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Abstract. We study oscillatory properties of solutions of the Emden-Fowler type difference
equation ∆(n)u(k) + p(k)

∣∣u(σ(k)
)∣∣λ signu

(
σ(k)

)
= 0, where n ≥ 2, 0 < λ < 1, p : N→ R+,

σ : N→ N and σ(k) ≥ k + 1 for k ∈ N. Sufficient conditions of new type for oscillation of
solutions of the above equation are established. Analogous results for linear ordinary and
nonlinear functional differential equations see in [1–8].
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1. Introduction

This work is dedicated to the study of oscillatory properties of the difference
equation

(1.1) ∆(n)u(k) + p(k)
∣∣u(σ(k)

)∣∣λ signu
(
σ(k)

)
= 0,

where n ≥ 2, p : N→ R+, σ : N→ N and

(1.2) 0 < λ < 1, σ(k) ≥ k + 1 for k ∈ N.

Here ∆(1)u(k) = u(k+ 1)− u(k), ∆(i) = ∆(1) ◦∆(i−1) (i = 2, . . . , n). It will always
be assumed that the condition

(1.3) p(k) ≥ 0 for k ∈ N

is fulfilled. The following notation will be used throughout the work:
Let k0 ∈ N. By N+

k0
(N−k0) we denote the set of natural number N+

k0
= {k0, k0 +

1, . . . } (N−k0 = {1, 2, . . . , k0}).

Definition 1.1. Let k0 ∈ N. We will call a function u : N+
k0
→ R a proper solution

of the equation (1.1), if it satisfies (1.1) on N+
k0

and

sup
{∣∣u(i)

∣∣ : i ∈ N+
k

}
> 0 for any k ∈ N+

k0
.

Definition 1.2. We say that a proper solution u : N+
k0
→ R of equation (1.1) is

oscillatory, if for any k ∈ N+
k0

there exist k1; k2 ∈ N+
k such that u(k1)u(k2) ≤ 0.

Otherwise the solution is called nonoscillatory.
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Definition 1.3. We say that equation (1.1) has Property A if any its proper
solutions is oscillatory when n is even and either is oscillatory or satisfies

(1.4)
∣∣∆(i)u(k)

∣∣ ↓ 0 as k ↑ +∞, k ∈ N (i = 0, . . . , n− 1), when n is odd.

Some results analogous to those of the paper are given without proofs in [9–11].
The problem of establishing sufficient conditions for the oscillation of all solutions
to the second order linear and nonlinear difference equations see in [12–16].

2. On some classes of nonoscillatory discrete functions

Lemma 2.1. Let n ≥ 2, k0 ∈ N, u : N+
k0
→ R and u(k) > 0, ∆(n)u(k) ≤ 0 for

k ∈ N+
k0
, ∆(n)u(k) 6≡ 0 for any s ∈ N+

k0
and k ∈ N+

s . Then there exist k1 ∈ N+
k0

and
` ∈ {0, . . . , n} such that `+ n is odd and

(2.1)

∆(i)u(k) > 0 for k ∈ N+
k1

(i = 0, . . . , `),

(−1)i+`∆(i)u(k) > 0 for k ∈ N+
k1

(i = `, . . . , n− 1),

∆(n)u(k) ≤ 0 for k ∈ N+
k1
.

Proof. The Lemma follows immediately from the fact that, if u(k)>0 and ∆(2)u(k)≤
0 for k ∈ N+

k0
, then there exist k1 ∈ N+

k0
, such that ∆(1)u(k) > 0 for k ∈ Nk1 . �

Remark 2.1. It is obvious that if u; v : N → R and ∆(i)u(k0) = ∆(i)v(k0) (i =

0, . . . ,m−1) and ∆(m)u(k) = ∆(m)v(k) for k ∈ N+
k0

(for k ∈ N−k0). Then u(k) = v(k)

for k ∈ N+
k0

(for k ∈ N−k0).

Lemma 2.2. Let u : N→ R, m; s ∈ N. Then

∆(i)u(k) =

m−1∑
j=i

∆(j)u(s)

(j − i)!

j−i∏
r=1

(k − s− r + 1) +
1

(m− i− 1)!

