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Abstract. This research is a continuation of the recent papers [20, 21]. In this paper,
we deal with the uniqueness problems on the derivative of f(z) with its shift f(z + c),
and give a new perspective on discussing the complex differential-difference equation
f ′(z) = f(z + c).

MSC2010 numbers: 39B32; 30D35.
Keywords: value sharing; differential-difference equations; entire functions.

1. Introduction

It is well known that Nevanlinna theory has a wide range of applications in

considering the value distribution of meromorphic solutions of complex differential

equations. In addition, with the difference correspondence of the logarithmic derivative

lemma obtained by Chiang-Feng [3], and Halburd-Korhonen [7] respectively, the

complex domain differences and the complex difference equations also developed

rapidly. The related results, readers can refer to [2].

Although the research of complex differential-difference equations can be traced

back to Naftalevich’s work in [5, 16, 17], the investigations on complex differential-

difference field using Nevanlinna theory are still very few. Therefore, the relevant

results are very limited, the reader is invited to see [11, 12, 14, 15, 19, 22].

In comparison, in real analysis, the researches on differential-difference equations

are too numerous to enumerate. For example, there are extensive studies on the

delay equations f ′(x) = f(x−k), (k > 0) in real analysis. The related results can be

found in [1]. Inspired by such results, Liu and Dong [13] discussed the properties of

the solutions of complex differential-difference equations f ′(z) = f(z+c). Recently,

we looked at this equation from another point of view, that is, “under what sharing

value conditions, does f ′(z) = f(z + c) hold?” And in [20], we obtained

1The work was supported by the NNSF of China (No. 11661052, 11801215, 12061042) and the
NSF of Shandong Province (No. ZR2016AQ20, ZR2018MA021).
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Theorem A. Let f(z) be a transcendental entire function of finite order, and let

a(6= 0) ∈ C. If f ′(z) and f(z + c) share 0, a CM, then f ′(z) = f(z + c).

Here, we pose a list of questions related to Theorem A. These questions will be

considered in the following.

1. If the condition “f ′(z) and f(z + c) share 0, a CM” is changed to “f ′(z) and

f(z + c) share two distinct values a, b CM”, is Theorem A still true?

2. Can value sharing condition or the restriction on the order of f(z) be improved

in Theorem A?

Remark. In fact, the solutions of f ′(z) = f(z + c) must be transcendental entire

functions. Otherwise, suppose that z0 is a pole of f(z), then from f ′(z) = f(z+ c),

we know z0+nc are poles of f(z) also. Hence, f(z) must have infinitely many poles.

If m is the minimum order of all poles of f(z), then m is the minimum order of all

poles of f(z+ c) as well. However, the minimum order of all poles of f ′(z) is 1 +m,

which contradicts f ′(z) = f(z + c). Hence, we just need to consider the condition

that f(z) is a transcendental entire function in the following.

In this paper, we will continue to consider the uniqueness problem for the

derivative of f(z) with its shift f(z + c). The reminder of this paper is organized

as follows: In Section 2, for Question 1, we will give a positive answer by giving

Theorem 2.1. In Section 3, we will give two uniqueness results for f ′(z) sharing one

value with f(z + c), under some appropriate deficiency assumptions.

2. Functions share two values CM

Theorem 2.1. Let f(z) be a transcendental entire function of hyper-order strictly

less than 1. If f ′(z) and f(z + c) share two distinct values a, b CM, then f ′(z) =

f(z + c).

The following lemma plays a key role in proving Theorem 2.1.

Lemma 2.1. [10, Theorem 1] Suppose that f(z) and g(z) are two distinct non-

constant entire functions. If f(z) and g(z) share the values 0 and 1 CM, then they

assume one of the following cases:

(1) f(z) = d(1− eA(z)), g(z) = (1− d)(1− e−A(z));

(2) f(z) = e−nA(z)
∑n
j=0 e

jA(z), g(z) =
∑n
j=0 e

jA(z), n = 1, 2, . . . ;

(3) f(z) = −e−(n+1)A(z)
∑n
j=0 e

jA(z), g(z) = −eA(z)
∑n
j=0 e

jA(z), n = 0, 1, 2, . . . ,

where d(6= 0, 1) is a constant, and A(z) is a non-constant entire function.
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Lemma 2.2. [23, Theorem 1.51] Suppose that fj(z) (j = 1, . . . n) (n ≥ 2) are

meromorphic functions and gj(z) (j = 1, . . . , n) are entire functions satisfying the

following conditions.

(1)
∑n
j=1 fj(z)e

gj(z) = 0.

