АСТРОФИЗИКА

TOM 36

ФЕВРАЛЬ, 1993

выпуск 1

У/К 524.33

ПОИСК ПЕРИОДИЧНОСТИ ИЗМЕНЕНИЙ БЛЕСКА ИЗОЛИРОВАННОЙ Ае-ЗВЕЗДЫ ХЕРБИГА WW ЛИСИЧКИ

н. а. волчкова

Поступила 25 ноября 1991 Принята к почати 20 декабря 1991

На основании опубликованных фотовлектрических наблюдений WW Vul проведен поиск пориодов в появлении алголеподобных минимумов блеска. Обнаруженный в [7] перкод $P=404^d$ не подтвержден. В спектре мощности присутствуют два интенсивных инка, соответствующие периодам $P_1=274^d$ и $P_2=1100^d$. Анализ показывает, однако, что ин один из них не обладает предсказательной силой и, следовательно, оба периода являются ложными.

1. Введение. Звезда WW Vul (Sp = A3e, $V = 10^m25 - 12^m6$ [1, 2]) относится к группе неправильных переменных звезд с непериодическими алголеподобными ослаблениями блеска [3]. Ее эволюционный статус в настоящее время не вполне ясен. Согласно [4] WW Vul может быть отнесена к подклассу изолированных Ае-звезд Хербига. К явным признакам, свидетельствующим о молодости звезды, относятся: 1) наличие инфракрсного избытка излучения, обусловленного тепловым излучением околозвездной пыли [5, 6]; 2) присутствие в спектре эмиссионной линии H_o ; 3) неоднозначкое поведение показателей цвета (U-B) и (B-V) в глубоких минимумах [7], харакцтерное также для ряда других неправильных переменных звезд, молодость которых не вызывает сомнений. В то же время, в непосредственной близости от звезды нет группировок молодых объектов или каких-либо других продуктов недавнего звездообразования.

Недавно у звезды обнаружен предсказанный в [8] сильный поляризационный эффект, заключающийся в значительном увеличении (до 5—6%) линейной поляризации в глубоких минимумах [9, 10]. Численное моделирование наблюдаемых изменений поляризации и блеска WW Vul показывает [11], что основным истотником поляризованного излучения является околозвездный пылевой диск, наблюдаемый почти. с ребра. Диск состоит из пылевых фрагментов (облаков) различных пространственных масштабов и межоблачной пыли, рассеивающей излучение звезды. При пересечении луча зрения большим пылевым облаком (способным закрыть от наблюдателя звезду) прямое пеполяризованное излучение звезды слабеет и увеличивается вклад излучения, рассеянного межзвездной пылью.

Вопрос состоит в том, что представляют собой вращающиеся вокруг звезды пылевые фрагменты, на каком расстоянии от знезды они находятся и могут ли среди них быть объекты планетозимального типа? Этот вопрос тесно связан с другим: существует ли хотя бы один значимый (т. е., обладающий предсказательной силой) период в появлении алголеподобных минимумов WW Vul?

По данным Г. В. Зайцевой [7], основанным на анализе полученных ею длительных рядов фотовлектрических наблюдений, такой период у WW Vul существует и равен 404^d. В этом [анализе были, однако, опущены данные наблюдений, относящиеся к "спокойному" состоянию ввезды, когда ее блеск в течение длительных интервалов времени не испытывал больших изменений и был близок к максимальному.

Ниже приводятся результаты фурье-анализа всех опубликованных к настоящему времени фотовлектрических наблюдений WW Vul.

2. Фурье-аналия фотовлектрических наблюдений WW Vul. Исследуемый ряд (рис. 1) представляет собой совокупность фотовлектрических наблюдений WW Vul, выполненных Г. В. Зайцевой в 1967—1982 г.г. [7], В. И. Кардополовым и Г. К. Филипьевым в 1978—1981 гг. [12], а также наблюдения в КрАО и на Санглоке с 1986 г. по 1989 г. [9, 10]. В итоге покрыт (хотя и с разной степенью плотности) временной интервал JD 2439650—2447750 продолжительностью около 22 лет.

При анализе втого ряда были приняты меры, позволяющие свести к минимуму возможные побочные эффекты субъективного характера. К числу подобных эффектов относится "повышенное внимание" наблюдателей к звезде в те периоды времени, когда она находилась в активном состоянии и ее блеск испытывал заметные изменения от ночи к ночи. Это хорошо видно из рис. 1: активные состояния звезды наблюдались, как правило, более детально по сравнению со спокойными состояниями. В частности, в моменты наиболее глубоких минимумов блеск звезды обычно регистрировался несколько раз (иногда до десяти) за ночь. В подобных случаях мы усредняли все изменения блеска WW Vul, выполненные в течение ночи. Таким образом, исходный массив наблюдательных данных построен по принципу: одна точка в ночь.

Поиск возможных периодов осуществлялся методом Диминга в диапазоне частот $0:0.05\ d^{-1}$, что соответствует периодам $P>20^d$. Разрешение по частоте $d=3.09\times 10^{-5}\ d^{-1}$. Полученный спектр мощности показан на рисунке 2. Три максимума, два из которых порождены скважностью наблюдений, формально имеют весьма высокую статистическую значимость, близкую к $100^0/_{\bullet}$, однако детальное рассмотрение сверток с этими периодами (рис. 3) показывает, что на фазы минимумов приходятся также и яркие состояния звезды. Более того, оказалось, что период $P=1100^d$ обеспечивается совпадением всето трех глубоких минимумов, а период $P=274^d$ — четырех из девяти наблюдавшихся.

