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1. Introduction

We consider the following fractional integro-differential inequality

(1.1) u′(t) +
(
CDα

0+u
)

(t) ≥
∫ t

0

g(t− s)f (u (s)) ds, t > 0, 0 ≤ α < 2,

subject to

(1.2) u(0) = u0, when 0 ≤ α < 1,

or,

(1.3) u(0) = u0, u
′(0) = u1, when 1 ≤ α < 2,

where CDα
0+ is the Caputo fractional derivative of order α and u0, u1 ∈ R are given

initial data.

This initial value problem is a generalization of many interesting initial value

problems. When the kernel g represents the Dirac delta function, f (u) = up (t) ,

p > 1 and α = 0, the equality in (1.1) represents the Bernoulli differential equation

(1.4) u′(t) + u(t) = up (t) , t > 0, p > 1.

1The authors gratefully acknowledge financial support from King Fahd University of Petroleum
and Minerals through project number SB191023.
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Equation (1.4) with u(0) = u0 has the solution

u(t) =
((
u1−p

0 − 1
)
e(p−1)t + 1

) 1
1−p

,

that blows up in the finite time

Tb =
1

1− p
ln
(

1− u1−p
0

)
if and only if u0 > 1, (see [4]).

The solution of the nonlinear Volterra integro-differential equation

(1.5) u′(t) = −c+

∫ t

0

up(s)ds,

is given by

u (t) =

(
1− p

2

√
2

p+ 1
t+ u

1−p
2

0

) 2
1−p

,

and it blows up in the finite time

Tb =
2

p− 1

√
p+ 1

2
u

1−p
2

0 ,

when c =
√

2
p+1u

p+1
0 and u0 > 0.

When α = 0, u0 ≥ 0 and the kernel g(t) is positive, locally integrable and

lim
t→∞

∫ t
0
g(s)ds =∞, it has been shown in [11] that the solution of

(1.6) u′(t) + u(t) =

∫ t

0

g(t− s)f (u(s)) ds, t > 0,

blows up in finite time if and only if for some β > 0,

(1.7)
∫ ∞
ν

(
s

f (s)

) 1
β ds

s
<∞, for any ν > 0.

It has been assumed that f(t) is nonnegative, continuous and nondecreasing for

t > 0, f ≡ 0 for t ≤ 0, and lim
t→∞

f(t)
t = ∞. Obviously, when f(u (s)) = |u(s)|p in

(1.6), the condition (1.7) is fulfilled if p > 1.

By choosing g(t) to be the Dirac delta function and f (u) = |u(t)|p , p > 1 in the

equality in (1.1), we obtain

(1.8) u′(t) +
(
CDα

0+u
)

(t) = |u(t)|p , t > 0, p > 1.
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As proven in [12], the solution of the system

(1.9)

ut +
n∑
i=1

ai
(
Dαi

0+u
)

(t) =
∫ t

0
(t−s)−γ1
Γ(1−γ1) f1(u(s), v(s))ds, t > 0, 0 < αi, γ1 < 1,

vt +
n∑
i=1

ai

(
Dβi

0+v
)

(t) =
∫ t

0
(t−s)−γ1
Γ(1−γ2) f2(u(s), v(s))ds, t > 0, 0 < βi, γ2 < 1,

u(0) = u0, v(0) = v0 , 0 < u0, v0 ∈ R,

blows up in finite time for the continuously differentiable functions f1 and f2

satisfying the growth conditions:

f1 (u, v) ≥ a |v|p and f2 (u, v) ≥ b |u|q , a, b > 0 for all u, v ∈ R.

Although, the authors in [12], treated a system rather than an equation, the kernel

there is a special case of ours, that is k(t− s) = (t−s)−γ
Γ(1−γ) .

The present authors studied, in [3], the nonexistence of nontrivial global solutions

for the fractional integro-differential problem

(1.10)


(
Dα

0+u
)

(t) +
(
Dβ

0+u
)

(t) ≥
∫ t

0
h(t− s) |u(s)|p ds, t > 0, p > 1,

(
I1−αu

)
(0+) = b, b ∈ R,

whereDα
0+ andDβ

0+ are the Riemann-Liouville fractional derivatives of orders α and

β, respectively, 0 ≤ β < α ≤ 1 and h is a nonnegative function different from zero

almost everywhere. It has been shown that if
(
t−αp

′
+ t−βp

′
)
h1−p′ (t) ∈ L1

loc [0,∞)

and

lim
T→∞

T 1−p′
(∫ T

0

t−αp
′
h1−p′(t)dt+

∫ T

0

t−βp
′
h1−p′(t)dt

)
= 0,

where p′ = p
p−1 , then, the problem (1.10) has no nontrivial global solution when

b ≥ 0.