(2) 1 ≤ j < k ≤ n, gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n.
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)}, r →∞, r 6∈ E,

where E ⊂ (1,∞) is of finite linear measure.

Then fj(z) = 0.

Lemma 2.3. [2, Theorem 1.3] Let h2(z) 6≡ 0, h1(z), F (z) be polynomials, c2, c1(6=
c2) be constants. Suppose that f(z) is a transcendental meromorphic solution of

difference equation

h2(z)f(z + c2) + h1(z)f(z + c1) = F (z).

Then, ρ(f) ≥ 1, where ρ(f) is the order of f(z).

Lemma 2.4. [23, Lemma 5.1] Let f(z) be a non-constant periodic meromorphic

function. Then, ρ(f) ≥ 1.

Proof of Theorem 2.1. Suppose that f ′(z) 6≡ f(z + c). Set

(2.1) F (z) =
f ′(z)− a
b− a

, G(z) =
f(z + c)− a

b− a
.

Then, from the value sharing assumption and Lemma 2.1, one of the following cases

holds:

Case 1. If

(2.2) f ′(z) = (b− a)d(1− eA(z)) + a

and

(2.3) f(z + c) = (b− a)(1− d)(1− e−A(z)) + a.

Here and below, A(z) is a non-constant entire function of order less than 1. Then,

(2.2) and (2.3) give

(2.4) deA(z+c) + (1− d)A′e−A(z) − (
a

b− a
+ d) = 0.

Subcase 1.1. If A(z) is a non-constant polynomial, then we have A(z), A(z+ c) and

A(z + c) + A(z) are non-constant polynomials. Applying Lemma 2.2 to (2.4), we

have a contradiction.

Subcase 1.2. If A(z) is a transcendental entire function of order less than 1. Then,

we confirm that A(z+c)+A(z) must be transcendental. Otherwise, we suppose that
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A(z + c) + A(z) is a polynomial, then from Lemma 2.3, we deduce that ρ(A) ≥ 1,

which is a contradiction. Further, applying Lemma 2.2 to (2.4) again, we obtain a

contradiction as well.

Case 2. If

(2.5) f ′(z) = (b− a)(1 + e−A + e−2A + · · ·+ e−nA) + a

and

(2.6) f(z + c) = (b− a)(1 + eA + e2A + · · ·+ enA) + a.

Then, combining (2.5) and (2.6), we have

(2.7)

nA′enA + · · · 2A′e2A +A′eA − b

b− a
− e−A(z+c) − e−2A(z+c) − · · · − e−nA(z+c) = 0.

Subcase 2.1. If A(z) is a non-constant polynomial, then we obtain that sA(z) +

tA(z+ c) is a non-constant polynomial, where s, t(6= −s) are two integers such that

s2 + t2 6= 0. Hence, by Lemma 2.2 and (2.7), we have a contradiction.

Subcase 2.2. If A(z) is a transcendental entire function of order less than 1.

Then, using the same way of Subcase 1.2, we have λA(z) + µA(z + c) must be

transcendental, where λ, µ are two integers such that λ2 +µ2 6= 0. Hence, applying

Lemma 2.2 to (2.7), we obtian a contradiction.

Case 3. If

(2.8) f ′(z) = (a− b)(e−A + e−2A + · · ·+ e−(n+1)A) + a,

and

(2.9) f(z + c) = (a− b)(eA + e2A + · · ·+ e(n+1)A) + a.

Then, by (2.8) and (2.9), it follows that

(n+ 1)A′e(n+1)A + · · ·+ 2A′e2A +A′eA +
a

b− a
− e−A(z+c) − e−2A(z+c) + · · · − e−(n+1)A(z+c) = 0,

(2.10)

and as in Case 2, we get a contradiction. Therefore, f ′(z) = f(z + c).

Remark. From the proof of the Theorem 2.1, we can find that Lemma 2.1 can

make our proof of Theorem 2.1 very simple. However, without the application of

Lemma 2.1, our proof will be very cumbersome. In fact, we have already given a

complicated proof before. In addition, using Lemma 2.1, we can not only give a

very simple proof of Theorem B [25, Theorem 1.1], but also improve Theorem B.

Theorem B. Let f(z) be a transcendental entire function of finite order and a, b

be two distinct constants. If 4f(z) = f(z+ c)− f(z)( 6≡ 0) and f(z) share a, b CM,

then 4f(z) = f(z).
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In fact, we have

Theorem 2.2. Let f(z) be a transcendental entire function of hyper-order strictly

less than 1, and let a, b be two distinct constants. If 4f(z)( 6≡ 0) and f(z) share a, b

CM, then 4f(z) = f(z).

