АСТРОФИЗИКА

TOM 34

АПРЕЛЬ, 1991

выпуск 2

УДК: 524.86Н

РЕКОМБИНАЦИЯ ВОДОРОДА В РАСШИРЯЮЩЕЙСЯ ВСЕЛЕННОЙ

С. И. ГРАЧЕВ, В. К. ДУБРОВИЧ

Поступила 10 января 1991 Принята к печати 10 февраля 1991

Путем совместного численного решения уравнения статистического равновесня для водорода и уравнения энергии рассчитаны зависимости от красного смещения z(0 < z < 1800) степени нонизации $y = N_o/N$ и электронной температуры T_e в расширяющейся Вселенной при разных значениях постоянной Хаббла и космологических параметров плотности Ω и $\Omega_{\rm H}$. Получены приближенные формулы для y(z) и $\tau(z) = T_c/T$ (T—температура фонового чернотельного излучения) ирп z < 100. Показано, что при z > 900 имеется хорошее согласне с предыдущими исследованиями ([1, 2, 4, 5]), в которых использовалась более упрощенная трактовка задачи, в при z < 900 рассчитанные нами y и τ оказываются систематически меньше, чем в указанных работах (при z = 0 величина y получается в ~ 2 раза меньше). Найдено также, что более строго описание переноса излучения в линии водорода Ly α с учетом частичного перераспределения по частоте (включая отдачу) практически не влияет на кинетику рекомбинации, вопреки утверждениям, сделанным в [10].

1. Введение. Расчеты изменения со временем степени ионизации и температуры догалактической плазмы важны для анализа поведения возмущений, из которых образовались наблюдаемые нами структуры во Вселенной (галактики, скопления галактик). С тепловой историей догалактической плазмы связана и проблема флуктуаций температуры микроволнового реликтового излучения. Первые детальные расчеты кинетики рекомбинации догалактической плазмы проделали в 1968 г. Пиблс [1] и Зельдович, Курт и Сюняев [2] при предположениях, что плазма чисто водородная, нет дополнительного энерговыделения, вклад в среднюю плотность дают только барионы. В обеих указанных работах решались некоторые приближенные уравнения рекомбинации. Так, в [1] считалось, что отношения населенностей верхних уровней атома водорода, начиная с уровня 2p, к населенности состояния 2s даются формулой Больцмана. В [2] решались фактически два уравнения, в первом из которых (на ранних стадиях эпохи рекомбинации) населенности верхних состояний (начиная со второго) вычислялись по формуле Больцмана—Саха, а во втором (на поздних стадиях) предполагалось, что каждый акт рекомбинации (сначала через состояние 2s, а потом и через состояние 2p) является безвозвратным, и полное решение получалось сшивкой решений двух этих уравнений. При этом первое уравнение решалось в [2] численно, а впоследствии Сюняев и Зельдович [3] нашли и его приближенное аналитическое решение. Приближенные решения из [2] и [3] были обобщены на случай наличия фона массивных нейтрино Заботиным и Насельским [4].

В одной из недавних работ по изучению рекомбинации в догалактической плазме—работе Джонса и Вайзе [5]—используется несколько уточненное уравнение Пиблса [1]. Уточнение фактически состоит в учете вынужденного излучения в линии Lya, что, однако, несущественно, как вто и видно из табл. 1 в [5], где приведены для сравнения и результаты из [1]. В [5] найдены и приближенные аналитические решения для степени ионизации при красных смещениях 800 < z < 2000. Расчеты кинетики рекомбинации догалактической плазмы проводились и другими авторами [6—9]. При этом работа [6], в которой была сделана попытка уточнить результаты Пиблса [1], подверглась критике в [5], а способы расчетов в [7—9] не указаны—приведены только результаты. В статье Кролика [10] изучалось влияние диффузии фотонов Lya на кинетику рекомбинации водорода в расширяющейся Вселенной. Однако использованное в [10] уравнение диффузии неверно, и выводы о роли диффузии фотонов Lya ошибочны (см. ниже в следующем разделе).

