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1. Introduction

The notion of wavelet packets was introduced by Coifman et al. [1] as a family

of orthonormal bases for discrete functions in Rn. They split a generalization of the

procedure of MRA and constitute the whole set of subband coded decomposition.

The “best basis"selection can be easily done, since wavelet packets give quick access

to a rich library of orthonormal bases. It proves to be more flexible and useful in

application of pyramid algorithm to an image in order to reduce the information

into lesser number of coefficients (see [29]).

Zhang and Wu [42] gave a novel image compression technique using wavelet packets

and directional decomposition to exploit the image redundancy efficiently and

thereby giving high compression ratio. Klappenecker [25] observed that employing

periodized wavelet packet transform on quantum computer is much better and

economical than the periodized wavelet transform. Kasaei et al. [15] introduced a

novel compression algorithm using wavelet packets and lattice vector quantization

for fingerprint analysis. Yoon and Vaidyanathan [41] defined a customized thresholding

function which significantly improved the performance of powerful wavelet-based

denoising scheme known as VisuShrink which uses a single threshold for all the

scales. Joseph [14] used wavelet packets for spoken digit compression and employed

Malyalam spoken digit for the same.
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Later on, Khanna et al. [22] defined the orthogonal Coifman wavelet packet systems

and biorthogonal Coifman wavelet packet systems which have good approximation

properties with exponential decay and gave wavelet packet approximation theorem.

The problem of inadequacy of a wavelet function to study both the symmetries of

an asymmetric signal has been addressed by defining wavelets associated with Riesz

projectors [23]. Also, wavelet packets and their moments were studied by Khanna et

al. [13, 24]. Recently, Khanna and Kaushik [17] gave wavelet packet approximation

theorem for Hr type norm which can measure difference of the (weak) derivatives.

Uniform approximation of wavelet packet expansions have been studied in [19]. For

litrature related to wavelets and wavelet packets one may consult [2], [4 - 13], [16 -

18], [20 - 24], [26 - 30], [32 - 34], [36].

Overview. Inspired from the work of Daubechies [3, 4], Restrepo et al. [35]

introduced periodized wavelets by restricting the wavelets on bounded subsets of

R. In Section 3, we define wavelet packets associated with the wavelets introduced by

Daubechies [3, 4] and called them Daubechies periodized wavelet packets (DPWP)

and obtain a necessary condition for it. Also, we give some properties of DPWP. In

Section 4, we define and obtain an estimate of the approximation error of a function

in L2([0, 1]) ∩ Cg(R) (g > 1). Finally, in Section 5, we discuss compression errors

using hard thresholding techniques.

2. Preliminaries

In [12], Multiresolution analysis (MRA), is defined as an increasing sequence of

closed subspaces (Vj)j∈Z of L2(R) satisfying

Vj ⊆ Vj+1, for all j ∈ Z,(2.1)

f ∈ Vj if and only if f(2(·)) ∈ Vj+1, for all j ∈ Z,(2.2) ⋂
j∈Z

Vj = {0},(2.3)

⋃
j∈Z

Vj = L2(R).(2.4)

There exists a function φ ∈ V0 such that φ(· − k) : k ∈ Z}(2.5)

is an orthonormal basis for V0.

The function φ whose existence is asserted in (2.5) is called a scaling function of

the given MRA. The scaling function φ solves the dilation equation

φ(x) =
∑
p∈Z

up φ(2x− p)(2.6)
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with |φ̂(0)| = 1. But it is convenient to choose the phase of φ so that
∫
R φ(x) dx = 1

and the associated function ψ is defined by

ψ(x) =
∑
p∈Z

vp φ(2x− p).(2.7)

Note that only finitely many up and vp are non-zero for Daubechies wavelet system.