In this paper, we prove nonexistence of nontrivial global solutions for Problems

(1.1)− (1.2) and (1.1)− (1.3) under some conditions on the functions g and f . The

test function method introduced in [13] is adopted to the fractional case and used

here, see also [5, 9, 10, 15].

It is well known that lower order derivatives usually represent damping terms and

therefore help stabilizing the system in addition to the existence of solutions for all

time. On the contrary, polynomial sources destabilize the system and they can even

force solutions to blow up in finite time. In fact they are sometimes called blowing

up terms. When they are both present in the system we will have a competition

between these two terms. When 0 < α ≤ 1, the fractional derivative acts as a

damping term, while when 1 < α ≤ 2, it is the first derivative which plays this role.
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Many results on the existence of solutions for fractional differential equations are

available in the literature, ( see e.g. [1, 2, 8]). The most important recent results

on fractional differential equations with Caputo fractional derivatives are surveyed

in [1]. The study of the nonexistence of solutions for differential equations is as

important as the study of the existence of solutions. It is particularly capital for

the nonlinear differential equations where solutions cannot be found explicitly. We

refer the reader to [5, 6, 12, 9, 10, 15] and the references therein.

The rest of this paper is structured as follows. Section 2 is devoted to the required

notions and notations from fractional calculus that will be used throughout this

paper. Also, we present the test function and some of its properties we use. The

statements and proofs of our results are presented in Section 3. In the last section,

we provide some examples of special types of kernels with the numerical treatment

at various values of the parameters.

2. Preliminaries

In this section, we begin with some fractional-order operators relevant to our

study and recall some of their properties. We introduce our selected test function

with some of its characteristics.

The Riemann-Liouville left-sided and right-sided fractional derivatives of order

α ≥ 0, are defined by

(Dα
a+u) (t) = Dn

(
In−αa+ u

)
(t),(2.1)

(Dα
b−u) (t) = (−1)nDn

(
In−αb− u

)
(t),(2.2)

respectively, where Dn = dn

dtn , n = [α] + 1 and [α] is the integral part of α. Iαa+
and Iαb− are the Riemann-Liouville left-sided and right-sided fractional integrals of

order α > 0 defined by(
Iαa+u

)
(t) =

1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, t > a,

(Iαb−u) (t) =
1

Γ(α)

∫ b

t

(s− t)α−1u(s)ds, t < b,

respectively, provided the right-hand sides exist. The function Γ is the Euler Gamma

function. We define I0
a+u = I0

b−u = u. In particular, when α = m ∈ N0, it follows

from the definitions that

Dm
a+u = Dmu, Dα

b−u = (−1)mDmu.
6



NON-EXISTENCE OF GLOBAL SOLUTIONS FOR A ...

The Caputo left-sided and right-sided fractional derivatives of order α ≥ 0, are

defined by (
CDα

a+u
)

(t) =

(
Dα
a+

(
u(s)−

n−1∑
i=0

u(i)(a)

i!
(s− a)

i

))
(t) ,

(
CDα

b−u
)

(t) =

(
Dα
b−

(
u(s)−

n−1∑
i=0

u(i)(b)

i!
(b− s)i

))
(t) ,

respectively, where n = [α] + 1 for α /∈ N0 and n = α for α ∈ N0.

In particular, when α = n ∈ N0, it follows from the definitions that

CD0
a+u =CD0

b−u = u, CDn
a+u = Dnu, CDn

b−u = (−1)nDnu.

Notice that if u(i)(a) = 0 for all i = 0, 1, ..., n − 1, then CDα
a+u = Dα

a+u, and if

u(i)(b) = 0 for all i = 0, 1, ..., n − 1, then CDα
b−u = Dα

b−u. For more details about

fractional operators, we refer to the books [7, 14].

The space of absolutely continuous functions on [a, b] is denoted by AC [a, b]. In

general, for n ∈ N,

ACn[a, b] =
{
u : [a, b]→ R such that Dn−1u ∈ AC [a, b]

}
.