Резюмируя, можно сказать, что в большинстве исследований по кинетике рекомбинации догалактической плазмы используются приближенные уравнения для степени ионизации, полученные в [1] или в [2]. Эти уравнения могут быть близки к точным в предельных случаях—в начале и в конце эпохи рекомбинации. Однако имеется промежуточная область, для которой сделанные в [1] и в [2] предположения о заселенности верхних состояний атома водорода не выполняются, и населенности этих состояний следует находить из решения уравнений статистического равновесия, что и делается в настоящей работе. Наряду с этим более точно (с учетом частичного перераспределения по частоте и отдачи при рассеянии) трактуется перенос излучения в линии Lya. Полученные результаты сравниваются с результатами работ [1—5].

2. Основные уравнения и соотношения. Уравнение, описывающее изменение со временем t степени ионизации $y = N_c/N$ в однородно расширяющейся чисто водородной среде, имеет вид (см. [1])

$$N \, dy/dt = \sum_{i=2}^{\infty} (N_i \, R_{ie} - N_e^2 \alpha_i), \qquad (1)$$

где N₆ и N₁—концентрации электронов и нейтральных атомов водорода

на l-ом уровне соответственно, α_1 и R_{1c} -ковффициенты фоторекомбинации и фотоионизации соответственно,

$$N = N_e + \sum_{i=1}^{n} N_i.$$
 (2)

Уравнения (1) и (2) следует дополнить системой уравнений статистического равновесия. При этом надо иметь в виду, что к началу эпохи рекомбинации: 1) роль ударных переходов по сравнению с радиативными становится пренебрежимо малой (см., например, [1, 6]); 2) Вселенная оказывается прозрачной в субординатных линиях и континуумах водорода и сильно непрозрачной в лаймановских линнях и континууме. Таким образом, можно принять, что вынужденные радиативные переходы (как вниз, так и вверх) в субординатных линиях и континуумах происходят под действием чернотельного фонового излучения с температурой Т, а спонтанные и вынужденные переходы вниз в лаймановских линиях практически полностью компенсируются переходами при поглощении диффузных лаймановских фотонов, причем небольшая несбаланси. рованность радиативных переходов между основным и первым возбужденным состояниями определяет темп рекомбинации (см. [1, 2]). В итоге, обозначив через R₈ и R_р темпы нескомпенсированных радиативных персходов вниз из состояний 2s и 2p соответственно, можно записать систему уравнений статистического равновесия в виде

$$N_{k}\sum_{i=2} R_{ki} = N^{2} a_{k} + \sum_{i=2}^{n} N_{i} R_{ik}, \quad R_{ik} = 0, \quad k = 3, 4, \dots, \quad (3)$$

$$N_{2l}\sum_{i=3}^{c}R_{2l,i} = N_{i}^{2}\alpha_{2l} + \sum_{i=3}^{c}N_{l}R_{i,2l} - R_{l}, \quad l = s \text{ in } p, \quad (4)$$

где индекс *i* = с обозначает континуум,

$$R_{kl} = \begin{cases} A_{kl} / [1 - \exp(-h v_{lk} / kT)], & k > i, \\ (g_l / g_k) A_{lk} / [\exp(h v_{lk} / kT) - 1], & k < i, \end{cases}$$
(5)

коэффициент фоторекомбинации (с учетом вынужденной)

$$x_{k} = R_{ke}^{\bullet}[g_{k}/2g(T_{e})] \exp(h v_{ke} / k T_{e}).$$
(6)

причем для R_{kc} и ковффициента фотоионизации R_{kc} имеем

$$R_{ke}^{*} = f(v_{ke}, T, T_{e}), \quad R_{kc} = f(v_{ke}, T, T_{e}), \quad (7)$$

a

$$f(v_{sc}, T, T_{s}) = \frac{8\pi}{c^{2}} \int_{kc}^{\infty} k_{kc}(v) \frac{\exp(-hv/kT_{s})}{1 - \exp(-hv/kT)} v^{2} dv.$$
(8)

В формулах (5)—(8) наряду с общепринятыми обозначениями физических постоянных использованы также следующие обозначения: g_i —статистический вес *i*-го уровня, A_{ki} —эйнштейновский ковффициент вероятности спонтанных переходов,

$$g(T_e) = (2\pi m k T_e)^{3/2} h^{-3}, \qquad (9)$$

 T_{e} --влектронная температура, v_{kc} и $k_{kc}(v)$ --частота и сечение фотоионизации с к-го уровня соответственно.