×
k∑
j=s

m−i−1∏
r=1

(k − j − r + 1)∆(m)u(j − 1), i = 0, . . . ,m− 1, for k ∈ N+
s ,(2.2)

where

(2.3) ∆(m)u(s− 1) = 0,

0∏
r=1

(k − s− r + 1) = 1,

and

∆(i)u(k) =

m−1∑
j=i

∆(j)u(s)

(j − i)!

j−i∏
r=1

(k − s− r + 1)− 1

(m− i− 1)!

×
s∑
j=k

m−i−1∏
r=1

(k − j − r + 1)∆(m)u(j), i = 0, . . . ,m− 1 for k ∈ N−s ,(2.4)
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where

(2.5) ∆(m)u(s) = 0,

0∏
r=1

(k − s− r + 1) = 1.

Proof. Denote

u1(k) = ∆(i)u(k),(2.6)

u2(k) =

m−1∑
j=i

∆(j)u(s)

(j − i)!

j−i∏
r=1

(k − s− r + 1)

+
1

(m− i− 1)!

k∑
j=s

m−i−1∏
r=1

(k − j − r + 1)∆(m)u(j − 1), k ∈ N+
s .(2.7)

Since

∆(1)

j−i∏
r=1

(k − s− r + 1) =

j−i−i∏
r=1

(k + 2− r − s)−
j−i∏
r=1

(k + 1− r − s)

=

j−i−1∏
r=0

(k + 1− r − s)−
j−i∏
r=1

(k + 1− r − s) = (j − i)
j−i−1∏
r=1

(k + 1− r − s),

according to (2.3), (2.6) and (2.7) we get ∆(j)u1(s) = ∆(j)u2(s) (j = 0, . . . ,m−i−1)

and ∆(m−i)u1(k) = ∆(m−i)u2(k) for k ∈ N+
s . Therefore, the conditions of Remark

2.1 are fulfilled, which proves that the equality (2.2) is valid.
By (2.5), similarly we can prove that the equality (2.4) is valid, which proves the

lemma. �

Lemma 2.3. Let u : N→ R, m; s ∈ N. Then the equality holds
k∑
i=s

im−j−1∆(m)u(i) =

m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i−1)(k + i+ 1−m)m−j−1

(2.8) −
m−1∑
i=j

(−1)m+i−1∆(i)u(s+ 1)∆(m−i−1)(s+ i+ 1−m)m−j−1 for k ∈ N+
s ,

where

(2.9) ∆(m)u(s) = 0

and

−
s∑
i=k

(i+ 1)m−j−1∆(m)u(i+ 1)

=

m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i−1)(k + i+ 1−m)m−j−1

−
m−1∑
i=j

(−1)m+i−1∆(i)u(s+ 1)∆(m−i−1)(s+ i+ 1−m)m−j−1 for k ∈ N−s ,(2.10)
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where

(2.11) ∆(m)u(s+ 1) = 0.

Proof. Let u, v : N→ R, then ∆(1)
[
u(k) v(k)

]
= v(k+1)∆(1)u(k)+u(k)∆(1)v(k).

Therefore

∆(1)
(m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i−1)(k + i+ 1−m)m−j−1
)

=

m−1∑
i=j

(−1)m+i−1∆(i+1)u(k + 1)∆(m−i−1)(k + i+ 2−m)m−j−1

+

m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i)(k + i+ 1−m)m−j−1.

Since ∆(m−j)(k + i+ 1−m)m−j−1 = 0, then

∆(1)
(m−1∑
i=j

(−1)m+i−1∆(i)u(k+1)∆(m−i−1)(k+i+1−m)m−j−1
)

=(k+1)m−j−1∆(m)u(k+1).

By (2.9), ((2.11)) the equality (2.8) (the equality (2.10)) holds. �

Lemma 2.4. Let u : N→ R, k0;n ∈ N and

(2.12) (−1)i∆(i)u(k) > 0 (i = 0, . . . , n− 1), (−1)n∆(n)u(k) ≥ 0 for k ∈ N+
k0
.

Then
+∞∑
k=1

kn−1
∣∣∆(n)u(k)

∣∣ < +∞,(2.13)

∣∣∆(i)u(k)
∣∣ ≥ 1

(n− i− 1)!

