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For fully, relativistic strong gravitation fields self consistent equations of hydrodynamics and field 
equations that describe all kinds of waves in the matter (from small perturbation to strong shock wave) are 
obtained. An algorithm of numerical method for the solution of these equations in the case of special equations 
of state for degenerate matter is described.

1. Introduction. After the discovery of quasars (1960) it became necessary to 
investigate the evolution of supermassive and superdense bodies in terms of fully 
relativistic hydrodynamics. In the early works of Zeldovich and Novikov [1 ], 
Podurets [2 ], an attempt was made to solve the problem as the problem of dust matter 
evolution is solved: analytic solution was found in the co-moving frame. But the 
co-moving frame is unsuitable for numerical calculations because in this frame the 
gravitational field in the vacuum depends on time.

Today we have a long list of works in the field of numerical investigation of star 
evolution such as Fackerell Ipser and Thorne [4 ], Ipser and Thorne [5 ], Katz and 
Horvitz [6 ]. The series of publications by Shapiro and Teukolskey 13 ] are devoted 
to numerical solution of Einstein’s equations for the dynamic evolution of the 
collisionless gas of particles and the equations of hydrodynamics are used as 
consequence from the General Relativity Theory field equations.

All this studies are based on solution of time equations of gravitational field.
Another approach is suggested in the works of Grigorian, Sadoyan [71. 

Gourgoulhon [8 ], where the dynamic equations are the hydrodynamic ones and 
gravitation equations add to the completeness of the system of equations. This 
approach is preferable because, on the one hand, the hydrodynamic equations arc 



672 H.GRIGORIAN, A.SADOYAN

generally independent of the theory of gravitation, on the other hand, it corresponds 
to the formalism of dynamics in classical mechanics.

Our aim is to investigate the "inner evolution" of spherical superdense matter 
configuration. The "inner state" can be described by state equation P(p) (P is 
pressure) of matter and two independent functions — by matter density p(r,f) > 

radial velocity v(r, t).
We try to represent these equations with the method of shock waves representation, 

because this approach solves two difficulties in numerical calculations:
1. The catastrophic increase of numercal errors,
2. The physical and numerical unstability confusion, both occurring during the 

numerical observation of wave propagation in the matter.
The obtained equations enable to investigate the evolution of all kinds of waves 

(from small perturbations to strong shock waves) in case of strong gravitational fields.

2. Basic Equations. Essentially the algorithm is a chain of calculations starting with 
the given density and velocity distribution at zero point of time to a new values of this 
physical quantities at the next moment, using the relativistic hydrodynamic 
equations.

It is obvious that during the evolution the configuration remains spherically 
symmetric and the hydrodynamic equation has the following form

vr = o, (1)

where the viscosity in matter is ignored. Here T = (p + P) u ® u — Pg is the 
energy momentum tensor, u is the 4-dimensional velocity, gis the metric tensor of 
space time, P and pare the pressure and density of the matter in co-moving frame 
(c = G = 1), V is a covariant differential operator corresponding to the connection 
of space-time manifold.

We can write the equation (1) in the following form

u [p] + (p + Py?-u= 0 (2)
'n [P] - (p + P)< n, V u >= 0

whereu {p} = Vup, n [ P ] = V„ P.
The vector n is a 4-dimensional vector orthogonal to the vector u, to isobar spheres 

and is normalized (trn =0 and n -n = -1). In the coordinate frame ( t, r, 6, <p)
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t f a , d\ n = tt (var+¥) ’

where v = is the coordinate velocity, and ■— are orts of the coordinate at at dr
system, u is the component of 4-dimensional velocity.

The most common type of metric in the spherical symmetric case is

ds2 (dr 4- fldt՝)2 - re\dtf + sin20dip) <3>

We use the thetrad basis 
o 4> . 

a) =e dt , 
a) = e\dr+fidf) , (4)

(D =r^d0 ,

a) = r/sin0 dip .