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1. For the

convenience of the reader, we will give a brief proof here.

Proof of Theorem 2.2. Similarly as in Theorem 2.1, if f(z) 6≡ 4f(z), then we

have three possibilities:

Case 1.

(2.11) (1− d)eA(z+c) − deA − (1− d)e−A + d+
a

b− a
= 0.

Case 2.

enA + e(n−1)A + · · · eA +
b

b− a
+ e−A + e−2A + · · ·+ e−nA

− e−A(z+c) + e−2A(z+c) + · · ·+ e−nA(z+c) = 0.

(2.12)

Case 3.

e(n+1)A + enA + · · · eA − a

b− a
+ e−A + e−2A + · · ·+ e−(n+1)A

− e−A(z+c) + e−2A(z+c) + · · ·+ e−(n+1)A(z+c) = 0.
(2.13)

The only difference the proof of Theorem 2.1 is that, we need to prove one more case:

A(z+ c)−A(z) is not a constant, when A(z) is a non-constant polynomial.

Here, we only prove the Case 1, as for the Cases 2 and 3, we can prove similarly.

Otherwise, we suppose A(z + 1)−A(z) = α, where α is a constant. Then, from

Lemma 2.4, we have α 6= 0. Further, we have

(2.14) A(z) = αz + β,

where β is a constant. Substituting (2.14) into (2.11), it follows that

(2.15) ((1− d)eαc+β − deβ)eαz + d+
a

b− a
− (1− d)e−βe−αz = 0.

Applying Lemma 2.2 to (2.15), we get a contradiction. Thus, A(z+ c)−A(z) is not

a constant.

3. Functions share one value CM or IM

First of all, let’s give the definitions that we need in the following proof.

Definitions. Suppose that z is a zero of F − 1 with multiplicity m, meanwhile,

a zero of G − 1 with multiplicity n. Then, we denote by NL(r, 1
F−1 ) the reduced

counting function of those 0-points of F − 1 when m > n; by N
(2
E (r, 1

F−1 ) the

reduced counting function of those 0-points of F − 1 when m = n ≥ 2. In addition,
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N (2(r, 1
F ) is the counting function of zeros of F whose multiplicities are greater

than 2, N0(r, 1
F ′ ) is the counting function of zeros of F ′ but not the zeros of F and

F−1. Notations NL(r, 1
G−1 ), N (2

E (r, 1
G−1 ), N (2(r, 1

G ) and N0(r, 1
G′ ) can be similarly

defined. Moreover, we define δ(0, f) as following

δ(0, f) = 1− lim sup
r→∞

N(r, 1f )

T (r, f)
.

Since in [21], we have given partial results for cases “1 CM+ 1IM"and “2 IM". Hence,

in the following, we just give the result of f ′(z) share one value with f(z+c), under

the deficiency assumption.

Theorem 3.1. Let f(z) be a transcendental entire function of hyper-order strictly

less than 1, and let a(6≡ 0) ∈ C. If f ′(z) and f(z + c) share a CM and δ(0, f) > 1
2 .

Then, f ′(z) = f(z + c).

For the sharing assumption “1 IM”, we obtain

Theorem 3.2. Let f(z) be a transcendental entire function of hyper-order strictly

less than 1, and let a(6≡ 0) ∈ C. If f ′(z) and f(z + c) share a IM and δ(0, f) > 4
5 .

Then, f ′(z) = f(z + c).

In order to prove Theorems 3.1-3.2, we need the following lemmas. From Theorem

5.1 in [8], we can immediately obtain the following result:

Lemma 3.1. Let f(z) be a meromorphic function of hyper-order strictly less than

1. Then,

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Remark. Here and below, we denote by S(r, f) any quantity satisfying S(r, f) =

o(T (r, f)) as r →∞ outside a possible exceptional set of finite logarithmic measure.

Meanwhile, by S1(r, f) we denote any quantity satisfying S1(r, f) = o(T (r, f)) for

all r outside of a possible exceptional set of finite linear measure.

From Lemma 8.3 in [8] and Lemma 3.1, we have the following lemma:

Lemma 3.2. [3, Lemma 5.1] Let f(z) be a meromorphic function of hyper-order

strictly less than 1, then we have

T (r, f(z + c)) = T (r, f) + S(r, f).

The following result is just a simple modification of the result of meromorphic

functions with finite order in Lemma 2.5 [18]:
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Lemma 3.3. Let f(z) be a meromorphic function of hyper-order strictly less than

1, then

N

(
r,

1

f(z + c)

)
≤ N(r,

1

f
) + S(r, f).