A family of functions ωn, n = 0, 1, 2, ... defined by

ω2n(x) =

2g−1∑
p=0

up ωn(2x− p),(2.8)

ω2n+1(x) =

2g−1∑
p=0

vp ωn(2x− p),(2.9)

where ω1 = ψ and ω0 = φ often called mother and father wavelets, are called

Daubechies wavelet packets with genus g (see [36]).

Also, the set {ωn(x − k) : k ∈ Z, n = 0, 1, 2, ...} is an orthonormal basis of

L2(R). The family of wavelet packets {ωn} define the family of subspaces of L2(R)
corresponding to some orthonormal scaling function φ = ω0 given by

Un,j = span{ωn(2jx− k) : k ∈ Z}, j ∈ Z, n = 0, 1, 2, ... .(2.10)

Note that U0,j = Vj and U1,j = Wj so that the orthogonal decomposition Vj+1 =

Vj ⊕Wj can be re-written as U0,j+1 = U0,j ⊕ U1,j , j ∈ Z. In general, the above

expression is given by Un,j+1 = U2n,j ⊕ U2n+1,j , for n = 1, 2, 3, ...; j ∈ Z, where
Un,j is defined by (2.10).

Proposition 2.1. [36] Let ωn, n ∈ N0 be wavelet packets associated with scaling

function ω0. Then, for j, k, l,m ∈ Z with m > 0 and ωj,n,k(x) = 2j/2 ωn(2
jx − k),

we have

(i) 〈ωj,n,k, ωj,n,l〉 = δk,l,

(ii) 〈ωj,n,k, ωj,m,l〉 = δm,n δk,l.

3. Periodized Daubechies wavelet packets

Heretofore, we have seen that the functions which were defined on R as in

some applications such as audio signal processing, where the length of the signal is

arbitrarily long and unknown prior to the desistance of its activity. Nevertheless,

for many applications, the time domain is a finite interval. One may notice such

example in case of data fitting problems, image processing of signal, etc. These

problems can be worked out efficiently with the introduction of periodized wavelet

packets. Significantly, wavelet packets which are defined in general can be periodized

with a technique of Poisson summation and give rise to periodic wavelet packets.
50



PERIODIZED WAVELET PACKETS ON BOUNDED ...

Analogously, to the construction of non-periodic wavelet packets given in [1, 12],

the periodized wavelet packets have an exception that they wraps over the edges

of the domain, but in computation for large value of j, they reduced to the non-

periodic forms. Thus, due to compact support and the construction by the scaling

property of the non-periodic functions, many of the properties of wavelet packets

are preserved in the periodic case. For various details related to periodized wavelets

and wavelet packets, one may refer [4, 12, 31, 35], [37] - [40].

Next, we give the definition of Daubechies periodized wavelet packets (DPWP).

Definition 3.1. The wavelet packets ωn ∈ L2(R) (n ∈ N0) obtained from scaling

function using multiresolution analysis are said to be periodized in the sense of

Daubechies (Daubechies periodized wavelet packets) (DPWP) if

ωperj,n,k(x) =

∞∑
l=−∞

ωj,n,k(x+ l),(3.1)

where j, k ∈ Z and x ∈ R.

Periodized wavelet packets unlike non-periodic ones, must be first dialated before

periodization as periodization does not commute with dialation.

Next, we give a necessary condition for Daubechies wavelet packets associated

with scaling function ω0 such that ω̂1(0) = 0. More preciously, we prove the

following result.