In the conjugate basis (e^ ) the vectors u and n are of the form: u = y (eo + w , 
n =y(weo +e]) .where w = (v —and y = (1 — w2) 1/2 , where w 
is the actual velocity on the sphere for an observer in the infinity, and ft is the velocity 
of the frame of an observer in the infinity. It is easy to see that for the 1-form of 

connection (D = Ea

o 1 2 o 2 3 o 3
0) = a (E{ + Eo) + a [w (E2 + EJ+(D (E3 + EJ] +

2 12 3 1 3 323
+ b [O) (E2 - EJ + O) (E3 - Et)] + c O) (E3 - EJ

where E is the basis for 4 x 4 matrix algebra, a=f(O° + h(j) is a 1-form and 
r*

a, b, C are scalar coefficients. So for such a choice of metric (4) the mentioned 
coefficients are

a=eo(xl , b = ex + ln(r)] , c = e2[ln(sfn 0)] , 

/ = gl[0] , h = .

Let us return to the system (2) and put there w = th (£). We obtain

V-u = n K1 + a (n) + 2u [x + ln(f)]
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<u ,VuU> = ~ *4? ] ֊ a (u) (6)

where a (11) and tt (fl) are the values of 1—form U on u. and fl vector fields. The 
overall information about the gravitational field is contained in the 1—form U.. ft and 
X depends on the coordinate frame of the observer.

if we put the expression (6) in the system (2) we obtain two first order hyperbolic 
differential equations The tangent vectors of characteristic lines of this equations are 

D=u ±cn, where c = ( is the velocity of sound in stellar matter.
± \dp!i
Now the system (2) can be written in the following form

u [7] + cn [?] + a (cn)+ 2cu fy + ln(r)] = 0
cn [I] + u [?] + a (u)= 0 *

where

By adding and subtracting these equations we obtain

D± [J± ].+ a (7>± ) ±.2cu (x + ln(r) ] = 0 (8)

where J± = ? ± 7 (o) .
This system of equations is a system for shock spherical waves. Remembering that 

a =fa>° + ha)1 and u = ch (?) e0 + sh (£) , n = sh (?) e0 + ch (?) ex , 

a. (D± ) = (A ± c f) sh(g) + (f ±c h) ch(g). We have 

So

D± =(fh © ±csh ©)e՜* | + (sA©±ccA©)<’

= y(l ±wc)e (9)

2
± 1 — w

v =c-r—----- ec 1 ± wc (10)

is the real velocity of sound i the direction of the flow (+) and opposite direction (-) 
in the frame connected with the center of the star. It is not difficult to see, that the 
propagation of sound depends not only upon the gravitation (like the red shift effect 
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of light), but also the flow of the matter (Doppler efect) ..which results in anisotropy 
of propagation.

3. Boundary Conditions. Up to now we did not fix the gravitational field equations 
and the observer’s coordinate frame to describe the hydrodynamics independently 
of the gravitational field theory. It is necessary to have conditions for gravitational 
field in space section for each moment. We assume that spherical pulsing stars have 
no gravitational radiation, thus the/, h, $ — ^functions in (9) can be defined for 
given matter state (density and velocity distributions).

In this work we illustrate our method by chossing Einstein GR theory. In GRT 
dynamic equations (8) are consequences of the field equations

(7 = &tT. (11)

The rest of this system gives us equations for connection. Tensor G in field equation 
(11) defines by 2-form of space-time manifold curvature

o 1 — i o 2 3 0 '3
Q = da(Ex +Eo)+^[a)(E2+Eo)+a>(E3+Eo)] +

o 1 2 3 o o o 2 J
+ Y^[co (E2 - EJ + a)(E3 -EJ] - (k + a - b ) to ^to (E3 - E2)

where
Aco to = da = (f^ — h՝°+? —h^to ^to° ,

B to + C (o =0 = - da + b a - a to° - ab to , 
C to +D to =y = - db + a a - b2 to1 - ab to ,

E +b -a =k=e /r ,
G =(E + 2D)to ® to + (28 -E)to ®to +2C (to°® co + to ® to) + 

2 2 3 3
+ (A+ B-D) (to ®co + to ® to) .