If u ∈ ACn[a, b], then CDα
a+u and CDα

b−u exist almost everywhere on the interval

[a, b] and (
CDα

a+u
)

(t) =
(
In−αa+ Dnu

)
(t),(2.3)

(
CDα

b−u
)

(t) = (−1)n
(
In−αb− Dnu

)
(t).(2.4)

Lemma 2.1. [7] If α ≥ 0, β > 0, then(
Iαb− (b− s)β−1

)
(t) =

Γ (β)

Γ(β + α)
(b− t)β+α−1

,

(
Dα
b− (b− s)β−1

)
(t) =

Γ (β)

Γ(β − α)
(b− t)β−α−1

.

Lemma 2.2. [14] Let α ≥ 0, p ≥ 1, q ≥ 1 and 1
p + 1

q ≤ 1 + α (p 6= 1 and q 6= 1 in

the case when 1
p + 1

q = 1 + α). If f ∈ Lp (a, b) and g ∈ Lq (a, b) , then∫ b

a

f (t)
(
Iαa+g

)
(t) dt =

∫ b

a

g (t)
(
Iαb−f

)
(t) dt.

Lemma 2.3. Let α ≥ 0 and n = [α] + 1 for α /∈ N0 and n = α for α ∈ N0. For

f ∈ C[a, b] and g, In−αb− f ∈ ACn[a, b], we have∫ b

a

f (t)
(
CDα

a+g
)

(t) dt =

∫ b

a

g(t) (Dα
b−f) (t) dt+

n−1∑
i=0

[(
Dα+i−n
b− f

)
(t)
(
Dn−1−ig

)
(t)
]b
a
.
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Proof. Since g ∈ ACn[a, b], then we have from the definition (2.3) ,∫ b

a

f (t)
(
CDα

a+g
)

(t) dt =

∫ b

a

f (t)
(
In−αa+ Dng

)
(t)dt.

Because f ∈ Lm1 (a, b) for any m1 ≥ 1 and Dng ∈ L1 (a, b), we deduce from Lemma

2.2, ∫ b

a

f (t)
(
In−αa+ Dng

)
(t)dt =

∫ b

a

Dng (t)
(
In−αb− f

)
(t)dt.

As In−αb− f ∈ ACn [a, b] and Dn−1g ∈ AC [a, b], then integrating by parts n times

yields ∫ b

a

f (t)
(
CDα

a+g
)

(t) dt =

n−1∑
i=0

[(
Dα+i−n
b− f

)
(t)
(
Dn−1−ig

)
(t)
]b
a

+

+ (−1)
n
∫ b

a

g(t)Dn
(
In−αb− f

)
(t) dt.

Owing to (2.2), the proof is complete. �

In this paper, we use the following test function

(2.5) φ (t) :=


(
1− t

T

)θ
, 0 ≤ t ≤ T,

0, t > T.

The function φ has the following properties.

Lemma 2.4. Let φ be the function defined in (2.5), then for θ > nr − 1, r > 1,

n = 0, 1, 2, ..., we have∫ T

0

φ1−r (t) |Dnφ (t)|r dt = Cn,rT
1−nr, T > 0,

where

Cn,r =
Γr(θ + 1)

(θ − nr + 1) Γr(θ − n+ 1)
.

Proof. Since

Dnφ (t) = (−1)
n
θ (θ − 1) (θ − 2) ... (θ − n+ 1)T−θ (T − t)θ−n

=
(−1)

n
Γ(θ + 1)

Γ(θ − n+ 1)
T−θ (T − t)θ−n ,

it follows that∫ T

0

φ1−r (t) |Dnφ (t)|r dt =

(
Γ(θ + 1)

Γ(θ − n+ 1)

)r
T−θ

∫ T

0

(T − t)θ−nr dt

= Cn,rT
1−nr.

�
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Lemma 2.5. Let α ≥ 0 and φ be as in (2.5) with θ > α − 1, then we have for all

0 ≤ t ≤ T,

(2.6) (Dα
T−φ) (t) =

Γ(θ + 1)

Γ(θ − α+ 1)
T−θ (T − t)θ−α ,

(2.7)
∫ T

0

tm (Dα
T−φ) (t) dt = ξm,θT

m+1−α, m = 0, 1, 2, ..., n− 1, n = [α] + 1,

where ξm,θ = (−1)mm!Γ(θ+1)
Γ(θ−α+m+2) .

