suppose that the atmosphere is illumi­
nated from outside by parallel beam of radiation of unit intensity (what does not 
impose any restriction) with directional cosine p. Using the superscripts + and - to 
denote the intensity with angular argument +r] and -T], respectively, and taking into 

account the probabilistic interpretation of the function P, one can write

r(r,n,|i) = P(:,H,-Tl)/Tl, Z“(T,n,p) = P(T„p,Ti)/n- <18)

Then equations (14) and (12) correspondingly yield:

= X/(t,h)J(t',p’) (19)
and

(1- = X^(T,p)Zr(T',p') (20)

in which the notations of [1] are used:

J (T> P) = (1 / 2) j [/+(t,n» P) + P)] d n, (2i)

o

H (t,p) = (1 / 2)j [Z+(T,n, p) - d n, (22)

o

1
= (1 / 2)J P՛) +

o
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Л(т,ц;т',ц') =
i

= (1 / 2)f [/+(’»П, H) (*’ >П, H ) + 7* (*’ ,П> И') Г (т,тъ н)Ь12 dт] <24)

о
The derivation of the corresponding quadratic relations is straightforward. The 

angular arguments m and m՛, which specify the directions of incident radiation in two 
diverse problems, enter into (19) and (20) as parameters, so that the relations of this 
type can be written for arbitrary angular distribution of illuminating radiation. Note 
also that equations (19) and (20) are the further generalization of proper equations of 
[2] and those given in [9]. They connect the radiation fields at diverse depths pertain­
ing two separate problems of diffuse reflection. Letting p=ji։, we obtain the Ivanov’s 
results; Rybicki’s results assume x=xl.

iii. Uniformly distributed sources. As in [1,2], the initial sources of energy are 
assumed to be due to thermal emission, therefore the source function has a form

5'(т) = Х/(т) + (1-Х)Л (25)

where B = const is related to the Planck function. This problem, as it was shown in 
[10], is closely connected with that of diffuse reflection treated in the previous subsec­
tion. Especially simple relationship exists between radiation fields in the atmosphere 
with uniformly distributed sources such that (25) holds, and the atmosphere illumi­
nated by isotropic radiation. The plain probabilistic considerations, based on the feet 
that the photon, moving somewhere in the semi-infinite atmosphere, will either be 
destroyed or escape it, enable one to write

It (т.п) = J It (t, n, ц) d ц = 1 - It (т.п, В)/В (26)

о

where the intensities relevant to the problem of diffuse reflection are supplied by 
asterisk. It is also convenient to mark explicitly the internal source in arguments of the 
proper intensities.

Integrating equations (19) and (20) over Ц and Ц՛ from 0 to 1, and incorporating 
the formulas (26) applied to the two separate problem with different values of sources 
В and B', after some algebra one can obtain

Q(x,B-,x\B') = XJ(x,B)J(x',B') +

+ (1 - X)[ВЦх' , В' ) + B' J(x, 5)] - (1 - X) вв՛,
(27)
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(1 -1) R(x, B\x' , B') = X H(x, B) H(x' , B') +

+(i - -k)[BK(y,B՛) + b՛ k(x,b)] ֊ 1/3 (i - *)BB'

where

K(x,B) = 1/2) [7+(t,h,20 + F(T։Tb20Jn2 d n, (29) 

0
and other quantities are given by (21)-(24) with p and p' replaced by B and B՝, res­
pectively. In terms of the source function equation (27) takes a form:

XQ(x,B,x’, J’) = S(x,B)S(x,,B,)-(l-tyBB' (30)

Again, as in the previous subsection, the bilinear relations are obtained that con­
nect the radiation fields at different depths in two separate problems, what also ge­
neralize the existing results. Inasmuch as at the surface (x = t — 0) Q and R vanish, 

equation (30) yields5(0) *= B-Jl-'k > whereas equation (28) leads to the simple 

relation between the first- and second-order moments of the q» -function.
It is evident that we could integrate equations (19) and (20) merely over one of 

two angular variables to obtain relations, connecting radiation fields pertaining two 
diverse problems, namely, the problem of diffuse reflection and that for an atmosphere 
with uniformly distributed sources. For instance, integrating (19) and (20) over p' 
from 0 to 1 and utilizing (26), one can write

Q(x,%x',B) = J(x,ii)S(x,B), (31)