Подстановка (3) и (4) в (1) дает

$$Ndy/dt = -R_{\mu} - R_{\mu}, \qquad (10)$$

причем для введенных выше темпов несбалансированных переходов, очевидно, имеем

$$R_s = A_s \left[N_{2s} - N_1 \exp\left(-\frac{h v_{12}}{kT}\right) \right], \tag{11}$$

поскольку заселение подуровня 2s (с энергией h v12) снизу определяется двухфотонным поглощением чернотельного излучения, и

$$R_{p} = N_{2p} A_{p} - N_{1} B_{p} J_{12} \equiv \beta N_{2p} A_{p}, \qquad (12)$$

где \int_{12} —средняя по частотам и углам интенсивность язлучения в линии Ly α . В (11) и (12) $A_8 = 8.23$ с⁻¹ и $A_p = 6.24 \cdot 10^8$ с⁻¹—зероятности спонтанных переходов из состояний 2s (двухфотонное излучение) и 2p соответственно.

Вторым равенством в (12) вводится вероятность выхода β фотонов Lya из процесса рассеяний вследствие доплеровского смещения частоты в расширяющейся Вселенной. Поскольку можно считать, что диффузия фотонов Lya происходит в квазистационарном режиме (характерное время диффузии гораздо меньше характерного времени рекомбинации), то β определяется из решения стационарного уравнения переноса в линии Lya при заданных альбедо однократного рассеяния λ и безразмерном градиенте скорости

$$\gamma = (8\pi H/3\lambda_{12}^3)/(N_1A_{\nu}), \tag{13}$$

где H—фактор Хаббла, $\lambda_{12} = 1216$ А—длина волны в центре линии. При частичном перераспределении по частоте с учетом отдачи такое решение было получено в [11] в диффузионном приближении. При этом использовалось нулевое граничное условие ($I(+\infty)=0$) в далеком ко-

252

ротковолновом крыле профиля линии. В настоящей работе граничное условие должно, очевидно, иметь вид $I(+\infty) = B(T)$, где B(T)—функция Планка на частоте центра линии. Тогда методом, предложенным в [11], можно получить для интенсивности в линии Lya на безразмерной частоте $\lambda = (\gamma - \gamma_{12})^{1/2}$ следующее выражение:

$$I(x) = S \, i(u) + B(T) \,\vartheta(u) \, v_1(u) / v_1(\infty), \tag{14}$$

где $\vartheta(u) - \varphi$ ункция единичного скачка: $\vartheta(u) = 0$ при u < 0 и $\vartheta(u) = 1$ при u > 0,

$$S = (2hv_{12}^3/c^2)N_{2p}/3N_1, \quad B(\mathcal{T}) = (2hv_{12}^3/c^2)e^{-hv_{12}/kT}, \quad (15)$$

причем вынужденным излучением в линии Ly α пренебрегается. Функции i(u) и $v_1(u)$ вргумента $u = x/x_1$, входящие в (14), зависят от параметров

$$\sigma = \mathbf{x}_{\gamma} / \mathbf{x}_{\lambda}, \quad \rho = 2\mathbf{o} \mathbf{x}_{\gamma}, \quad (16)$$

где б-параметр отдачи, а x, и x, --- характерные безразмерные частоты:

$$b = h v_{12} / M v_{th} c, \quad x_{\gamma} = (3a) / (2\pi\gamma)^{1/3}, \quad x_{\lambda} = \sqrt{\lambda} / (2(1-\lambda)).$$
 (17)

Здесь M — масса атома водорода, $v_{1b} = \sqrt{2kT_c/M}$ - средняя скорость теплового движения атомов, $a = \Delta v_E / \Delta v_D$ — фойгтовский параметр (Δv_E — естественная полуширина линии, $\Delta v_D = v_{12}v_{13}/c$ —доплеровская полуширина).