Proof. We have from Lemma 2.1,

(Dα
T−φ) (t) =

(
Dα
T−T

−θ (T − s)θ
)

(t) =
Γ(θ + 1)

Γ(θ − α+ 1)
T−θ (T − t)θ−α .

An integration m times by parts yields∫ T

0

tm (Dα
T−φ) (t) dt =

m−1∑
i=0

[
(−1)

i m!

(m− i)!
tm−i

(
Ii+1
T− D

α
T−φ

)
(t)

]T
0

+ (−1)
m
m!

∫ T

0

(ImT−D
α
T−φ) (t) dt.(2.8)

Using (2.6) and Lemma 2.1, we find(
Ii+1
T− D

α
T−φ

)
(t) =

Γ(θ + 1)

Γ (θ − α+ i+ 2)
T−θ (T − t)θ−α+i+1

,

(ImT−D
α
T−φ) (t) =

Γ(θ + 1)

Γ (θ − α+m+ 1)
T−θ (T − t)θ−α+m

.

Therefore

(2.9)
[
tm−i

(
Ii+1
T− D

α
T−φ

)
(t)
]T
0

= 0 for all i = 0, 1, 2, ...,m− 1,

and

(2.10)
∫ T

0

(ImT−D
α
T−φ) (t) dt =

Γ(θ + 1)

Γ (θ − α+m+ 2)
Tm−α+1.

Now, by substituting (2.9) and (2.10) in (2.8) we obtain (2.7) . �

Lemma 2.6. Let α ≥ 0, n = [α] + 1 and φ be as in (2.5) with θ > α− 1, then(
In−αT− φ

)
(t) =

Γ(θ + 1)

Γ(θ + n− α+ 1)
T−θ (T − t)θ+n−α ,

for all 0 ≤ t ≤ T. Moreover, In−αT− φ ∈ ACn[0, T ].

Proof. From an application of Lemma 2.1, we deduce that(
In−αT− φ

)
(t) =

(
In−αT−

(
T−θ (T − s)θ

))
(t) =

Γ(θ + 1)

Γ(θ + n− α+ 1)
T−θ (T − t)θ+n−α .

It is clear that In−αT− φ is in the space ACn[0, T ] for θ > α− 1. �

9



A. M. AHMAD, K. M. FURATI AND N.-E. TATAR

Lemma 2.7. Let α ≥ 0 and φ be as in (2.5) with θ > max {0, α− 1}. Suppose that

g ∈ ACn[0, T ], n = [α] + 1 for α /∈ N0 and n = α for α ∈ N0. Then∫ T

0

φ (t)
(
CDα

0+g
)

(t) dt =

∫ T

0

g(t) (Dα
T−φ) (t) dt−

n−1∑
i=0

ξ̄i,αT
n−α−i (Dn−1−ig

)
(0) ,

where ξ̄i,α = Γ(θ+1)
Γ(θ+1−α−i+n) .

Proof. As a consequence of (2.6) in Lemma 2.5, we get for i = 0, 1, 2, ..., n− 1,(
Dα+i−n
T− φ

)
(0) =

Γ(θ + 1)

Γ(θ + 1− α− i+ n)
Tn−α−i,

(
Dα+i−n
T− φ

)
(T ) = 0.

Since φ ∈ C[0, T ] for θ > 0 and In−αT− φ ∈ ACn[0, T ], then the conclusion follows in

the light of Lemma 2.3. �

3. The main results

In this section we prove the nonexistence of a nontrivial global solution for the

initial value problems (1.1)− (1.2) and (1.1) − (1.3).

Definition 3.1. By a nontrivial global solution of Problem (1.1)−(1.2) or Problem

(1.1)−(1.3), we mean a nonzero function u defined on [0,∞) such that u ∈ AC [0, T ]

or u ∈ AC2 [0, T ] for all T > 0, for which the inequality (1.1) holds for all t > 0,

and satisfying (1.2) or (1.3), respectively.

Firstly, we need to prove the following auxiliary lemma.