+∞∑
j=k

n−i−1∏
r=1

(j − k + r − 1)
∣∣∆(n)u(j)

∣∣(2.14)

for k ∈ N+
k0
, (i = 0, . . . .n− 1),

u(k) ≥ u(s) +

n−1∑
j=1

∣∣∆(j)u(s)
∣∣

j!

j∏
r=1

(j − k + r − 1) for s ≥ k.(2.15)

Proof. Let k0 ≤ k < s. It can be assumed without loss of generality that ∆(n)u(s) =

0. Let m = n, according to (2.12) from (2.4) with s→ +∞, we can readily obtain
(2.13) and (2.14). As to (2.15), it is immediate consequence of (2.4). �

Lemma 2.5. Let u : N→ R and for some k1 ∈ N and ` ∈ {1, . . . , n− 1}, (2.1) be
fulfilled. Then

(2.16)
+∞∑
k=1

kn−`−1
∣∣∆(n)u(k)

∣∣ < +∞,
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there exists k2 ∈ N+
k1

such that

∣∣∆(i)u(k)
∣∣ ≥ 1

(n− i− 1)!

+∞∑
j=k

n−i−1∏
r=1

(j + r − k − 1)
∣∣∆(n)u(j)

∣∣(2.17)

for k ∈ N+
k2

(i = `, . . . , n− 1),

∆(i)u(k) ≥ ∆(i)u(k2) +
1

(`−i−1)!(n−`−1)!

k−1∑
s=k2

`−i−1∏
r=1

(k + r − (1 + s))

×
+∞∑
j=s

n−`−1∏
r=1

(j + r − s− 1)
∣∣∆(n)u(j)

∣∣, for k ∈ N+
k2+1 (i = 0, . . . , `− 1).(2.18)

If in addition

(2.19)
+∞∑
k=1

kn−`
∣∣∆(n)u(k)

∣∣ = +∞,

then

(2.20)
u(k)

`−1∏
i=0

(k − i)
↓ , u(k)

`−1∏
i=1

(k − i)
↑ ,

for large k

(2.21) u(k) ≥ 1 + o(1)

`!
k`−1∆(`−1)u(k)

and

∆(`−1)u(k) ≥ k

(n− `− 1)!

+∞∑
i=k

in−`−1
∣∣∆(n)u(i)

∣∣
+

1

(n− `− 1)!

k∑
i=k2

in−`
∣∣∆(n)u(i)

∣∣ for k ∈ N+
k2
.(2.22)

Proof. Let s; k ∈ N+
k2

and s < k. Assumed that (2.9) be fulfilled. By virtue of
(2.1), from the equality (2.8) with j = ` and m = n we have

k∑
i=s

(−1)n+`in−`−1∆(n)u(i) =

n−1∑
i=`

(−1)`+i∆(i)u(s+ 1)∆(n−i−1)(s+ i+ 1− n)n−`−1

−
n−1∑
i=`

(−1)`+i∆(i)u(k + 1)∆(n−i−1)(k + i+ 1− n)n−`−1.

Therefore

k∑
i=s

in−`−1
∣∣∆(n)u(i)

∣∣ ≤ n−1∑
i=`

∣∣∆(i)u(s+ 1)
∣∣∆(n−i−1)(s+ i+ 1− n)n−`−1 for k ∈ N+

s .
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The last inequality with k → +∞ we obtain (2.16). The equality (2.10) also implies
the inequality

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−`−1

≥
+∞∑
i=k

in−`−1
∣∣∆(n)u(i+ 1)

∣∣ for k ∈ N+
k2
.(2.23)

On account of (2.1) and (2.16), from (2.4) we obtain (2.17).
Analogously, equality (2.2) with s = k2 and m = `, gives

∆(i)u(k) ≥ ∆(i)u(k2) +
1

(`− i− 1)!

k∑
j=k2

`−i−1∏
r=1

(k−j+r−1)∆(`)u(j − 1)

(i = 0, . . . , `− 1) for k ∈ N+
k2
.

Hence, by (2.17) we obtain (2.18). Using (2.1), from (2.8) with j = `−1 and m = n,
for s = k2 we have

∆(`−1)u(k) =
1

(n− `)!

k∑
i=k2

in−`
∣∣∆(n)u(i)

∣∣
+

1

(n− `)!

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−`

+
1

(n− `)!

n−1∑
i=`−1

(−1)n+i−1∆(i)u(k2 + 1)∆(n−i−1)(k2 + i+ 1− n)n−`.

Therefore, according to (2.19) there exist k∗ > k2 such that

∆(`−1)u(k + 1) ≥ 1

(n− `)!

k∑
i=k∗

in−`
∣∣∆(n)u(i)

∣∣
+

1

(n− `)!