Proposition 3.1. Let ωn, n ∈ N0 be Daubechies wavelet packets associated with

scaling function ω0 and let ω̂1(0) = 0. Then

ω̂4q+1(4πr) = 0, for r ∈ Z, q ∈ N.(3.2)

Proof. Taking Fourier transform of ω2n(x) and using (2.8), we compute

ω̂2n(η) =

∫
R
ω2n(x) e

−iηx dx

=
1

2

2g−1∑
p=0

up e
− iηp2

∫
R
ωn(x) e

− iηx2 dx = F (
η

2
) ω̂(

η

2
),(3.3)

where

F (η) =
1

2

2g−1∑
p=0

up e
−iηp.(3.4)

Applying (3.3) k-times, we have

ω̂2n(η) =

k∏
j=1

F (
η

2j
) ω̂ n

2k
(
η

2k
).(3.5)
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Since ω̂0(0) = 1, we have
2g−1∑
p=0

up = 2.(3.6)

Using (3.4) and (3.6), we obtain −1 6 F (η) 6 1 and so the product converges as

k →∞. This yields

ω̂2n(η) =

∞∏
j=1

F (
η

2j
) ω̂0(0), η ∈ R.

This further gives

ω̂2n(2πr) =

∞∏
j=1

F (
2πr

2j
), r ∈ Z.

If r = 0, then using (3.4) and (3.6), we have ω̂2n(0) = 1. Let r ∈ Z r {0} be such

that r = 2sM , where s ∈ N0 and M is odd integer. Then

ω̂2n(2πr) =

∞∏
j=1

F (
2s+1Mπ

2j
)

= F (2sMπ) F (2s−1Mπ) . . . F (Mπ) . . . = 0.

This gives ω̂2n(2πr) = δ0,r, r ∈ Z. Using Proposition 2.1, we get
2g−1∑
p=0

up vl = 0.

Note that vp can be expressed in terms of up as

vp = (−1)p u2g−1−p, p = 0, 1, ..., 2g − 1.(3.7)

Using (2.9), we obtain ω̂2n+1(η) = G(η2 ) ω̂(
η
2 ), where

G(η) =
1

2

2g−1∑
p=0

vp e
−iηp, η ∈ R.(3.8)

Also, using (3.7) in (3.8), we evaluate

G(η) =
1

2

2g−1∑
p=0

(−1)p u2g−1−p e−iηp

=
1

2
e−i(2g−l)(η+π)

2g−1∑
q=0

uq e
iq(η+π) = e−i(2g−1)(η+π) F (η + π).

This gives

ω̂2n+1(η) = e−i(2g−1)(
η
2+π) F (

η + π

2
) ω̂n(

η

2
).(3.9)

Taking n = 2s, s ∈ N0 and η = 4πr, we have

ω̂4s+1(4πr) = e−i(2g−1)(2πr+π) F (2πr + π) ω̂2s(2πr)

=

{
0, if r 6= 0;

e−i(2g−1)π F (π), if r = 0.
(3.10)
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Since ω̂1(0) = 0, it follows that

0 =

2g−1∑
p=0

vp

∫
R
ω0(2x− p) dx =

1

2

2g−1∑
l=0

(−1)l ul.(3.11)

Using (3.4) and (3.11) in (3.10), we finally get ω̂4s+1(4πr) = 0. �

In the following result, we give some properties of the Daubechies periodized

wavelet packets.

Theorem 3.1. Let ωn ∈ L2(R) (n ∈ N) be wavelet packets. Then

(i) for any j, k ∈ Z, ωperj,n,k is 1-periodic.

(ii) for j 6 −1, k ∈ Z, s ∈ N0 and x ∈ R, ωperj,4s+1,k(x) = 0, but for j =

0, ωperj,4s+1,k(x) is neither zero nor any constant for odd choice of k.

(iii) for j > 0, ωperj,n,k is periodic in the shift parameter with period 2j.

(iv) for j > j′ > dlog2(2g − 1)e and x ∈ [0, 1] with ωn having compact support

[0, 2g − 1],

ωperj,n,k(x) =

{
ωj,n,k(x), if x ∈ Ij,k ∩ [0, 1];
ωj,n,k(x+ 1), if x ∈ [0, 1] and x /∈ Ij,k.

(3.12)

Proof. (i) Let j, k ∈ Z and x ∈ R. Then

ωperj,n,k(x+ 1) =

∞∑
l=−∞

ωj,n,k(x+ l + 1) = ωperj,n,k(x).