We choose the Schwarzschild coordinates, where % = 0 and /3 = 0, that enables us 
to find analytic static solutions of the gravitational field in the external region of the 
star (Birchoff theorem). So we have

2 2
E + 2D = 8jie = &r (pcA (£) +Psh ©) , 

՛ 2B - E = 8?rZ7 = 8ji (psh2 (Q + Pch2®),

C =-4a(p+P)sh(Q ch®.
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This system can be solved analytically.

2-2
h = C/b, f = B/b, b=r -E, Z> = l/(re )

we obtain
' 2 — 2

2rbb + 3b -r = -&7tE or 

r b =e = 1 - 2mr (12)

here m is the accumulated mass

m = An5er dr (13)
Using (12) we have 

, 3
■ _ Aner — m

V ~ r(r-2m) 

and
3 

' An Ilr +m 
~ r (r - 2m)

(generalized Oppenheimer-Volkoff equation).
Subtracting the last two equations and integrating we have

/3
2m +An(P —p) r , (14)
~r(r-2m) dr

and
, AnTlr3+m

r3b (15)

h = -An(P +p)sh(2£)/b

Finally, the equations (8) can be rewritten as 

B±[J±] +
2 ~ 

r a
r -2m

2sh(Q 
±------—c=0

(16)

where

a = (h ± cf) sh (?) + (/± ch) ch (?),
*** -3
h = -An (P + p) sh (2?) , f = AnU + mr and

D± = (ch (?) ± csh e ~^d/dt + (sh (?) ± c ch (?)) d/dr 
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The equations (16) with conditions (13) and (14) became a complete dynamic system 
for J + and J_ functions. So the unknown functions for dynamic problems can be 
obtained using

'w = th ((J+ +J_)/2)
•p=7-1((J+ ֊/_)/2) (17)

P=P(p)

Here I 1 is the opposite function for integral I (7).

4. Numerical Algorithm. For such nonlinear partial differential coupled set of 
hyperbolic equations it is impossible to find an analytic solution. That is why we need 
to offer an effective numerical method to solve such equations. Numerical algorithms 
for solving hyperbolic partial differential equations are well developed and have been 
implemented in many computer codes. One of such codes designed for solving 
dynamic problems in astrophysics is ZEUS [9 ] that uses hydrodynamic equations for 
nonrelativistic mechanics, taking into account the newtonian weak gravitational field 
based on the method of finite differences. In our problem we use the method of 
characteristics. As for the case of spherical symmetry the center of the configuration 
is a singular point of coordinate system and we must have a special boundary 
conditions. The functions must satisfy the conditions of regularity in the center of 
configuration at all moments. It means that for each moment the functions p and w 
near the center have the following behavior

_ ~ 2
p(r ,t)-pe®+ptf)r +...

w (r , t) - w (?) r + . . .

The physical meaning of these conditions is that in the center of the star every type 
of motion disappears except the change of density and gravitational potential 0. In 
other words, we can say that for spherically distributed configuration this very close 
region of center is a homogeneous core and its density increases or decreases 
respectively to the direction of the flux of matter. These conditions can be repeated 
for wave functions J±. In the region of the center J + (0 , f) = — J_ (0 , ?), 
that means that for each incoming wave an opposite outgoing wave in the core 
is generated and the flux of these waves must be equal to each other: 
J+ (r0 » t) ~ J + (0 , ?) = J_ (ro , f) — J_ (0 , f) . So the central boundary con­
ditions can be written as follows
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A.(o,o=| 

/-(o,0=|

where rQ is the radius of the homogeneous core. Other boundary conditions determine 
the surface of configuration where P=p— 0. It is known, that the vacuum solution 
of the gravitational field does not depend on time and for r > R we have

*(,.0—V(r,0 = ln(l-^)

where Af= m (R) is the total mass of the star and R — is the radius. The continuity 
of the inner and outer solutions of the gravitational field is demanded though the wave 
functions can be interrupted. It is easy to see that integral I (7) is null out of the 
matter distribution and we ran put J± (r , f) = 0 for r > R. Using these conditions 
we can find the right values for the functions (13), (14) in the center

^(0,0 = 0, 0(0,0 = in (1 +

2m +4n(P -p)t j „ . n <19>
+ 4t r(r-2m)dr-> "l(0’0=° •

Our algorithm consists of the following steps:
1) for t = 0 we determine the functions J+ (r, 0) and J_ (r , 0) corresponding to 
the given physical problem;
2) our aim is to determine the functions J + , J_ for each moment t satisfying 
the boundary conditions (18-19);
The exact code must limit the time step to satisfy the numerical stability condition. 
It can be understood as a limitation of the distance that information can travel in one 
time step to be smaller than one step of space network

a( < min (at)/(Iw I +c) .