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−` for k ∈ N+

k∗ .

From the last inequality by (2.19) we have

(2.24) ∆(`−1)u(k + 1)− (k + `+ 1− n)∆(`)u(k + 1)→ +∞ for k → +∞

and by (2.23) the inequality (2.22) holds.
Let k0 ∈ N and for any k ∈ N+

k0
and i ∈ {1, . . . , `} put

ρi(k) = i∆(`−i)u(k)− (k + 1− i)∆(`−i+1)u(k),(2.25)

γi(k) = (k − i)∆(`−i+1)u(k)− (i− 1)∆(`−i)u(k).(2.26)

Applying (2.24) and L’opital rule, we have

(2.27) lim
k→+∞

∆(`−i)u(k)
i−1∏
j=1

(k − j)
= +∞ (i = 1, . . . , `).
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(Here it is meant that
0∏
j=1

(k − j) = 1). Since

∆(1)

(
∆(`−i)u(k)

i−1∏
j=1

(k − j − 1)

)
=

γi(k)
i−1∏
j=0

(k − j − 1)

,

by (2.27) there exist k` > · · · > k1 > k0 such that γi(ki) > 0 (i = 1, . . . , `).
Therefore, by (2.24) ρ1(k)→ +∞ as k → +∞, ∆(1)ρi+1(k) = ρi(k), ∆(1)γi+1(k) =

γi(k) and γ1(k) = (k − 1)∆(`)u(k) > 0 for k ∈ N+
k0

(i = 1, . . . , ` − 1), we find that
ρi(k)→ +∞ as k → +∞, and γi(k) > 0 for k ∈ N+

ki
(i = 1, . . . , `). These fact along

with (2.24)–(2.27) prove (2.20).
On the other hand, since ρi(k) → +∞, by (2.25) for large k, i∆(`−i)u(k) >

(k + 1− i)∆(`−i+1)u(k) (i = 1, . . . , `), which implies (2.21). �

3. Necessary condition for existence of solutions of type 2.1

The results of this section play an important role in establishing sufficient conditions
for equation (1.1) to have Property A.

Let k0 ∈ N and ` = {1, . . . , n− 1}. By U`,k0 we denote the set of all solutions of
equation (1.1) satisfying the condition (2.1).

Theorem 3.1. Let condition (1.2), (1.3) be fulfilled, ` ∈ {1, . . . , n− 1} with `+ n

odd and

(3.1)
+∞∑
k=1

kn−`
(
σ(k)

)λ(`−1)
p(k) = +∞.

If, moreover, for some k0 ∈ N, U`,k0 6= ∅, then for any δ ∈ [0, λ] and i ∈ N we have

(3.2)
+∞∑
k=1

kn−`−1+λ−δ
(
σ(k)

)λ(`−1)(
ρi,`(σ(k))

)δ
p(k) < +∞,

where

(3.3) ρ1,`(k) =

(
1− λ

`!(n− `)!

k−1∑
i=1

+∞∑
j=i

jn−`−1
(
σ(j)

)λ(`−1)
p(j)

) 1
1−λ

,

(3.4)

ρs,`(k) =
1

`!(n−`)!

k−1∑
i=1

+∞∑
j=i

jn−`−1
(
σ(j)

)λ(`−1)
p(j)

(
ρs−1,`

(
σ(j)

))λ
(s=2, 3, . . . ).

Proof. Let k0 ∈ N and U`,k0 6= ∅. By definition of the set U`,k0 , equation (1.1)
has a proper solution u ∈ U`,k0 satisfying the condition (2.1). By (2.1) and (3.1)
it is clear that the condition (2.19) holds. Thus by Lemma 2.5, (2.20)–(2.22) are
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fulfilled and by (1.1) and (2.21), (2.22) we have

∆(`−1)u(k) ≥ k

`!(n− `)!