Thus ωperj,n,k(x) is 1-periodic.

(ii) Let k ∈ Z and x ∈ R. Then

ωperj,n,k(x+ 1) =

∞∑
l=−∞

ωj,n,k(x+ l) = ωperj,n,0(x).

Since ωperj,n,0(x) is a 1-periodic function, it can be expanded using Fourier series

expansion, i.e.,

ωperj,n,0(x) =

∞∑
r=−∞

ar e
2πirx, x ∈ R,(3.13)

where the Fourier coefficients ar are given by

ar =

∫ 1

0

ωperj,n,0(x) e
−2πirx dx

=

∫ 1

0

∞∑
p=−∞

ωj,n,0(x+ p) e−2πirx dx = 2−
j
2 ω̂n(2πr2

−j), r ∈ Z.(3.14)

This yields

ωperj,n,k(x) =

∞∑
r=−∞

2
−j
2 ω̂n(2πr2

−j) e2πirx, x ∈ R, r ∈ Z.(3.15)
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Using (3.10) in (3.15), we have

ωperj,4s+1,k(x) = 0, j 6 −1, k ∈ Z, s ∈ N0 and x ∈ R.

If j = 0 in (3.14), then using (3.9), we have ω̂4s+1(2πk) 6= 0 for odd k, so ωper0,4s+1,k(x)

is neither 0 nor any constant for such value of k.

(iii) Let j > 0, m ∈ Z and 0 6 k 6 2j − 1. Then

ωperj,n,k+2jm(x) =

∞∑
l=−∞

ωj,n,k+2jm(x+ l)

= 2
j
2

∞∑
l=−∞

ωn(2
j(x+ l −m)− k) = ωperj,n,k(x), x ∈ R.

(iv) Let 2j > 2g − 1. Then, using (3.1), we get

ωperj,n,k(x) = 2
j
2

∞∑
l=−∞

ωn(2
jx+ 2j l − k)

= 2
j
2

∞∑
l=−∞

ωn(2
jx− (k − 2j l)) =

∞∑
l=−∞

ωj,n,k−2j l(x).(3.16)

Since ωn is compactly supported, it follows that the supports of the terms in the

above sum do not overlap for sufficiently large value of 2j . Choose smallest j′ ∈ Z
such that 2j

′
> 2g − 1. Now, supp(ωj,n,k) = Ij,k, where Ij,k =

[
k
2j ,

k+2g−1
2j

]
and for

j > j′ the width of Ij,k 6 1 and thus, (3.16) implies that for x ∈ [0, 1], periodized

wavelet packets can be expressed as

ωperj,n,k(x) =

{
ωj,n,k(x), if x ∈ Ij,k ∩ [0, 1]
ωj,n,k(x+ 1), if x ∈ [0, 1], and x /∈ Ij,k.

�

The following result shows that DPWP forms an orthonormal system for L2([0, 1]).

Theorem 3.2. The collection of Daubechies periodized wavelet packets

{ωper0,n,k(x)}n∈N0,k∈Z is an orthonormal system for L2([0, 1]).

Proof. The details of the proof can be seen in ([32], Section 9.3).

Corollary 3.1. For each fixed j ∈ Z, the collection of Daubechies periodized wavelet

packets {ωperj,n,k}n∈N0,k∈Z forms an orthonormal system for L2([0, 1]).

Proof. Proof follows from the Theorem 3.2.

4. Approximation properties of V perJ

The domain of periodized wavelet packets when restricted to [0, 1], generate an

MRA of L2([0, 1]) analogously to that of L2(R). The significant subspaces involved
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are defined as

V perj = span{ωperj,0,k(x) : x ∈ [0, 1]}2
j−1
k=0 ,

Uperj,n = span{ωperj,n,k(x) : x ∈ [0, 1]}n∈N, k=0,1,...,2j−1.

