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1. INTRODUCTION

Let H(U) denote the class of analytic functions in the open unit disk U = {z €
C: |z] < 1}, and H[a, m] denote the subclass of functions f € H(U) of the form

f2)=a+anz™+am12™ +..., 2 €T,

with a € Cand m € N:={1,2,...}.
Also, let A(m) denote the subclass of functions f € H(U) of the form

(1.1) flz)=z+ Z arz®, 2 €U,
k=m+1

with m € N, and let A := A(1).
A variable x is said to have the Pascal distribution if it takes the values 0,1,2,3, ...
with the probabilities

qr(l—q)"  ¢Frir+1)1—-¢q)"  ¢rir+1)(r+2)1—q)"
T 2! ’ 3!

(1-9),

respectively, where ¢ and r are called the parameters, and thus we have the probability
formula
E+r—1
r—1
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Now, we introduce a power series whose coefficients are probabilities of the Pascal

distribution, that is

= n+r—2 _
am(2) =2+ Z ( .1 )q" 1—¢)rz", 2 €1,

n=m-+1

(meN, r>1,0<¢g<1),
and using the ratio test we easily deduce that the radius of convergence of the above
1
power series is at least — > 1, hence Q7 ,, € A(m).

Defining the functions
r,m r T !
Mq,)\ (Z) = (1 - )‘) q,m(z) + Az ( q,m(z))

= n+r—2
— 1 -1 n—1 1— ) 2"
D D G L ER YRS P

(meN, r>1,0<¢<1, A>0),
we introduce the linear operator (" : A(m) — A(m) defined by

o f(2) = My (2) * f(2)

= —2
=zt ) (njil )[1+>‘(”1)]Q"1(1Q)Tanzn, z e,
(meN,7>1,0<¢<1, A>0),

where f is given by , and the symbol “x” stands for the Hadamard (or convolution)
product.

Remark that, for m = 1 the function M['\" reduces to N7 , := M"} introduced
and studied by El-Deeb et al. [9].

Definition 1.1. For f,g € H(U), we say that [ is subordinate to g, written f(z) <
g(z), if there exists a Schwarz function w, which is analytic in U, with w(0) =0
and |w(z)| < 1 for all z € U, such that f(z2) = g(w(z)), z € U. Furthermore, if the

function ¢ is univalent in U, then we have the following equivalence (see [12] [7]):
f(z) =< g(z) & f(0) = g(0) and f(U) C g(U).

Let k,h € H(U), and let ¢(r,s;2) : C2 x U — C.
(i) If k satisfies the first order differential subordination

(1.2) o(k(2), 2k'(2); 2) < h(2),

then k is said to be a solution of the differential subordination . The function
q is called a dominant of the solutions of the differential subordination if
k < q(z) for all the functions k satisfying (1.2). A dominant ¢ is said to be the best
dominant of if g(z) < q(z) for all the dominants q.
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(ii) If k satisfies the first order differential superordination
(1.3) h(z) < @(k(z), 2K (2); 2),

then k is called to be a solution of the differential superordination . The
function ¢ is called a subordinant of the solutions of the differential superordination
if ¢(z) < k(z) for all the functions k satisfying (L.3). A subordinant ¢ is said
to be the best subordinant of if ¢(z) < g(z) for all the subordinants g.

Miller and Mocanu [13] obtained conditions on the functions h, g and ¢ for which

the following implication holds:
h(z) < p(k(2), 2k'(2);2) = q(2) < k(2).

Using the results of Miller and Mocanu [13], Bulboaca [6] considered certain
classes of first order differential superordinations as well as superordination-preserving
integral operators [5]. Ali et al. [I], have used the results of [7] (see also |2 Bl §]) to
obtain sufficient conditions for normalized analytic functions f to satisfy
2f'(2)

f(z)

where ¢; and g2 are univalent functions in U with ¢;(0) = ¢2(0) = 1.

q1(z) <

< q2(2),

Sakaguchi [15] introduced a class S of functions starlike with respect to symmetric
points, which consists of functions f € A satisfying the inequality

2f'(2)
f(z) = f(=2)

that represents a subclass of close-to-conver functions, and hence univalent in U,

Re >0, z €T,

and moreover, this class includes the class of convexr functions and odd starlike
functions with respect to the origin (see [14} [15]).