Lemma 3.4. [23, Theorem 1.24] Suppose f(z) is a non-zero meromorphic function

in the complex plane and k is a positive integer. Then,

N

(
r,

1

f (k)

)
≤ N(r,

1

f
) + kN(r, f) + S1(r, f).

Lemma 3.5. [24, Lemma 3] Let F (z) and G(z) be two non-constant meromorphic

functions, and let

(3.1) Φ(z) =

(
F ′′(z)

F ′(z)
− 2F ′(z)

F (z)− 1

)
−
(
G′′(z)

G′(z)
− 2G′(z)

G(z)− 1

)
.

If F (z) and G(z) share 1 IM and Φ(z) 6≡ 0. Then,

(3.2) N
1)
E (r,

1

F − 1
) ≤ N(r,Φ) + S1(r, F ) + S1(r,G),

where N1)
E (r, 1

F−1 ) is the reduced counting function of the common simple zeros of

F − 1 and G− 1.

Proof of Theorem 3.2. Set

(3.3) F (z) =
f ′(z)

a
, G(z) =

f(z + c)

a
.

Then, by the sharing values assumption, we get F (z) andG(z) share 1 IM. Moreover,

T (r, F ) = T (r, f ′) + S(r, f) ≤ T (r, f) + S(r, f).

And Lemma 3.2 gives

T (r,G) = T (r, f(z + c)) + S(r, f) = T (r, f) + S(r, f).

Hence,

S(r, F ) = S(r, f), S(r,G) = S(r, f).

Further, from Lemma 3.4, it follows that

(3.4) N(r,
1

F
) ≤ N(r,

1

f ′
) + S(r, f) ≤ N(r,

1

f
) + S(r, f).

And Lemma 3.3 leads to

(3.5) N(r,
1

G
) ≤ N

(
r,

1

f(z + c)

)
+ S(r, f) ≤ N(r,

1

f
) + S(r, f).

Let Φ(z) be given by (3.1). Then, we will discuss two cases as follows.
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Case 1. Suppose Φ(z) 6≡ 0. Then, from (3.1) and the sharing values assumption,

we have

N(r,Φ) ≤ N (2(r,
1

F
) +N (2(r,

1

G
) +NL(r,

1

F − 1
)

+NL(r,
1

G− 1
) +N0(r,

1

F ′
) +N0(r,

1

G′
) + S(r, f).

(3.6)

Moreover, we have

N(r,
1

F − 1
) = N

1)
E (r,

1

F − 1
) +N

(2
E (r,

1

F − 1
) +NL(r,

1

F − 1
) +NL(r,

1

G− 1
).

Noting F (z) and G(z) share 1 IM, and so

N(r,
1

F − 1
) +N(r,

1

G− 1
)

= 2N
1)
E (r,

1

F − 1
) + 2N

(2
E (r,

1

F − 1
) + 2NL(r,

1

F − 1
) + 2NL(r,

1

G− 1
).

(3.7)

Thus, combining (3.2), (3.6) and (3.7) yields

N(r,
1

F − 1
) +N(r,

1

G− 1
)

≤ N(r,Φ) +N
1)
E (r,

1

F − 1
) + 2N

(2
E (r,

1

F − 1
)

+ 2NL(r,
1

F − 1
) + 2NL(r,

1

G− 1
) + S(r, f)

≤ N (2(r,
1

F
) +N (2(r,

1

G
) + 3NL(r,

1

F − 1
) + 3NL(r,

1

G− 1
)

+N
1)
E (r,

1

F − 1
) + 2N

(2
E (r,

1

F − 1
) +N0(r,

1

F ′
) +N0(r,

1

G′
) + S(r, f).

(3.8)

Obviously,

NL(r,
1

G− 1
) + 2NL(r,

1

F − 1
) +N

1)
E (r,

1

F − 1
) + 2N

(2
E (r,

1

F − 1
)

≤ N(r,
1

F − 1
) ≤ T (r, F ) + S(r, f).

Substituting the above inequality into (3.8) yields

N(r,
1

F − 1
) +N(r,

1

G− 1
)

≤ N (2(r,
1

F
) +N (2(r,

1

G
) + 2NL(r,

1

G− 1
) +NL(r,

1

F − 1
)

+N0(r,
1

F ′
) +N0(r,

1

G′
) + T (r, F ) + S(r, f),

(3.9)

On the other hand, applying the second main theorem, we derive that

T (r, F ) + T (r,G)

< N(r,
1

F
) +N(r,

1

F − 1
) +N(r,

1

G
) +N(r,

1

G− 1
)

−N0(r,
1

F ′
)−N0(r,

1

G′
) + S(r, f).