Lemma 3.1. Let β ≥ 0, n = [β] + 1 and r > 1. Let φ be as in (2.5) with θ >

nr − 1. Suppose that g is a nonnegative function that is different from zero almost

everywhere and tr(n−β−1)g1−r (t) ∈ L1
loc [0,+∞). Then, for any T > 0∫ T

0

(
Dβ
T−φ

)r
(t)

(∫ T

t

g(s− t)φ (s) ds

)1−r

dt ≤ Ĉβ,rT 1−nr
∫ T

0

tr(n−β−1)g1−r(t)dt,

where Ĉβ,r =
Cn,r

Γr(n−β) , Cn,r is given in Lemma 2.4.

Proof. Since φ(i)(T ) = 0 for all i = 0, 1, ..., n − 1, then Dβ
T−φ = CDβ

T−φ. Also,

since φ ∈ ACn[0, T ] for θ > n− 1, then CDβ
T−φ = (−1)nIn−βT− Dnφ and(

Dβ
T−φ

)
(t) ≤

(
In−βT− |D

nφ|
)

(t) =
1

Γ(n− β)

∫ T

t

(s− t)n−β−1 |(Dnφ) (s)| ds

=
1

Γ(n− β)

∫ T

t

(s− t)n−β−1g
1
r′ (s− t)φ 1

r′ (s) g−
1
r′ (s− t)φ− 1

r′ (s) |(Dnφ) (s)| ds.

10
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Using Hölder inequality with 1
r + 1

r′ = 1, we find

(
Dβ
T−φ

)
(t) ≤ 1

Γ(n− β)

(∫ T

t

g(s− t)φ (s) ds

) 1
r′

×

(∫ T

t

(s− t)(n−β−1)r
g−

r
r′ (s− t)φ− r

r′ (s) |(Dnφ) (s)|r ds

) 1
r

.

Therefore∫ T

0

(
Dβ
T−φ

)r
(t)

(∫ T

t

g(s− t)φ (s) ds

)1−r

dt

≤ b1

∫ T

0

∫ T

t

(s− t)r(n−β−1)
g−

r
r′ (s− t)φ− r

r′ (s) |(Dnφ) (s)|r dsdt, b1 =
1

Γr(n− β)

= b1

∫ T

0

∫ s

0

(s− t)r(n−β−1)
g1−r(s− t)φ1−r (s) |(Dnφ) (s)|r dtds

= b1

∫ T

0

φ1−r (s) |(Dnφ) (s)|r
(∫ s

0

(s− t)r(n−β−1)
g1−r(s− t)dt

)
ds.

Let τ = s− t, then the following uniform bound is obtained∫ s

0

τ r(n−β−1)g1−r(τ)dτ ≤
∫ T

0

τ r(n−β−1)g1−r(τ)dτ ,

and the result follows from Lemma 2.4. �

Now, we are able to prove the nonexistence of solutions for the problem (1.1)−
(1.2) when 0 ≤ α < 1.

Theorem 3.1. Let 0 ≤ α < 1and f be C1 (R,R) function satisfies

f (x) ≥ a |x|p for all x ∈ R for some positive constant a and p > 1.

Suppose that g is a nonnegative function different from zero almost everywhere with

g1−p′ , t−αp
′
g1−p′(t) ∈ L1

loc [0,+∞) and

(3.1) lim
T→∞

T 1−p′
(
T−p

′
∫ T

0

g1−p′(t)dt+

∫ T

0

t−αp
′
g1−p′(t)dt

)
= 0,

where p′ = p
p−1 . Then the problem (1.1)− (1.2) does not admit any global nontrivial

solution when u0 ≥ 0.

Proof. Assume, on the contrary, that a solution u ∈ AC[0, T ] exists for all T > 0.

Multiplying both sides of (1.1) by the test function φ defined in (2.5) with θ > 2p′−1

11



A. M. AHMAD, K. M. FURATI AND N.-E. TATAR

and integrating, we obtain

(3.2)∫ T

0

φ (t)u′(t)dt+

∫ T

0

φ (t)
(
CDα

0+u
)

(t)dt ≥
∫ T

0

φ (t)

(∫ t

0

g(t− s)f (u (s)) ds

)
dt.

By Lemma 2.7 we have,

(3.3)
∫ T

0

φ (t)
(
CDα

0+u
)

(t) dt =

∫ T

0

u(t) (Dα
T−φ) (t) dt− u0ξ̄0,αT

1−α,

(3.4)
∫ T

0

φ (t)u′(t)dt = −
∫ T

0

u(t)φ′ (t) dt− u0,

where ξ̄0,α = Γ(θ+1)
Γ(θ−α+2) .