, (l-l)JR(T,p;T',5) = XZr(T,p)Zr(T’,^) + (l-X)Jffr(T,J), (32)

where Q and R are given by (23) and (24), respectively, with p' replaced by B.

iv. Exponential source distribution. Having bilinear relations for the problem 
of diffuse reflection, one can readily derive appropriate relations in the case nf an at­
mosphere that contains energy sources with exponential variation over depth. As in 
[1]» the sources of the form b(x,m) = B(l-X)exp(-nrr) will be treated. However, we 
start with considering the case in which the initial sources distributed according to the 
formula (X/2)exp[-(T/p)]. It is clear physically that the radiation field in such atmos­
phere differs from that in the atmosphere illuminated by parallel beam of radiation 
merely by the contribution of non-scattered quanta into downward directed flux. There­
fore, one can write

(T>Tb p) = 7/ (r.ru p); r (t.t], p) = If (T,Tb p) + 6(t] - p)exp(-r/p)(33) 
where F correspond to the case of internal sources. Insertion (33) into (19) leads to the
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following ^-relation

+ A/2{//(■։, P, p')exp(-T'/p՛) +I, (t' ,p,p')cxp(-r/p)} (34)

. where Qt(x, p;t',p' ) is given by (23) with Z* taken in place of F, and 

^(r.p) " A. J/(T»I1) + • 1116 fi“1 res“1։ for A® sources distributed

as b(x,m) can be found formally by replacing the second arguments of in (48) 

as follows p ֊֊> 1/m, p'-> 1/m', and multiplying both sides of this relation by 

(2/X)2(l - X)2 BB' ■ It is apparent that such replacement is justified physically only 

for m, m'^. 1- Remind also that p and p՛ as the third arguments of If (and as the 

second ones of S, or Jz) specify the problem at hand so that must be replaced by m 
and rri, respectively. As a result the following ^-relation is obtained:

Xg(T,m;T։,m') = S(x,m)S(x' ,m')-

-[B(x,m)r(x ,l/m,m') + B(x ,m')r(x,l/m',m)

where b(x' ,m') = -B'(l- X)exp(- m՝ x’) - r/p, S(x, m) = X J(x, m) + b(x, m)\ 

and Q(x,nr,x ,m') is given according tothe formula (23) with m and m'substituted 

for p and p՛, respectively. By analogous manner one can derive /{-relation for the same 
sources, viz.

X(l-X)/?(■։, ,m') = [XH(x,m) - b(x,m)][kH(x’ ,m') - b(x'

֊(1 - X)[(l/m’’)b(x',m^rfx',1/m',m) + (l/m2)b(x,m)I+(x’,1/m,m') 

where the notation R is adopted for that of (24) with p, p՛ replaced by m, m
The derivation of appropriate "two-point" and quadratic relations on the base of 

(35) and (36) is straightforward. Note that in the specific case of m = m' and x — x', 

these equations enable one to exclude I+(x,l/m ,m), yielding the combined quadratic 

relation obtained in [1]. The latter is obviously valid for any value of m. The procedure 
alluded to above can be carried out with respect to only one triad of variables to give 
the 2-and /{-relations, connecting the problem at issue with that of diffuse reflection.

Thus, it is seen that there exists a class of transfer problems pertaining to the 
semi-infinite atmosphere, which are related by means of bilinear equations. It can be 
shown that this class can be extended to include the sources with the power-law 
distribution in the atmosphere.
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НЕКОТОРЫЕ НОВЫЕ НЕЛИНЕЙНЫЕ 
СООТНОШЕНИЯ ТЕОРИИ ПЕРЕНОСА ИЗЛУЧЕНИЯ

А.Г.НИКОГОСЯН

В статье представлена часть новых результатов, касающихся обобщения 
и физической интерпретации квадратичных и билинейных интегралов 
Райбики. Полученные на основе принципа инвариантности Амбарцумяна 
фундаментальные уравнения могут рассматриваться как распространение 
этого принципа на все глубины среды. Они позволяют вывести О- и Л- 
соотношения более общей структуры, чем те, которые извесны в настоящее 
время, и допускают простое вероятностное истолкование. Получено 
несколько соотношений, связывающее между собой задачи переноса 
излучения различного типа. Дается вывод отдельных 0֊ и R- уравнений 
для случая, когда источники распределены в полубесконечной среде по 
экспоненциальному закону.
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