+∞∑
i=k

in−`−1σλ(`−1)(i)
(
∆(`−1)u(σ(i))

)λ
p(i)

+
1

`!(n− `)!

k∑
i=k∗

in−`σλ(`−1)(i)
(
∆(`−1)u(σ(i))

)λ
p(i) for k ∈ N+

k∗
,(3.5)

where k∗ it is sufficiently large natural number. By the identity
k∑

i=k∗

u(i)∆(1)v(i) = u(k)v(k + 1)− u(k∗ − 1)v(k∗)−
k∑

i=k∗

v(i)∆(1)u(i− 1)

we have
k∑

i=k∗

in−`σλ(`−1)(i)
(
∆(`−1)u(σ(i))

)λ
p(i)

= −
k∑

i=k∗

i∆(1)
+∞∑
s=i

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s)

= −k
+∞∑
s=k

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s)

+ (k∗ − 1)

+∞∑
s=k∗

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s)

+

k∑
i=k∗

+∞∑
s=i

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s)

Therefore, from (3.5) we get

∆(`−1)u(k) ≥ 1

`!(n− `)!

k∑
i=k∗

+∞∑
s=i

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s)(3.6)

for k ∈ N+
k∗. Denote

x(k) =
1

`!(n− `)!

k−1∑
i=k∗

+∞∑
s=i

sn−`−1σλ(`−1)(s)
(
∆(`−1)u(σ(s))

)λ
p(s).

Since ∆(`−1)u(k) is nondecreasing and σ(k) ≥ k + 1, by (3.6) we have

∆(1)x(k) ≥
(
∆(`−1)u(k + 1)

)λ
`!(n− `)!

+∞∑
s=k

sn−`−1σλ(`−1)(s)p(s)

≥ xλ(k + 1)

`!(n− `)!

+∞∑
s=k

sn−`−1σλ(`−1)(s)p(s) for k ∈ N+
k∗.

Therefore

(3.7)
k−1∑
j=k∗

∆(1)x(j)

xλ(j + 1)
≥ 1

`!(n− `)!

k−1∑
j=k∗

+∞∑
i=j

in−`−1σλ(`−1)(i)p(i).
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Since
k−1∑
j=k∗

∆(1)x(j)

xλ(j + 1)
=

k−1∑
i=k∗

x−λ(j + 1)

∫ x(j+1)

x(j)

dt

and x−λ(j + 1) ≤ t−λ when x(j) ≤ t ≤ x(j + 1), we have
k−1∑
j=k∗

∆(1)x(j)

xλ(j + 1)
≤

k−1∑
j=k∗

∫ x(j+1)

x(j)

t−λdt =

∫ x(k)

x(k∗)

t−λdt.

That’s why, from (3.7) we get

(3.8) x(k) ≥
(

1− λ
`!(n− `)!

k−1∑
j=k∗

+∞∑
i=j

in−`−1σλ(`−1)(i)p(i)

) 1
1−λ

.

I.e.

(3.9) ∆(`−1)u(k) ≥ ρ1,`,k∗(k) for k ∈ N+
k∗
,

where

ρ1,`,k∗(k) =

(
1− λ

`!(n− `)!

k−1∑
j=k∗

+∞∑
i=j

in−`σλ(`−1)(i)p(i)

) 1
1−λ

.

Thus, by (3.6), (3.9) we get

(3.10) ∆(`−1)u(k) ≥ ρs,`,k∗(k) for k ∈ N+
k∗

(s = 2, 3, . . . ),

where

ρs,`,k∗(k) =
1

`!(n− `)!

k−1∑
j=k∗

+∞∑
i=j

in−`−1σλ(`−1)(i)p(i)
(
ρs−1,`,k∗(σ(i))

)λ
.

On the other hand, by (1.2), (2.1), (3.9) and (3.10) from (3.6) for any δ ∈ [0, λ] we
have

∆(`−1)u(k + 1) ≥ 1

`!(n− `)!

k∑
i=k∗

+∞∑
j=i

jn−`−1σλ(`−1)(j)p(j)

×
(
ρs,`,k∗(σ(j))

)δ|(∆(`−1)u(σ(i))
)λ−δ

, s = 1, 2, . . .

and

∆(`−1)u(k + 1) ≥ k − k∗
`!(n− `)!

+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j)

×
(
ρs,`,k∗(σ(j))

)δ(
∆(`−1)u(σ(j))

)λ−δ
, s = 1, 2, . . .(3.11)

If δ = λ, then from the last inequality we get
+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j)
(
ρs,`,k∗(σ(j))

)λ ≤ `!(n− `)!(k + 1)

k − k∗
· ∆(`−1)u(k + 1)

k + 1
.