The transfer from -* t2 = + a t is realized towards the characteristics of
operators D± . Characteristics are described by parameters s+ and $_ of D+ 
and D correspondingly, and for this short interval a t assumed to be linear 
approximated. Due to (9) for each event (rQ , t°) we can find spheres with radius 

r± = rg+ (w ± V՜ ) A t where the waves J and J _ propagates
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as± = s± (f) - s± | r_= (ch (Ç) ± c sh (Ç)) Xe * .

Finally, 
/±(/ ,0=/։(r„,y+n±I7±]((r։,yMt .

4) To determine the functions from the equations (8) the transformations (17) must 
be used.

5. Special Cases. The initial conditions of the problem are: .
a) for given physical .problem we need to have the state equations of matter as a 
functional connection between pressure and density P = P (p);
b) the initial state of the configuration is determined by two functions p (r , 0) and 
w (r , 0) for an arbitrary current moment.

Let’s consider two equations of state for which we can simplify the procedure of 
transformation (17). Equations of state of degenerated relativistic ideal gas are of the 
form

p=k(shT -T) 
' P=| (shT -8sh^ +3T)

where k is the coefficient describing the sort of matter, T is the parameter 
proportional to Fermi momentum of barions in degenerate matter. The speed of the
sound in this case is •

c=|tA2T/4

and integral
Z(T)=T/4V3.

The equation of state of polytrops is 
' - , l+l/nP =kp

where k is a coefficient, n is the index of the polytrops. The speed of the sound can

be obtained by C = (k (1 4- 1/n) p \ . To obtain the connection with the wave 
functions we denote a new parameter 0 :

p = 02fl/V^, P = y^-02('։+1)

and integral (7) will have the form
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I (0) = 2 Vn (n + 1) • arctn 0

Finally the connections (16) between wave functions and the couple of the velocity 
and the density of the matter is of the form

idealgas— T =2 V3(/+֊/_); w=1h ((/++/_)/2) 
polytrops — 0 = t n ( (J+ - J_ )/4 Vn (n+ 1) ) ’» 

w = th ((J+ + J_y2)

The next special case is presented by the configurations consisting of the dust matter, 
for which the pressure and consequently the speed of the sound are equal to zero. For 
this case we need to change our system (17), because it is invalid for c “ 0. However 
we can obtain the equations

2 
u[g] + \ a(u)=0

’ r - 2m v 7
2 r\ 1 £

u«l +u [Zn|p + P)] + ^2^a(n)+;£y£ = 0

when c tends to zero.
This equations are valid for the regions of phase transitions in any equation of state 
too (P = const, c = 0). For dust matter P = 0,

a (u) = - psh.2% + psh^ch^ + 
r

a (n) — (^psh $ + sh£ — pshl^ch^ 
*

We will present the numerical results calculated by this algorithm in a separate paper.
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ЧИСЛЕННЫЙ МЕТОД ДЛЯ ИЗУЧЕНИЯ ЭВОЛЮЦИИ 
СФЕРИЧЕСКИ-СИММТЕРИЧЕСКИХ СВЕРХПЛОТНЫХ

НЕБЕСНЫХ ТЕЛ

О.А.ГРИГОРЯН, А.А.САДОЯН

Для сильных гравитационных полей получены самосогласованные уравнения 
гидродинамики и поля, которые описывают распространение всех видов волн в 
материи (от малых колебаний до ударных волн). Получен алгоритм численного 
решения этих уравнений для некоторых уравнений состояния вырожденного 
вещества.
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