Substituting (3.3) and (3.4) in (3.2) yields

(3.5) W + u0

(
1 + ξ̄0,αT

1−α) ≤ ∫ T

0

u (−φ′) dt+

∫ T

0

uDα
T−φdt

where

(3.6) W :=

∫ T

0

φ (t)

(∫ t

0

g(t− s)f (u (s)) ds

)
dt.

To have a bound for the integralW , we rewrite it as

W =

∫ T

0

f (u (s))

(∫ T

s

g(t− s)φ (t) dt

)
ds =

∫ T

0

f (u (s))G(s)ds,

where

G(s) :=

∫ T

s

g(t− s)φ (t) dt, 0 ≤ s < t ≤ T.

Applying Hölder inequality with 1
p + 1

p′ = 1 for the two integrals in right hand side

of (3.5), we obtain∫ T

0

u (−φ′) dt ≤

(∫ T

0

|u|pGdt

) 1
p
(∫ T

0

G−
p′
p (−φ′)p

′

dt

) 1
p′

≤W
1
pU

1
p′ ,

∫ T

0

uDα
T−φdt ≤

(∫ T

0

|u|pGdt

) 1
p
(∫ T

0

G−
p′
p (Dα

T−φ)
p′
dt

) 1
p′

≤W
1
pV

1
p′ ,

where

(3.7) U := a−
p′
p

∫ T

0

G−
p′
p (−φ′)p

′

dt and V := a−
p′
p

∫ T

0

G−
p′
p (Dα

T−φ)
p′
dt.

Therefore (3.5) can be rewritten as

(3.8) W + u0

(
1 + ξ̄0,αT

1−α) ≤W 1
p

(
U

1
p′ + V

1
p′
)
.

From the positivity of W,u0 and ξ̄0,α, we get from (3.8)

W ≤W
1
p

(
U

1
p′ + V

1
p′
)
,

12
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which implies that

(3.9) W ≤ 2p
′−1 (U + V ) .

Now, we estimate the integral U defined in (3.7),

U = a−
p′
p

∫ T

0

G−
p′
p (t) (−φ′ (t))p

′

dt

= a−
p′
p

∫ T

0

(∫ T

t

g(s− t)φ (s) ds

)1−p′ (
D1
T−φ (t)

)p′
dt

≤ a−
p′
p Ĉ1,p′T

1−2p′
∫ T

0

g1−p′(t)dt, (Lemma 3.1 with β = 1).(3.10)

Similarly, we see that

V = a−
p′
p

∫ T

0

G−
p′
p (t) (Dα

T−φ)
p′

(t) dt

= a−
p′
p

∫ T

0

(∫ T

t

g(s− t)φ (s) ds

)1−p′

(Dα
T−φ)

p′
(t) dt

≤ a−
p′
p Ĉα,p′T

1−p′
∫ T

0

t−αp
′
g1−p′(t)dt,(3.11)

(Lemma 3.1 with 0 ≤ β = α < 1).

Substituting (3.10) and (3.11) in (3.9) we end up with

(3.12) W ≤M

(
T 1−2p′

∫ T

0

g1−p′(t)dt+ T 1−p′
∫ T

0

t−αp
′
g1−p′(t)dt

)
,

whereM = 2p
′−1 max

{
a−

p′
p Ĉ1,p′ , a

− p
′
p Ĉα,p′

}
. Eventually, we deduce from Condition

(3.1) that u ≡ 0 and the proof is complete. �

The following result is a corollary of Theorem 3.1.

Corollary 3.1. Let α and f be as in the assumptions of Theorem 3.1. Suppose

that, for any T > 0, there exist positive constants k1, k2,

(3.13) ω1 <
p+ 1

p− 1
and ω2 <

1

p− 1

such that

(3.14)
∫ T

0

g1−p′(t)dt ≤ k1T
ω1 , and

∫ T

0

t−αp
′
g1−p′(t)dt ≤ k2T

ω2 ,

where p′ = p
p−1 and g is a nonnegative function that is different from zero almost

everywhere with g1−p′ , t−αp
′
g1−p′(t) ∈ L1

loc [0,+∞). Then the problem (1.1)− (1.2)

has no nontrivial global solution when u0 ≥ 0.