By first condition of (2.20) we have
+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j)
(
ρs,`,k∗(σ(j))

)λ
< +∞ (s = 1, 2, . . . ).(3.12)
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Let δ ∈ [0, λ). Then from (3.11) implies

∆(`−1)u(k + 1)
+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j)
(
ρs,`,k∗(σ(j))

)δ(
∆(`−1)u(σ(j))

)λ−δ ≥ k − k∗
`!(n− `)!

for k ∈ N+
k∗
. Therefore(

∆(`−1)u(k + 1)
)λ−δ

kn−`−1p(k)σλ(`−1)(k)
(
ρs,`,k∗(σ(k))

)δ(+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j)
(
ρs,`,k∗(σ(j))

)δ(
∆(`−1)u(σ(j))

)λ−δ)λ−δ
≥
( k − k∗
`!(n− `)!

)λ−δ
kn−`−1p(k)σλ(`−1)(k)

(
ρs,`,k∗(σ(k))

)δ
.(3.13)

Denote

(3.14) ak=

+∞∑
j=k

jn−̀−1σλ(`−1)(j)p(i)
(
ρs,`,k∗(σ(j))

)δ(
∆(`−1)u(j+1)

)λ−δ
.

Since ∆`−1)u(k) is nondecreasing function, according to (3.14), from (3.13) we get
ak − ak+1

aλ−δk

≥
( k − k∗
`!(n− `)!

)λ−δ
kn−`−1p(k)σλ(`−1)(k)

(
ρs,`,k∗(σ(k))

)δ
.

Thus, from the last inequality we get

k∑
i=k∗

ai−ai+1
aλ−δi

≥
( 1

`!(n−`)!

)λ−δ k∑
i=k∗

(i−k∗)λ−δin−̀−1p(i)σλ( −̀1)(i)
(
ρs,`,k∗(σ(i))

)δ
.

(3.15)

Since
k∑

i=k∗

ai − ai+1

aλ−δi

=

k∑
i=k∗

aδ−λi

∫ ai

ai+1

dt ≤
k∑

i=k∗

∫ ai

ai+1

tδ−λdt ≤
∫ ak∗

0

tδ−λdt =
a1+δ−λk∗

1 + δ − λ
,

from (3.15) we get

k∑
i=k∗

(i−k∗)λ−δin−`−1p(i)σλ(`−1)(i)
(
ρs,`,k∗(σ(i))

)δ ≤ a1+δ−λk∗

(
`!(n−`)!

)λ−δ
1 + δ − λ

.

(3.16)

Without loss of generality, by (3.14) we can assume that ak∗ ≤ 1. Thus from (3.16)
we have

k∑
i=k∗

(i− k∗)λ−δin−`−1p(i)σλ(`−1)(i)
(
ρs,`,k∗(σ(i))

)δ ≤ (`!(n− `)!)λ−δ
1 + δ − λ

.(3.17)

According to (3.12) and (3.17), for any δ ∈ [0, λ] and s ∈ N we have

(3.18)
k∑

i=k∗

in−`−1+λ−δp(i)σλ(`−1)(i)
(
ρs,`,k∗(σ(i))

)δ
< +∞.

Since ρs,`(k)
ρs,`,k∗ (k)

−→ 1 for k → +∞, by (3.18) it is obvious that (3.2) holds, which
proves the validity of the theorem. �
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4. Sufficient conditions of nonexistence of solutions of type (2.1)

Theorem 4.1. Let conditions (1.2), (1.3), (3.1) be fulfilled, ` ∈ {1, . . . , n− 1} with
`+ n odd and for some δ ∈ [0, λ] and s ∈ N

(4.1)
+∞∑
k=1

kn−`−1+λ−δσλ(`−1)(k)
(
ρs,`(σ(k))

)δ
p(k) = +∞,

where ρs,` is defined by (3.3) and (3.4). Then U`,k0 = ∅ for any k0 ∈ N.

Proof. Assume the contrary. Let there exists k0 ∈ N such that U`,k0 6= ∅. Thus
equation (1.1) has a proper solution u : N+

k0
→ (0,∞) satisfying the condition

(2.1). Since conditions of Theorem 3.1 are fulfilled, (3.2) holds for any δ ∈ [0, λ]

and s ∈ N, which contradicts (4.1). The obtained contradiction proves the validity
of the theorem. �

Theorem 4.2. Let conditions (1.2), (1.3) be fulfilled, ` ∈ {1, . . . , n− 1} with `+ n

odd and for some α ∈ (1,+∞) and γ ∈ (λ, 1)

(4.2) lim inf
k→+∞

kγ
+∞∑
j=k

jn−`−1σλ(`−1)(j)p(j) > 0, lim inf
k→+∞

σ(k)

kα
> 0.