Note that the V perj are nested similarly as in the case of non-periodic MRA,

V per0 ⊂ V per1 ⊂ V per2 ⊂ · · · ⊂ L2([0, 1]).

So,
∞⋃
j=0

V perj = L2([0, 1]). Further, the orthogonality relationship gives

L2([0, 1]) = V perJ1
⊕
∞⊕
j=J1

2j+1−1⊕
n=2j

Uper0,n , for some J1 > 0.(4.1)

Let f ∈ V perJ and let J1 : 1 6 J1 6 J . Then, the periodized wavelet packet

expansion is

f(x) =

2J1−1∑
k=0

cJ1,k ω
per
J1,0,k

(x) +

J−1∑
j=J1

2j+1−1∑
n=2j

2j−1∑
k=0

dn0,k ω
per
0,n,k(x), x ∈ [0, 1],(4.2)

where the coefficients cj,k and dn0,k are respectively given by

cj,k =

∫ 1

0

f(x) ωperj,0,k(x) dx and dn0,k =

∫ 1

0

f(x) ωper0,n,k dx.

Let ωn, n ∈ N0 be wavelet packets. Then the orthogonal projections of L2([0, 1])

on V perj and Uper0,n are respectively defined as

(PV perj
f)(x) =

∞∑
k=−∞

cj,k ω
per
j,0,k(x),(4.3)

(PUper0,n
f)(x) =

∞∑
k=−∞

dn0,k ω
per
0,n,k(x),(4.4)

where

cj,k =

∫ 1

0

f(x) ωperj,0,k(x) dx, dn0,k =

∫ 1

0

f(x) ωper0,n,k(x) dx

and

PV perJ
f = PV perJ1

f +

J−1∑
j=J1

2j+1−1∑
n=2j

PUper0,n
f, J ∈ Z.

For f ∈ L2([0, 1]) ∩ Cg(R) (g > 1) and x ∈ [0, 1], the approximation error is given

by EperJ (x) = f(x)− (PV perJ
f)(x).

Now, we give the following result related to the approximation error.

Theorem 4.1. Let f ∈ L2([0, 1]) ∩ Cg(R) (g > 1) be a function and ωn, n ∈ N0

be DPWP such that

(i) |ωn(t)| = O(2−gj) for n = 2j , ..., (2j+1 − 1), where j > 0,
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(ii)
∫
R x

p ωn(x) dx = 0, for 0 6 p 6 g − 1.

Let J ∈ Z : J > J1 > 0, where 2J1 > 2g − 1. Then

‖EperJ (x)‖∞ = O(2−J(g−1)).

Proof. The periodic wavelet packet expansion for P perVJ
is

(PV perJ
f)(x) =

2J1−1∑
k=0

cJ1,k ω
per
J1,0,k

(x) +

J−1∑
j=J1

2j+1−1∑
n=2j

2j−1∑
k=0

dn0,k ω
per
0,n,k(x).(4.5)

Taking J →∞, the periodic wavelet packet expansion for f ∈ L([0, 1]) is given by

f(x) =

2J1−1∑
k=0

cJ1,k ω
per
J1,0,k

(x) +

∞∑
j=J1

2j+1−1∑
n=2j

2j−1∑
k=0

dn0,k ω
per
0,n,k(x).(4.6)

The approximation error is given by

EperJ (x) = f(x)− (PV perJ
f)(x), x ∈ [0, 1].

Therefore, we get

EperJ (x) =

∞∑
j=J

2j+1−1∑
n=2j

2j−1∑
k=0

dn0,k ω
per
0,n,k(x).(4.7)

Let I = [0, 2g − 1] be the compact support of ωn. Then, it follows that ω0,n,k is

supported in the interval Ik = [k, k + 2g − 1] with length l(Ik) = 2g − 1 and centre

xk = k + g − 1
2 .