13
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Proof. It suffices to show that the assumptions (3.13) and (3.14) imply that

(3.1) is fulfilled. We deduce from the hypothesis (3.14), that

0 ≤ T 1−p′
(
T−p

′
∫ T

0

g1−p′(t)dt+

∫ T

0

t−αp
′
g1−p′(t)dt

)
≤ k1T

1−2p′+ω1+k2T
1−p′+ω2 .

We find from (3.13) that 1− 2p′ + ω1 < 0, 1− p′ + ω2 < 0 and consequently (3.1)

follows. �

The following corollary considers an important type of kernels appear in numerous

applications.

Corollary 3.2. Let α and f be as in the assumptions of Theorem 3.1. Suppose that

g(t) ≥ bt−η, t > 0, for some constant b > 0, where 1−p (1− α) < η < 2+p (α− 1).

Then the problem (1.1)− (1.2) has no nontrivial global solution when u0 ≥ 0.

Proof. It suffices to show that Hypothesis (3.1) is satisfied with the function g.

Indeed, since g(t) ≥ bt−η; b, η > 0, then g1−p′(t) ≤ b1−p′tη(p
′−1) and∫ T

0

g1−p′(t)dt ≤ b1−p
′
∫ T

0

tη(p
′−1)dt =

b1−p
′

η (p′ − 1) + 1
T η(p

′−1)+1

∫ T

0

t−αp
′
g1−p′(t)dt ≤ b1−p

′
∫ T

0

tη(p
′−1)−αp′dt

=
b1−p

′

η (p′ − 1)− αp′ + 1
T η(p

′−1)−αp′+1.

Therefore

T 1−p′
(
T−p

′
∫ T

0

g1−p′(t)dt+

∫ T

0

t−αp
′
g1−p′(t)dt

)

≤ b1−p
′

η (p′ − 1) + 1
Tσ1 +

b1−p
′

η (p′ − 1)− αp′ + 1
Tσ2 ,

where

σ1 = 2− η + p′ (η − 2) , σ2 = 2− η + p′ (η − α− 1) .

It follows from 1− p (1− α) < η < 2 + p (α− 1) that both σ1 and σ2 are negative

and so (3.1) is satisfied. �

Remark 3.1. Corollary 3.2 can be considered also as a consequence of Corollary

3.1 with

k1 =
b1−p

′

η (p′ − 1) + 1
, k2 =

b1−p
′

η (p′ − 1)− αp′ + 1
,

ω1 = η (p′ − 1) + 1 =
p+ η − 1

p− 1
,

ω2 = η (p′ − 1)− αp′ + 1 =
p (1− α) + η − 1

p− 1
, 0 ≤ α < 1.

14
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It is clear from 1− p (1− α) < η < 2− p (1− α) that 0 < ω1 <
p+1
p−1 , 0 < ω2 <

1
p−1 .

The next theorem deals with the case 1 ≤ α < 2.

Theorem 3.2. Let 1 ≤ α < 2 and f be as in the assumptions of Theorem

3.1. Assume that g is a nonnegative function that is different from zero almost

everywhere with g1−p′ , t(1−α)p′g1−p′(t) ∈ L1
loc [0,+∞). Suppose that

(3.15) lim
T→∞

T 1−2p′

(∫ T

0

g1−p′(t)dt+

∫ T

0

t(1−α)p′g1−p′(t)dt

)
= 0,

where p′ = p
p−1 . Then (1.1) subject to (1.3) has no nontrivial global solution when

u0, u1 ≥ 0.

Proof. Assume, on the contrary, that a solution u ∈ AC2 [0, T ] exists for all

T > 0. Then as in the proof of Theorem 3.1, we have

W + u0

(
1 + ξ̄1,αT

1−α)+ u1ξ̄0,αT
2−α ≤W

1
p

(
U

1
p′ + V

1
p′
)
,

where W , U and V are as in (3.6) and (3.7). Accordingly, for 1 ≤ α < 2, from

Lemma 3.1 with 1 ≤ β = α < 2, we obtain the following estimates

U ≤ a−
p′
p Ĉ1,p′T

1−2p′
∫ T

0

g1−p′(t)dt,

V =

∫ T

0

(∫ T

t

g(s− t)φ (s) ds

)1−p′

(Dα
T−φ)

p′
(t) dt

≤ a−
p′
p Ĉα,p′T

1−2p′
∫ T

0

t(1−α)p′g1−p′(t)dt, (Lemma 3.1 with 1 ≤ β = α < 2).