Аналитические представления для функций i(u) и $v_1(u)$ получены в [11]. Функция i(u) монотонно убывает с ростом u, а $v_1(u)$ монотонно растет, причем i(0) = 1, $v_1(0) = 0$, $i(+\infty) = 0$, $v_1(+\infty) < +\infty$. Если отдача не учитывается ($\rho = 0$), то i(u) = 1 при u < 0 и i(u) = $= 1 - v_1(u)/v_1(\infty)$ при u > 0. В [11] для величины β , входящей в (12), найдено точное выражение, справедливое при любом законе перераспределения по частотам при рассеянии. С учетом другого граничного условия $(I(+\infty) = B(T))$ вместо $I(+\infty) = 0$ и несколько иного определения S и γ по сравнению с [11] это точное выражение записывается в виде.

$$\beta = \gamma \left[I(-\infty) - B(T) \right] / S.$$
(18)

Подстановка формулы (14) при $x = -\infty (u = -\infty)$ в (18) дает

$$\beta = \gamma [i(-\infty) - B(T)/S].$$
⁽¹⁹⁾

Асимптотики и приближенная формула для $i(-\infty)$, а также таблица значений при разных величинах параметров ρ и σ имеются в [11]. При $\rho = 0$ имеем $i(-\infty) = 1$.

Альбедо однократного рассеяния λ фотонов Lyα определяется в рассматриваемом случае возбуждением и ионизацией атомов водорода из состояния 2*p* чернотельным излучением, так что

$$h = A_p / (A_p + \sum_{i=3}^{c} \mathcal{R}_{2p,i}).$$
 (20)

Как показали расчеты aposteriory, ударные переходы, между подуровнями 2s и 2p, а также ионизация атомов в состояниях 2s и 2p излучением в линии Lya и излучением, возникающим при двухфотонных переходах 2s—1s, не играют роли.

Подстановка (19) в (12) дает (с учетом (13)) для темпа рекомбинации за счет выхода фотонов Lya из процесса рассеяний следующее выражение: $R_p = (8\pi H/I_{12}^3)[i(-\infty)N_{2p}/3N_1 - e^{-hv_{12}/kT}]$. Если отдача не учитывается (роль ее на самом деле оказывается пренебрежимо малой), то, как указывалось выше, $i(-\infty) = 1$ и тогда $R_p = (8\pi H/r_{1,1}^3) \times$ $\times [N_{2P}/3N_1 - e^{-h_{12}kT}]$, что совпадает с выражением, использованным сначала в [1] (заметим, что в [1] полагалось $N_{2P} N_{2s} = \chi_{2P} / g_2 = 3$) и в [2], а затем и в других работах, посвященных рекомбинации водорода в расширяющейся Вселенной. Последняя формула для Rp следует из точного соотношения (18), если положить $I(-\infty) = S$. Это равенство получается из решения уравнения переноса в линии Lya в приближении полного перераспределения по частоте (ППЧ) при рассеянии [2]. Таким образом, величина темпа рекомбинации практически (при значениях параметров, характерных для эпохи рекомбинации) не зависит от предположений о характере переноса излучения в линии Lya: полное перераспределение по частоте при рассеянии или более адекватное частичное перераспределение в диффузионном приближении. К иному выводу пришел Кролик [10], который, как и мы, использовал диффузионное приближение (без учета отдачи). Однако выводы, сделанные в [10], ошибочны по нескольким причинам. Во-первых, в [10] используется неправильное выражение для дифференциального оператора, описывающего диффузию фотонов Lya в пространстве частот (правильное выражение получено в [12], см. также [13]). Во-вторых, в уравнении диффузии необоснованно пренебрегается первичными источниками и не учитывается неконсервативность рассеяния. Следует отметить, что корректное решение задачи о переносе излучения в линии Lya при частичном перераспределении по частоте (без учета отдачи) в бесконечной неконсервативной среде с хаббловской кинематикой было получено в диффузионном приближении в [14]. Затем в [11] было найдено более строгое решение, причем с учетом отдачи при рассеянии.