Also, Aouf et al. [4] introduced and studied the class S;,T(1,1) of functions
n-starlike with respect to symmetric points, which consists of functions f € A with
ar, < 0 for k > 2, and satisfying the inequality
D" f(2)

e D)~ D=2

>0, z€eU,

where D" is the Salagean operator [10].
The classes defined in [14] and [I5] could be generalized by introducing the next

class of functions, defined with the aid of the N7"" operator:

Definition 1.2. A function f € A(m) with

(1.4) NITF(2) = NI f(=2) 40, 2 € U= U\ {0},
21
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is said to be in the class N"\" (7, 11, A, B) if it satisfies the subordination condition

2z !
(1.5) (1 “F'V) < ;",j\nf(z) N ;:;nf(_z))

(NP~ () % 4 As
( i)

- T,m T, m T,m T, m = )
ax f(2) =N f(=2) o T(2) =Ny 1+ Bz

(veC,0<pu<l, -1<B<A<1I,meN, r>1,0<¢<1, A>0).

In this paper we will obtain some sharp differential subordination and superordination
results for the functions belonging to the class N1 (v, i1, A, B), in order to try to
make a connection between a special subclass of analytic functions whose coefficients

are probabilities of the Pascal distribution, and the differential subordination theory.

2. PRELIMINARIES

In order to prove our results we shall need the following definition and lemmas.

Definition 2.1. [12] Definition 2.2b., p. 21] Let Q be the set of all functions f that

are analytic and injective on U\ E(f), where E(f) := {¢ €U : liné fz)= oo}
z2—

and are such that f'(¢) # 0 for ¢ € 9U \ E(f).

Lemma 2.1. [I2] Theorem 3.1b., p. 71] Let the function H be convez in U, with
H(0) =a, and A # 0 with ReA > 0. If ® € H[a,m] and

(2.1) d(z2) + % < H(2),
then
D(z) < U(z) = Ai /t%’lH(t)dt < H(z),

and the function ¥ is convex, ¥ € H|a,m|, and is the best dominant of (2.1]).

Lemma 2.2. [I8 Lemma 2.2., p. 3| Let ¢ be a univalent in U, with q(0) = 1. Let
&, p € C with ¢ #0, and assume that

Re (1 + zq”(z)) > max {0; —Ref} , 2z €.
q'(2) @

If k is analytic in U and
(2.2) §k(2) + @2k (2) < §q(2) + p2q'(2),

then k(z) < q(2), and q is the best dominant of (2.2)).

From [I3], Theorem 6, p. 820] we could easily obtain the following lemma:
22



DIFFERENTIAL SANDWICH-TYPE RESULTS FOR ...

Lemma 2.3. Let q be conver in U, and k # 0 with Rek > 0. If g € H[q(0),1] N Q,
such that g(z) + kzg'(z) is univalent in U, then

(2.3) q(2) +kzq'(2) < g(2) + kzg'(2),
implies that q(z) < g(2), and q is the best subordinant of (2.3)).

Lemma 2.4. [10] Let F be analytic and convex in U, and 0 < A < 1. If f,g € A,
such that f(z) < F(z) and g(z) < F(z), then

AM(2)+ (1 =Ng(z) < F(2).
3. MAIN RESULTS

Unless otherwise mentioned, we shall assume in the reminder of this paper that
vyelC0<pu<l,-1<B<A<1ImeNr>10<gq<1,A>0,and the

powers are understood as principle values.

Theorem 3.1. If f € N"\"(v, 1, A, B) and v € C* := C\ {0} with Rey >0, then

2z ! /1+Azu o 1+ Az
r.m m uym du =< ,
o f(2) =N f(=2) ’ym 1+ Bzu 1+ Bz

and U is conver, ¥ € H[1,m|, and is the best dominant.