If moreover, at last one of the conditions

(4.3) αλ ≥ 1,

or if αλ < 1, for some ε > 0

(4.4)
+∞∑
k=1

kn−`−1+
αλ(1−γ
1−αλ −ε

(
σ(k)

)λ(`−1)
p(k) = +∞

holds, then U`,k0 = ∅ for any k0 ∈ N.

Proof. It suffices to show that the condition (4.1) is satisfies for some s ∈ N and
δ = λ. Indeed, according to (4.2) there exist α > 1, γ ∈ (λ, 1), c > 0 and k0 ∈ N
such that

(4.5) kγ
+∞∑
j=k

jn−`−1
(
σ(j)

)λ(`−1)
p(j) ≥ c for k ∈ N+

k0

and

(4.6) σ(k) ≥ ckα for k ∈ N+
k0
.

By (3.3) and (4.2) it is obvious that lim
k→+∞

ρ1,`(k) = +∞. Therefore, without loss

of generality we can assume that ρ1,`(k) ≥ 1 for k ∈ N+
k0
. Thus, by (4.6) from (3.4)

we get

ρ2,`(k) ≥ c

`!(n− `)!

k−1∑
i=k0

i−γ =
c

`!(n− `)!

k−1∑
i=k0

i−γ
∫ i+1

i

dt
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≥ c

`!(n− `)!

k−1∑
i=k0

∫ i+1

i

t−γdt =
c

`!(n− `)!

∫ k

k0

t−γdt =
c

`!(n− `)!(1− γ)
(k1−γ − k1−γ0 ).

We can choose k1 ∈ N+
k0

such that ρ2,`(k) ≥ c
2`!(n−`)!(1−γ)k

1−γ for k ∈ N+
k1
. Thus,

by (4.6) from (3.4), for s = 3 we have

ρ3,`(k) ≥
(

c

2`!(n− `)!(1− γ)

)1+λ

· k(1−γ)(1+αλ) for k ∈ N+
k2
.

where k2 ∈ N+
k1

is a sufficiently large natural number. Therefore, for any s ∈ N
there exists ks ∈ N such that for k ∈ N+

s

(4.7)

ρs,`(k) ≥
(

c

2`!(n− `)!(1− γ)

)1+λ+···+λs−2

k(1−γ)(1+αλ+···+(αλ)s−2), k ≥ ks.

Assume that (4.3) be fulfilled. Choose s0 ∈ N such that (1− γ)(s0 − 1) ≥ 1
λ . Then,

according to (4.7), ρs0,`(k) ≥ c0k for k ∈ Nks0 , where c0 > 0. Therefore, by (4.7) it
is obvious that (4.1) hold, for δ = λ and s = s0. In the case, when (4.3) holds, the
validity of the theorem has been already proved.

Assume now that 0 < αλ < 1 and (4.4) holds. Let ε > 0 and by (4.7), choose
s0 ∈ N such that ρs0,`(k) ≥ c1k

αλ(1−γ)
1−αλ −ε for k ∈ N+

ks0
, where c1 > 0. Therefore, by

(4.4), (4.1) holds for s = s0. The proof of the theorem is proved. �

5. Difference equations with property A

Theorem 5.1. Let the conditions (1.2), (1.3) be fulfilled and for any ` ∈ {1, . . . , n−
1} with `+ n odd, let (3.1) as well as (4.1) hold for some δ ∈ [0, λ] and s ∈ N. Let
moreover

(5.1)
+∞∑
k=1

kn−1p(k) = +∞,

when n is odd, then equation (1.1) has Property A.

Proof. Let equation (1.1) have a proper nonoscillatory solution u : Nk0 →
(0,+∞) (the case u(k) < 0 is similar). Then by (1.1), (1.3) and Lemma 1.1, there
exist ` ∈ {0, . . . , n− 1} such that `+ n is odd and the condition (2.1) holds. Since
conditions of the Theorem 4.1 are fulfilled, for any ` ∈ {1, . . . , n − 1} with ` + n

odd, we have ` 6∈ {1, . . . , n− 1}. Therefore, n is odd and ` = 0. Then we will show
that the conditions (1.5) hold. If that is not the case, there exists c > 0 such that
u(k) ≥ c for sufficiently large k. According to 2.1, with ` = 0, from (1.1) we have