Продолжим далее вывод основной системы уравнений. Вместо населенностей N_k удобно ввести величины

$$r_{k} = N_{k} 2g(T_{*}) / g_{k} N_{*}^{2}, \qquad (21)$$

связанные с мензеловскими множителями $b_k = r_k \exp(-hv_{kc}/kT_e)$. Кроме того, целесообразно перейти от времени t к красному смещению z. Из определений z и фактора Хаббла H следует, что

$$dz/dt = -(1+z)/l.$$
 (22)

В результате с учетом (11), (12) и (19) уравнение (10) принимает вид

$$(1+z)g(T_{*})\frac{dy}{dz} = A_{*}y^{2}[r_{2s} - r_{1}e^{-h_{*}w/kT}]\frac{N}{H} + \frac{8\pi}{i_{12}^{3}}\frac{N}{N_{1}}y^{2}[i(-\infty)r_{2p} - r_{1}e^{-h_{*}w/kT}], \qquad (23)$$

а система уравнений (3) и (4) переходит в

$$r_{k} \sum_{i=2}^{s} R_{ki} = K_{ke}^{*} \exp (hv_{ke}/kT_{e}) + \sum_{i=2}^{s} r_{i}g_{i}R_{ik}/g_{k}, k = 3, 4, ...,$$

$$r_{2i}(K_{i} + \sum_{i=3}^{s} R_{2i,i}) = M_{i}r_{i}e^{-hv_{13}/kT} + R_{2i,e}^{*}e^{hv_{ke}/kT_{e}} + \frac{2}{g_{2i}}\sum_{i=3}^{s} r_{i}i^{2}R_{i,2i},$$
(24)

где l = s м p, $K_s = M_s = A_s = 8.23 c^{-1}$, $K_p = A_p$; $i(-\infty)$, $M_p = A_p$; γ , $A_p = 6.24 \cdot 10^8 c^{-1}$ и согласно (2) и (21)

$$r_{1} = \frac{1 - y}{y^{2}} \frac{g(T_{e})}{N} - \frac{1}{2} \sum_{i=2}^{n} g_{i} r_{i}.$$
 (25)

К этой системе следует добавить уравнение энергии, которое в предположении о равенстве температур электронов, ионов и нейтральных атомов имеет вид (см. [1, 2])

$$(1+z)\frac{d\tau}{dz} = \tau - \frac{8\sigma_0 a T^4}{3Hmc} (1-\tau)y, \ \tau = T_e/T,$$
 (26)

где $\sigma_0 = 6.65 \cdot 10^{-25}$ см²—сечение томсоновского рассеяния, а—постоянная плотности излучения. Второе слагаемое в правой части (26) описывает нагрев газа за счет комптоновского рассеяния чернотельного фонового

излучения на электронах, а первое—адиабатическое охлаждение газа. В дальнейшем мы пренебрегаем числом атомов в возбужденных состояниях по сравнению с числом атомов в основном состоянии и считаем (см. формулы (2) и (25))

$$N_1 = (1 - y)N, \ r_1 = (1 - y)g(T_*)/(y^2N).$$
(27)

При этом предположении (которое оказывается очень хорошим) система уравнений (24) является линейной относительно г.

В выписанные выше уравнения входят температура фонового чернотельного излучения T, концентрация атомов и ионов водорода N и фактор Хаббла H, для которых справедливы следующие зависимости от красного смещения z:

$$T = T_0(1 + z), \quad N = N_0(1 + z)^3, \quad H = H_0(1 + z) \sqrt{1 + 2z}, \quad (28)$$

где T_0 , N_0 и H_0 —современные значения указанных величин, а космологический параметр

$$\Omega = 8\pi G \rho_0 / 3H_0^2 \tag{29}$$

есть отношение средней плотности ρ_0 к критической в современную эпоху (G—гравитационная постоянная). Величину N_0 удебно измерять в единицах критической концентрации:

$$N_0 = 0.632 \cdot 10^{-5} \, \Omega_H \, h_0^2 \, \mathrm{cm}^{-3}, \quad h_0 = H_0 / 75 \, \frac{\mathrm{KM}}{\mathrm{c} \cdot \mathrm{Mnk}}, \tag{30}$$

причем параметр Ω_H включает в себя в качестве множителя содержание водорода по массе ($\Omega_H = X \Omega_B$).