(3.10)
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It is easy to see

(3.11) N(r,
1

F
) +N (2(r,

1

F
) ≤ N(r,

1

F
), N(r,

1

G
) +N (2(r,

1

G
) ≤ N(r,

1

G
).

Hence, it follows from (3.4), (3.5) and (3.9)–(3.11), that

T (r, f) = T (r,G) + S(r, f)

≤ N(r,
1

F
) +N(r,

1

G
) + 2NL(r,

1

G− 1
) +NL(r,

1

F − 1
) + S(r, f)

≤ 2N(r,
1

f
) + 2NL(r,

1

G− 1
) +NL(r,

1

F − 1
) + S(r, f).

(3.12)

Furthermore, by Lemma 3.4 and (3.4), we obtain

(3.13) NL(r,
1

F − 1
) ≤ N(r,

1

F ′
) ≤ N(r,

1

F
) + S(r, f) ≤ N(r,

1

f
) + S(r, f).

Similarly, we have

NL(r,
1

G− 1
) ≤ N(r,

1

f
) + S(r, f).(3.14)

Substituting (3.13) and (3.14) into (3.12) yields that

T (r, f) ≤ 5N(r,
1

f
) + S(r, f),

which contradicts the assumption δ(0, f) > 4
5 .

Case 2. Suppose Φ(z) = 0. Then, integrating twice, it follows from (3.1) that

(3.15)
1

G− 1
=

α

F − 1
+ β,

where α(6= 0) and β are constants. Rewrite (3.15) as

(3.16) F =
(β − α)G+ (α− β − 1)

βG− (β + 1)
.

Subcase 2.1. If β 6= 0,−1. Then, by (3.16), we have

N

(
r,

1

G− β+1
β

)
= N(r, F ).

From the second main theorem and (3.5), we obtain

T (r, f) = T (r,G) + S(r, f)

≤ N(r,
1

G
) +N

(
r,

1

G− B+1
B

)
+ S(r, f)

≤ N(r,
1

G
) +N(r, F ) + S(r, f) ≤ N(r,

1

f
) + S(r, f),

(3.17)

which contradicts the assumption δ(0, f) > 4
5 .

Subcase 2.2. If β = 0. Then, we rewrite (3.16) as

(3.18) F = αG− (α− 1).
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If α 6= 1, then by (3.18), we have

N

(
r,

1

G− α−1
α

)
= N(r,

1

F
).

Similarly as Subcase 2.1, we get a contradiction as well.

If α = 1, then by (3.18), we have F = G. That is, f ′(z) = f(z + c).

Subcase 2.3. If β = −1. Then, (3.16) can be rewritten as

(3.19) F =
(α+ 1)G− α

G
.

If α 6= −1, then by (3.19), it follows that

N

(
r,

1

G− α
α+1

)
= N(r,

1

F
),

Using the same reasoning as in Subcase 2.1, we also get a contradiction.

If α = −1. then (3.19) leads to FG = 1, which means that

(3.20) f ′f(z + c) = a2.

By f ′(z) and f(z + c) share ∞ CM and (3.20), we deduce that

N

(
r,

1

f(z + c)

)
= S(r, f).

Moreover, from Lemma 3.1, Lemma on the logarithmic derivative and (3.20), it

follows that

m

(
r,

1

f(z + c)

)
=

1

2
m

(
r,

1

f(z + c)2

)
+ S(r, f)

≤ m
(
r,
f ′f(z + c)

f(z + c)2

)
+m

(
r,

1

f ′f(z + c)

)
+ S(r, f)

≤ m
(
r,

f ′

f(z + c)

f

f

)
+m(r,

1

a2
) + S(r, f)

≤ m(r,
1

a2
) + S(r, f) = S(r, f).

Therefore, by Lemma 3.2, we have

T (r, f) = T (r, f(z + c)) + S(r, f) = S(r, f),

which is a contradiction.

Proof of Theorem 3.1. Using the same way of Theorem 3.2, we also obtain (3.12),

i.e.,

T (r, f) ≤ 2N(r,
1

f
) + 2NL(r,

1

G− 1
) +NL(r,

1

F − 1
) + S(r, f).

From the assumption that f(z) and f(z + c) share a CM, we know that F (z) and

G(z) share 1 CM. Thus,

2NL(r,
1

F − 1
) +NL(r,

1

G− 1
) = 0.
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And so,

T (r, f) ≤ 2N(r,
1

f
) + S(r, f),

which contradicts the assumption that δ(0, f) > 1
2 .
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