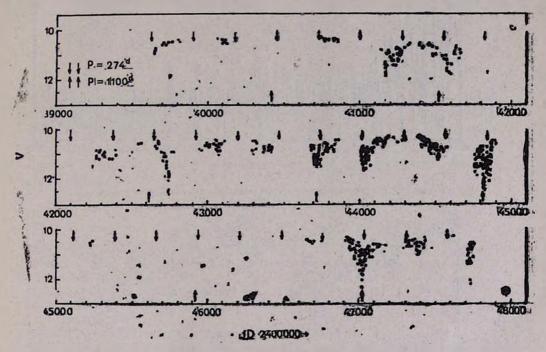


Рис. 1. Кривая блеска WW Vul. Стрелками отмечены даты с одной и той ме фазой для соответствующих периодов.

^{•)} Строго говоря, применение метода Диминга не вполне оправдано при проверке на периодичность процессов, имеющих сильно выраженный несинусондальный характер. Поэтому проверка реальности найденных периодов осуществляется с использованием месткого иритерия: периоды должны подтверждаться в 100% случаев.

3. Заключение. Таким образом, Фурье-анализ имеющихся рядов фотовлектрических наблюдений WW Vul приводит к следующий выводам:

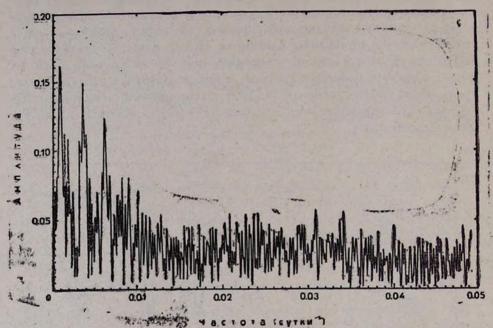


Рис. 2. Спектр мощности исследуемого ряда, полученный методом Диминга.

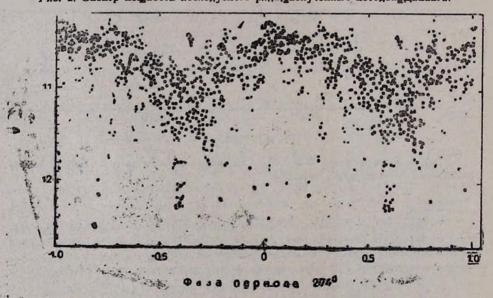


Рис. 3. Свертка кривой блеска с периодом $P=274^d$.

- 1) Найденный в [7] период $P = 404^d$ не подтверждается.
- 2) В спектре мощности присутствуют два пика, соответствующие периодам $P=274^d$ и $P=1100^d$. Однако, несмотря на высокую формальную значимость, ни один из них не обладает предсказательной силой и, следовательно, не является реальным.
- 3) Если предположить, что пылевые облака вращаются вокруг ввезды по кеплеровским орбитам и принять, следуя [13], массу WW Vul равной $2\,M_{\odot}$, то из предыдущего можно заключить, что радиусы орбит не могут быть меньше 4-5 астрономических единиц.

Крымская астрофизическая обсерватория

SEARCH FOR PERIODICITY IN LIGHT VARIATIONS OF ISOLATED HERBIG As STAR WW VULPECULAE

N. A. VOLCHKOVA

The standard Deeming technique for Fourier analysis was applied to search for periods of Algol-type minima of WW Vul observations. The 404 days period reported in [7] is not confirmed. Two most intensive maxima in the power spectrum are: $P_1 = 274^d$ and $P_2 = 1100^d$ but any of them have the predictable sense and therefore both periods are erroneous.

ЛИТЕРАТУРА

- 1. Е. А. Колотилов, Астрофизика, 13, 33, 1977.
- G. H. Herbig, K. Robbin Bell, Third Catalog of Emission-Line Stars of the Orion Population, 1988.
- 3. S. Rossiger, W. Wenzel, Astron. Nachr., 294, 29, 1972.
- 4. U. Bastian, U., Finkenželler, G. Jaechek, M. Jaschek, Astron. Astrophys., 126. 438, 1983.
- 5. M. Cohen, Mon. Notic. Roy. Astron. Soc., 161, 105, 1973.
- 6. I. S. Glass, M. V. Penston, Mon. Notic. Roy. Astron. Soc., 167, 237, 1974.
- 7. Г. В. Зейцева. Перемен. ввезды, 22, 1, 1983.
- 8. В. П. Гринин, Письма в Астрон. ж., 14, 65, 1988.
- 9. В. П. Гринин, Н. Н. Киселев, Н. Х. Миникулов, Г. П. Чернова, Письма в Астрон. м., 14, 514, 1988.
- А. В. Бердюгин, В. П. Гринин, Н. Х. Миникулов, Изв. Крым. астрофиз. обсерв., 1991 (в печати).
- 11. Н. В. Вощинников, В. П. Гринин, Астрофизика, 34, 181, 1991.
- 12. В. И. Кардополов, Г. К. Филипьев, Перемен. ввезды, 22, 122, 1985.
- 13. Г. В. Зайцева, П. Ф. Чугайнов, Астрофизика, 20, 442, 1984.