Note that

dn0,k =

∫ 1

0

f(x) ωper0,n,k(x) dx =

∫
R
f(x) ω0,n,k(x) dx.(4.8)

Since f ∈ Cg(R), using Taylor’s expansion of f about the point xk, it follows that

|dn0,k| =
∣∣∣∣ ∫

R
[f(xk) + (x− xk) f (1)(xk) + · · ·

+
1

(g − 1)!
(x− xk)g−1 f (g−1)(xk) +Rg(x)] ω0,n,k(x)

∣∣∣∣,
where Rg(x) = 1

g! (x− xk)
g f (g)(η) for some number η between xk and x. If x ∈ Ik,

then, we have

|Rg(x)| 6
1

g!

(
g − 1

2

)g
max
x∈Ik
|f (g)(x)|.
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Therefore, we compute

|dn0,k| =
∣∣∣∣ ∫
Ik

Rg(x) ω0,n,k(x)

∣∣∣∣
6

1

g!

(
g − 1

2

)g
max
x∈Ik
|f (g)(x)|

∫
Ik

|ω0,n,k(x)| dx

6
2

1
2K

g!

(
g − 1

2

)g+ 1
2 max
x∈Ik
|f (g)(x)|

(∫ 2g−1

0

2−2gj dx
) 1

2

=
2K

g!

(
g − 1

2

)g+1
max
x∈Ik
|f (g)(x)| 2−gj =M 2−gj ,(4.9)

where M = 2K
g!

(
g − 1

2

)g+1
max
x∈Ik
|f (g)(x)|. Using (4.9) in (4.7), we obtain

‖EperJ (x)‖∞ 6
∞∑
j=J

2j+1−1∑
n=2j

2j−1∑
k=0

M 2−gj max
x∈Ik
|ωper0,n,k(x)|.

Define Cωper0,n,k
= max

x∈Ik
|ωper0,n,k(x)|. Then, we compute

‖EperJ (x)‖∞ 6 Cωper0,n,k
M

∞∑
j=J

2j+1−1∑
n=2j

2j−1∑
k=0

2−gj

= Cωper0,n,k
M

∞∑
j=J

2−(g−2)j = K ′ 2−(g−1)j ,(4.10)

where K ′ is a constant. Thus, we find that with respect to the resolution J ,

error EperJ shows an exponential decay. Besides, more is the number of vanishing

moments, faster will be the decay. �

5. Compression errors

In this section, using hard thresholding technique, we discuss the compression

errors.

The information about a signal f is stored in the form of wavelet packet coefficients

{〈f, ωj,n,k〉}j,k∈Z and this knowledge helps us to reconstruct the signal f . Nevertheless,

practically it is not possible to store such an infinite sequence of non-zero numbers

and thus it is necessary to chose only finite number of such coefficients. This is

primarily done by specifying an independent parameter or threshold δ > 0 such that

only those coefficients are retained for which |〈f, ωj,n,k〉| > δ. Such coefficients are

known as significant wavelet packet coefficients, whereas others which do not satisfy

the above inequality are quantized to zero and are known as insignificant wavelet

packet coefficients. Thus, threshold value δ separates the insignificant wavelet packet

coefficients from the significant ones. One may note that the selection of wavelet

packets also plays an essential role as we always look for those wavelet packets

which correlates well with the signal under consideration or detection. If there is a
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large amount of signal information present, one can keep large number of wavelet

packet coefficients, as compared to lesser number in case of a noisy signal. The

above process is known as hard thresholding. The errors which appeared when small

wavelet packet coefficients are repudiated are referred to as compression errors.

Let us define a set of significant wavelet packet coeffficients at level j as

Sδj = {k : 0 6 k 6 2j − 1 and |dn0,k| > δ for n = 2j , ..., (2j+1 − 1)}.