(5.2)
k∑

j=k0

jn−1∆(n)u(j) + c

k∑
j=k0

jn−1p(j) ≤ 0,
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where k ∈ N is sufficiently large natural number. On the other hand in view of
identity

k∑
j=k0

jn−1∆(n)u(j) = kn−1∆(n−1)u(k + 1)− (k0 − 1)n−1∆(n−1)u(k0)

−
k∑

j=k0

∆(n−1)u(j)∆(j − 1)n−1

it is easy to show that
k∑

j=k0

jn−1∆(n)u(j) =

n−1∑
j=0

(−1)j∆(j)(k − j)n−1∆(n−j−1)u(k + 1)

−
n−1∑
j=0

(−1)j(k0 − j − 1)(n−j−1)∆(n−j−1)u(k0).

From (5.2), by (2.1) with ` = 0

c

k∑
j=k0

jn−1p(j) ≤
n−1∑
j=0

(k0 − j − 1)n−j−1
∣∣∆(n−j−1)u(k0)

∣∣.
Therefore

∑+∞
j=1 j

n−1p(j) < +∞, which contradict the condition (5.1). Therefore,
equation (1.1) has Property A. �

From this theorem, with δ = 0, immediately follow

Theorem 5.1′. Let the conditions (1.2), (1.3) be fulfilled and for any ` ∈ {1, . . . , n−
1} with `+ n odd, (3.1) as well as

(5.3)
+∞∑
k=1

kn−`−1+λσλ(`−1)(k)p(k) = +∞

holds. Then in the case of odd n condition (5.1) is sufficient for equation (1.1) to
have Property A.

Theorem 5.2. Let the condition (1.2), (1.3) as well as (5.1) be fulfilled for odd n
and

(5.4) lim inf
k→+∞

σλ(k)

k
> 0.

Then the condition

(5.5)
+∞∑
k=1

kn−2+λp(k) = +∞,

for even n and the condition

(5.6)
+∞∑
k=1

kn−3+λ
(
σ(k)

)λ
p(k) = +∞,

for odd n is sufficient for equation (1.1) to have property A.
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Proof. It is obvious that, according to (5.4)–(5.6), for any ` = {1, . . . , n − 1},
where `+n odd, the conditions (5.3) hold. Therefore, all conditions of the Theorem
5.1′ hold, which proves the validity of the theorem. �

Theorem 5.3. Let the conditions (1.2), (1.3) be fulfilled and let

(5.7) lim sup
k→+∞

σλ(k)

k
< +∞.

Then for equation (1.1) to have Property A it is sufficient that

(5.8)
+∞∑
k=1

kλ
(
σ(k)

)λ(n−2)
p(k) = +∞.

Proof. It is obvious that, according to (5.7), (5.8) and first condition of (1.2), the
condition (5.1) and for any ` = {1, . . . , n − 1}, where ` + n is odd, the conditions
(5.3) hold. Therefore, all conditions of the Theorem 5.1′ hold, which proves the
validity of the theorem. �

Theorem 5.4. Let the conditions (1.2), (1.3), (4.3), (4.6) and (5.4) or if 0 < αλ <

1, for some ε > 0

(5.9)
+∞∑
k=1

kn−2+
αλ(1−γ)
1−αλ −εp(k) = +∞

be fulfilled. If moreover, there exist γ ∈ (λ, 1) such that

(5.10) lim inf
k→+∞

kγ
+∞∑
j=k

jn−2p(j) > 0,

then equation (1.1) has Property A.

Proof. Let equation (1.1) have a proper nonoscillatory solution u : Nk0 → (0,+∞)

(the case u(k) < 0 is similar). Then by(1.1), (1.3) and Lemma 1.1, there exist
` ∈ {0, . . . , n − 1} such that ` + n is odd and the condition (2.1) holds. Since by
(4.3), (4.6), (5.4), (5.9) and (5.10) all conditions of the Theorem 4.2 are fulfilled. So
for any ` ∈ {1, . . . , n−1} with `+n odd, we have ` 6∈ {1, . . . , n−1}. Therefore, n is
odd and ` = 0. It is obvious that, since γ ∈ (0, 1), by (5.10) satisfying the condition
(5.1). Therefore, analogously Theorem 5.1, we can proved the condition (1.5) hold.
That is equation (1.1) has Property A. The proof of the theorem is complete. �
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