By the assumptions (3.15), we get u ≡ 0 and the proof is complete. �

Applying Theorem 3.2 for kernels of the type g(t) ≥ bt−η, we obtain the following

result.

Corollary 3.3. Let α and f be as in the assumptions of Theorem 3.2. Suppose

that g(t) ≥ bt−η, t > 0, for some constant b > 0, where 1−p (2− α) < η < 2. Then

(1.1) subject to (1.3) has no nontrivial global solution when u0, u1 ≥ 0.

Proof. The hypotheses of Theorem 3.2 are satisfied with the given kernel g. In

fact, ∫ T

0

g1−p′(t)dt ≤ b1−p
′
∫ T

0

tη(p
′−1)dt = b2T

η1 ,∫ T

0

t(1−α)p′g1−p′(t)dt ≤ b1−p
′
∫ T

0

tη(p
′−1)+(1−α)p′dt = b3T

η2 ,
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where

b2 =
b1−p

′

η (p′ − 1) + 1
, b3 =

b1−p
′

η (p′ − 1) + (1− α) p′ + 1
,

η1 = η (p′ − 1) + 1 =
p+ η − 1

p− 1
> 0,

η2 = η (p′ − 1) + (1− α) p′ + 1 =
p (2− α) + η − 1

p− 1
> 0.

It is easy to check that η1, η2 > 0 and 1− 2p′ + η1, 1− 2p′ + η2 < 0. �

Remark 3.2. The same results of Theorem 3.2 and Corollary 3.3 can be obtained

with more relaxed conditions on the initial data. It is enough to have a0u0 +a1u1 ≥
0, for some positive constants a0 and a1, instead of u0 ≥ 0 and u1 ≥ 0. Indeed, a0

and a1 can be given in terms of the constants T, ξ̄0,α and ξ̄1,α.

4. Applications

In this section, we provide a special case of the kernel g(t) in Corollaries 3.2 and

3.3, when the source term is the Riemann-Liouville fractional integral of a power of

the state. We show here by computing the solutions numerically that the solutions

can not exist globally.

Example 4.1. Consider the fractional integro-differential inequality

(4.1) u′(t) +
(
CDα

0+u
)

(t) ≥
(
Iβ0+ |u(s)|p

)
(t), t > 0, β > 0, p > 1,

subject to (1.2) when 0 ≤ α < 1,or, (1.3) when 1 ≤ α < 2. The problem consists of

(4.1) subject to (1.2) is a special case of (1.1)− (1.2) when

g(t) = tβ−1, 0 < β < p (1− α) , 0 ≤ α < 1.

Therefore, we deduce from Corollary 3.2, when g(t) = t−η, η = 1−β, that Problem
(4.1) has no nontrivial global solutions when u0 ≥ 0. Similarly, (4.1) subject to (1.3)

has no nontrivial global solution when u0, u1 ≥ 0. This result is a special case of

Corollary 3.3 when

g(t) = t−η, η = 1− β, 0 < β < p (2− α) , 1 ≤ α < 2.

For treating the two problems in Example 4.1 numerically, we consider the case

of equality and write

u(t) = u0 −
∫ t

0

(
CDα

0+u
)

(s)ds+
(
Iβ+1
0+ |u(s)|p

)
(t).
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Using the iterative schemes

u(n)(t) = u0 −
∫ t

0

Dα
0+

(
u(n−1) (τ)− u0

)
(s)ds+

(
Iβ+1
0+

∣∣∣u(n−1)(s)
∣∣∣p) (t),

u(n)(t) = u0 −
∫ t

0

(
Dα

0+u
(n−1) (τ)− u0 − u1τ

)
(s)ds+

(
Iβ+1
0+

∣∣∣u(n−1)(s)
∣∣∣p) (t),

n = 1, 2, ... with u(0)(t) = u0, for (4.1) subject to (1.2) and (1.3), respectively, the

curves of the fourth iteration u(4) show, for different values of the parameters, that

the solutions can not be extended for all t.

,

Figure 1: α = β = 1
2 , p = 2, u0 = 1. Figure 2: α = 3

2 , β = 1
2 , p = 2, u0 = u1 = 1.
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