The set of insignificant wavelet packet coefficients are given by Iδj = S0
j rSδj . Thus,

δ-truncated wavelet packet expansion for f is given by

(PV perJ
f)δ(x) =

2J1−1∑
k=0

cJ1,k ω
per
J1,0,k

(x) +

J−1∑
j=J1

2j+1−1∑
n=2j

∑
k∈Sδj

dn0,k ω
per
0,n,k(x).

Let nS(δ) be the number of all significant wavelet packet coefficients, i.e.,

nS(δ) =

J−1∑
j=J1

2j+1−1∑
n=2j

ℵ(Sδj ) + 2J1 ,

where ℵ(Sδj ) denotes the cardinality of Sδj . The last term in the above sum is due

to the coefficient of scaling function as they contribute the coarse approximation on

which the fine structures are built by wavelet packets. Let us suppose that n = 2J

be the dimension of V perJ . Then, define nI(δ) = n − nS(δ) to be the number of

insignificant wavelet packet coefficients in the expansion. Due to this truncation,

an error Eperδ,J has been occured and is given by

Eperδ,J (x) = (PV perJ
f)(x)− (PV perJ

f)δ(x)

=

J−1∑
j=J1

2j+1−1∑
n=2j

∑
k∈Iδj

dn0,k ω
per
0,n,k(x)(5.1)

with nI(δ) number of terms. This ensures the inequality

‖Eperδ,J (x)‖2 6 δ (nI(δ))
1
2 .(5.2)

Now, if we redefine the set of significant wavelet packet coefficients as

Sδj = {k : 0 6 k 6 2j − 1 and |dn0,k| > δ 2−
j
2 for n = 2j , ..., (2j+1 − 1)},

then Iδj = S0
jrSδj . Therefore the scale j can be employed to transmute the threshold

value δ.
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Hence using (5.1), we finally obtain

‖Eperδ,J (x)‖∞ =

J−1∑
j=J1

2j+1−1∑
n=2j

∑
k∈Iδj

max
x

(|dn0,k ω
per
0,n,k(x)|)

= C ′ωper0,n,k

J−1∑
j=J1

2j+1−1∑
n=2j

∑
k∈Iδj

|dn0,k| = C ′ωper0,n,k
δ nI(δ),(5.3)

where C ′
ωper0,n,k

= 2−
j
2 Cωper0,n,k

.

Conclusion

Restrepo et al. [35] studied periodized wavelets by restricting the wavelets on

the bounded subsets of R. In the present article, we amalgamated their with that

of Daubechies [3, 4] and studied Daubechies periodized wavelet packets and using

it obtained approximation of periodic functions. Also, thresholding technique is

used to study compression errors. On comparing (5.2) and (5.3), we find that the

threshold is scaled in (5.3) which decreases substantially on the increase in the

scale resulting in consequence of which the number of wavelet packet coefficients

increases at the finer scales. Thus, nI will be lesser in the latter case. Finally, we

have also observed that using wavelet packets instead of just Daubechies wavelet

bases, one can expect reduction in the compression errors.

Acknowledgements

The authors pay their sincere thanks to the anonymous referee for his/her critical

remarks and suggestions which have improved the paper significantly.

Список литературы

[1] R. R. Coifman, Y. Meyer and V. Wickerhauser, “Size properties of wavelet packets”, In: M. B.
Ruskai et al. (eds), Wavelets and Their Applications, Jones and Bartlett Ine., 453 – 470 (1992).

[2] R. R. Coifman and M. V. Wickerhauser, “Wavelets and adapted waveform analysis. A toolkit
for signal processing and numerical analysis”, Different perspectives on wavelets , 119 – 153, Proc.
Sympos. Appl. Math., 47, Amer. Math. Soc., Providence, RI, San Antonio, TX (1993).

[3] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl.
Math., 41, 909 – 996 (1988).

[4] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA (1992).

[5] L. Debnath and F. A. Shah, Wavelet Transforms and Their Applications, Boston: Birkhäuser
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