Proof. If we define a function h by
"
2z
- - , 2€U,
<N;;;”f<z> - N;;m—z))
from (1.4) it follows that h is an analytic function in U, with 2(0) = 1. Differentiating
(3.1) with respect to z, we obtain that

2z g
) < ) - ;;;”f<—z>>

(3.1) h(z) =

s (Wys@) -2 (G ) .. .
! N (@) = NG f(=2) NG - N f(=2)
(3.2) = h(z) + ;Zh (=) < 1 —
Since
N(;,)?\nf(z) =z+ Z anz"™, and (;’;nf(—z) = —z+ Z o (—1)"2",
n=m+l n=m-+1

-2
an= (" T A D L
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we have
2 2 1
U(Z) = T, : T, = o0 : = e’} ?
an F(2) = NG f(=2) 224+ > ap[l+ (=Dt 1+ > Brek
n=m+1 k=m
with
1+ (=1)k
g = LV s,
2
Moreover,
1 > ,
U(Z):ioo :1+Z’YjZJ,ZE]U,
1+ > Brz* j=1
k=m

with unknowns ;, j > 1, we have

1= (1 + Bnz™ + Bmgp1z™ T+ ) (1 +y1z4+ 72 4+ F Y™ Ympr2™ T L

and equating the corresponding coefficients it follows that

71:72:"':7?%—1:0’ rY’m:_Bmv 7m+1:_ﬁm+17"'7
hence

U(z) =1+ i 720 € H[1,m].

j=m

According to , we have
h=U", with U e H[l,m],
and using the binomial power expansion formula we get
h=U*" € H[1,m].

Now, from the subordination (3.2)), using Lemma for A = Ll we obtain our
v
result. |

Remark 3.1. The above theorem shows that
NoN (v, s A, B) C N0, 1, A, B),

q;

for all v € C with Rey > 0.
Moreover, the next inclusion result for the classes N \"(7, 1, A, B) holds:

Theorem 3.2. If v1,v2 € R such that 0 < ;3 < 79, and —1 < B; < By < Ay <
Ay <1, then

(33) N(;,;\n(')/?v/’LaAQaBQ) CN(;’;\”(%?M’ALBl)
24
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Proof. If f € N;’;\"(vg,u,Ag,Bz), since —1 < By < By < Ay < A; < 1,1t is
easy to check that

(14 7s) (Nmn 2z . )u
o f(2) = NG f(=2)
2 (N3 ) = NG T (=2)) 2 "
B e R e <N;;;”f<z> —N;’l"f(—z)>
1+Asz 1+ Az
1+ Byz 1+ Bz’

that is f € N;’F('yl, i, A1, B1), hence the assertion (3.3) holds for v; = 7s.
If 0 <9 < 79, from Remarkand (3.4) it follows f € N(;’f\n(O,u, A1, By), that

is
(3.5) 2z g ~ 1+ Az

' an f(2) =N f(=2) 1+ Bz’
A simple computation shows that

n
2z
(1 =+ 71) T 70
ax f(2) = NgX f(=2)

(W@ g 2 z
T TNITE) NI (=) | \NTT ) = NI F(—=2)

(3.4)

q,
¥ 2z ! ¥ 2z g
=(1-21 2a
( 72)< an f(2) — ;“;;”ﬂz)) | ”2)( o f(2) = ;‘;;“f<z>>

. 2 (N () = NG (=) 2 -
TG — N () TIE-NfE ) |

Moreover,
0< X<y,
V2
+ A1Z
]. —+ Blz
According to (3.6), using the subordinations (3.4) and (3.5), from Lemma we
deduce that

and the function , with —1 < By < A; < 1, is analytic and convex in U.

2z .

) (N;’Tf(z) —N;,M—z))

2 (N F() ~ N f(=2) ) 2 LA
7=

-nNn T, T T, T, s
o J(2) = N f(=2) o f(2) = NGy 1+ Bz
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that is f € N (71, 11, A1, B1). -

Theorem 3.3. Suppose that q is univalent in U, with ¢(0) = 1, and let v € C*
such that
2q"(2) [
(3.7) Re(1+ — > maxq 0;—Re— 7, z € U.
7(2) gl
If f € A(m) such that (1.4]) holds, and satisfies the subordination

2z !
) ( ) —N;;;”ﬂ—z))

(2@ - agsea) 2 -
N TNTIE - N7 |\ NI - N7 f(=2)
(3.8) < q(z) + gzq%z),

2z ! < q(2)
T,m T, q\z),
ax f(2) =N f(=2)
and q is the best dominant of (3.8).

Proof. Since f € A(m) such that (1.4 holds, it follows that the function h
defined by (3.1)) is analytic in U, and h(0) = 1. Like in the proof of Theorem [3.1
differentiating (3.1) with respect to z, we obtain that (3.8]) is equivalent to

h(z) + %Zh/(z) <q(z) + %zq’(z).

Using Lemma for £ := 1 and ¢ = 1, we get that the above subordination

implies h(z) < ¢q(z), and ¢ is the best dominant of (3.8)). O
1+ A
For the special case ¢(z) = 1::__7‘;, with —1 < B < A <1, Theorem reduces
z

to the following corollary:

Corollary 3.1. Let v € C* and —1 < B < A <1, such that

ol G < B<mind1 RS
(39) max § — ,7@ =~ _0, or O_ < min ,@ .

If f € A(m) such that (1.4) holds, and satisfies the subordination

(1+ ) 2z g
VAN FG) — N (—2)

(W - N 2 .
T\ TN - N () () — N F(—2)
1+Az ~ (A—DB)z
(310) <1+BZ+E(1+BZ)27
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then
w
2z - 1+ Az
G - Ns) ST
1+ Az . .
and is the best dominant of (3.10)).
1+ Bz
1+ Az .
Proof. For ¢(z) = 17 B the condition (3.7 reduces to
1-B

(3.11) Rel—i—Bz >max{0;—Re':}, z e U.
Since

1+ B

PPy 1<B<o,

. 1—- Bz 1-B
inf ¢ Re 12e€eUy =
1+ Bz 1-B it 0<B<l

1+8 ' - ’
we easily check that (3.11)) holds if and only if the assumption (3.9)) is satisfied,
whenever —1 < B < 1. O

Theorem 3.4. Let q be convex in U, with ¢(0) = 1, and v € C*, with Rey > 0.
Also, let f € A(m) such that

2z g
(3.12) ( ;;”f(z) — qu\ﬂf(—z)> € Hg(0),1] N Q,

and assume that the function
9 I
z
1+ | 7m o
o J(2) =N f(=2)

(2arse - A ea) 2
T NG NI (=) NTTF(z) = N7

I
1s univalent in U.
f(—2)>

If

Y 2z g
)+ 5016 < 047 (e Py

G (D;%g - ﬁﬁfS”) (D”f(z) —22an(—z>)“’

then

q(2) < = H
an [ =N f(=2) )
and q is the best subordinant of (3.14]).
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Proof. Letting the function h defined by (3.1)), then i € H[g(0), m], and from
we have that i € H[q(0),1]NQ. Like in the proof of Theorem 3.1 differentiating
(3.1) with respect to z, we obtain that

a(2) + L2q'(z) < h(z) + L2H'(2).
[ 1
Now, according to Lemma [2.3[ for k := J we obtain the desired result. (]

. 1+ Az
Taklng q(Z) = m

following corollary:

, with —1 < B < A < 1, in Theorem we obtain the

Corollary 3.2. Let v € C*, with Rey > 0, and -1 < B < A< 1. If f € A(m)
such that the assumption (3.12)) and (3.13) hold, and satisfies the subordination

1+A4z ~(A-B)z 2z !
+ = = (1 +’7) < T r,mf(z)>

1+ Bz p(l+ Bz)? an f(z) = NY
li
o1 2 (NI F) = NP (=) 2 ﬂ
. - T,m T,m T, m T, m )
ax £(2) =N f(=2) ax f(2) =N f(=2)
then
1+ Az < 2z g
1+ Bz an f2) =N f(=2) ) 7
1+A4
and 7 ::: Bz is the best subordinant of (3.15)).
z

Combining Theorem [3.3]and Theorem [3.4] we obtain the following sandwich-type

theorem:

Theorem 3.5. Let ¢1 and qa be two convex functions in U, with ¢1(0) = ¢2(0) = 1,
and let v € C*, with Rey > 0. If f € A(m) such that the assumption (3.12)) and

(3.13) hold, then

T 2z '
Q1(Z) + ;ZQ1(Z) = (1 +’Y) ( T,m r,mf(_z)>

A\ f(z)_ A\
(3.16)
2 (N F) = NG F (=) ( 2

I
- \
T\ NG N i F(2) = ;;”ﬂ_z)) < @) + - 2a(2),

implies that
n
2z
ql(z) = T, T, = QQ(Z),
(NM [OET f(—2)>
and q1 and go are, respectively, the best subordinant and the best dominant of (3.16)).
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Theorem 3.6. If f € N\ (0, 11,1-2p, —1), with0 < p < 1, then f € N\ (v, p1, 1—
2p,—1) for |z| < R, where

2 m
Tm? o him

3.17 R
(3.17) 2 .

Proof. For f € N"("(0, u, 1 — 2p, —1), with 0 < p < 1, let define the function h by

2z !
(3.18) (N;;\”f(z) —N[;’;”f(—z)> =(1—-p)h(z)+p, z€U.

Hence, the function h is analytic in U, with h(0) = 1, and since f € N7\ (0, 1,1 —

2p, —1) is equivalent to,

2z M_<1+(1—2p)z
N3 F() = NG F(=2) -z 7

it follows that Reh(z) > 0, z € U.
Like in the proof of Theorem since f € NV (0, p, 1—2p, —1), with 0 < p < 1,

we deduce that

m
2z
( () — ;;”f(—z)) € Hltml,

and from the relation (3.18) we get h € H[1,m]. Therefore, the following estimate
holds
2mr™Reh(z)

1—p2m

|20/ (2)] < |2] =7 <1,

that represents the result of Shah [I7] (the inequality (6), p. 240, for o = 0), which
generalize Lemma 2 of [11].

A simple computation shows that

= | A\NTTE - N (=)
(e - apses) 2. "
N TNTIE NI ) \ N N )
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hence, we obtain

N
1 27,
fe {1—p 1+7) (Ng;;“f(z) - N;;;“f(_z)>
(= Ware - Npra-2) 2. .
NN N |\ N N )

2 |y| mr™ B
(319) Z Reh(Z) [1 - M] y |Z| =1r< 17

and the right-hand side of (3.19)) is positive provided that » < R, where R is given
by (3.17). O

Theorem 3.7. Let f € N\"(v, u, A, B), let v € C* with Rey > 0, and -1 < B <
A<1.

1. Then,
m
I 1-Au w4 2z
— m d R
vm/l—Buqm v e(/\/rmf() NN E(=2)
0
/ 1+ A
H tAu
(3.20) < vm/l—i—Buuw du, z € U.

0
2. For |z| =r < 1, we have

1
1+Au7“ N T, T,
2r L/iuwm Ydu <‘ ax f(2) =N f(=2)

1
1— Aur
(3.21) <or L/imufm—ldu

All these inequalities are the best possible.

Proof. From the assumptions, using Theorem [3.1] we obtain that

o
2z 1+Azu w4
322 T T, / u'ym du7
( : ( Y f(z) - PN f(—z)) ’Vm 1+ Bzu

and the convex function ¥ € H[1,m] is the best dominant. Therefore,

n

27 1% 1+AZU. [

Re | /- #-1q

<./\/rmf() NN )) <§25 ¢ 'yrn/1+Bzuu b

0
i A i A
1 1
- H /supRe +Azu uwvm tdy = L/ + uuﬁfldu, z €U,
m 1+ Bzu ym J 1+ Bu

z€U
0
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and

1 1
1—A . 1—Au
- r / inf Re S A wm du = L/ uuﬁfldu, z € U.
ym J z€U 1 —Bzu ym / 1—Bu
0 0

Also, since

P g F1- Azu
2 ( )> > mf Re L / uvm Ldu
0

2z
NN f(2) = NG f(=2)

1

1+A
< sup| - / 1+Aeu w1y,
zeU | Y

1+ A 1+ A
=L/sup S g = / AU, |2 =1 < 1,
ym zelU 1+ Bzu ym 1+ Bur
0
we get
1 _1
m
T, T, M 1% 1+A'LL7" o q
NI (2) = N (=2 > 2 L / LA |
0
while
2 8 F1-A
4 12 — AZU no_q
T, M T m > inf / urm du
|Nq’>\f(z)— q,\f( z) 2eU 'ymo 1— Bzu

implies
Tk

1
T,m Tm H 1 — Aur -1
‘ ax F(2) = NG f(—z)‘ <2 ym / 1- Burlm du
0

The inequalities of and are the best possible because the subordination
is sharp. O
Concluding, all the above results give us information about subordination and
superordination properties inclusion results, radius problem, and sharp estimations
for the classes N {" (v, i, A, B), together general sharp subordination and superordi-
nation for the operator N g - For special choices of the parameters vy € C, 0 < pu <
1, -1<B<A<I,meNr>10<g¢qg<1,and A > 0 we may obtain several

simple applications connected with the above mentioned classes and operator.
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