3. Результаты расчетов степени ионизации и электронной температуры. Для вйнштейновских ковффициентов A_{kl} , входящих в (5), при $i=2_s$ и 2р использовались значения (при $\kappa \leq 8$) и асимптотики (при k>8) из [15], а при $\kappa>i>3$ применялась приближенная формула Мензела—Пекериса (см. [16]). Для сечения фотоионизации, входящего в (8), использовались приближенные выражения из [15].

Система уравнений (23) и (26) для y и т решалась численно методом Рунге—Кутта четвертого порядка. При этом входящие в (23) и (26) величины r_{7s} и r_{2p} находились из решения линейной (согласно (27)) по r_1 системы уравнений (24). Входными параметрами являются T_0 , H_0 , Ω и $\Omega_{\rm H}$. Эти параметры определяют модель (см. табл. 1). Модель М1 рассматривалась в [1], в модели М2 используются более точные современные данные о T_0 и H_0 , модель М3 рассматривалась в [4], где изучалось влияние гипотетического фона массивных нейтрино на флуктуации температуры микроволнового реликтового излучения, модели М4, М5 и М6 рассчитывались в [5].

Входные параметры				Рассчитанные параметры ($z = 0$)					
<i>T</i> ₀ , K	H	Q	_Ω н	.y	T _e /T	P	<i>t</i> (-∞)	۲	* _T
2.7	98	1	1	5.97-6	1.90-3	36.9	8380	2.21-6	52.1
2.76	55	1	1	1.285	2.87-3	22.8	2000	3.92-6	40.1
2.7	50	5.13	0.03	1.26-3	1.07-2	2.90	8.83	1.44-4	9.72
2.7	100	1	1	5.79-6	1.88-3	37.6	8840	2.16-6	52.7
2.7	100	0.1	0.1	2.54-5	4.01 - 3	10.5	202	2.16-5	21.5
2.7	100	1	0.1	7.45-5	4.04-3	10.5	200	2.16-5	21.5
	Содные <i>T</i> ₀ , К 2.7 2.76 2.7 2.7 2.7 2.7	COAMME Hap T ₀ , K H ₀ 2.7 98 2.76 55 2.7 50 2.7 100 2.7 100 2.7 100	Содимо параметрь T ₀ , K H ₀ 2 2.7 98 1 2.76 55 1 2.7 50 5.13 2.7 100 1 2.7 100 1 2.7 100 1	COLUMNE ПАРАМЕТРЫ T_0 , K H_0 Ω Ω_H 2.7 98 1 1 2.76 55 1 1 2.7 50 5.13 0.03 2.7 100 1 1 2.7 100 0.1 0.1	СОДИМЕ ПАРАМЕТРЫ Ра T_0 , K H_0 Ω Ω_H y 2.7 98 1 1 5.976 2.76 55 1 1 1.285 2.7 50 5.13 0.03 1.26-3 2.7 100 1 1 5.796 2.7 100 0.1 0.1 2.545 2.7 100 1 0.1 7.455	Рассчитанны T_0 , K H_0 Ω Ω_H y T_e/T 2.7 98 1 1 5.97-6 1.90-3 2.76 55 1 1 1.28-5 2.87-3 2.7 50 5.13 0.03 1.26-3 1.07-2 2.7 100 1 1 5.79-6 1.88-3 2.7 100 0.1 0.1 2.54-5 4.01-3 2.7 100 1 0.1 7.45-5 4.04-3	СОДИМО ПАРАМСТРЫ Рассчитанные пара T_0, K H_0 Ω Ω_H y T_e/T ρ 2.7 98 1 1 5.976 1.903 36.9 2.76 55 1 1 1.285 2.873 22.8 2.7 50 5.13 0.03 1.263 1.07-2 2.90 2.7 100 1 1 5.796 1.883 37.6 2.7 100 0.1 0.1 2.545 4.01-3 10.5 2.7 100 1 0.1 7.45-5 4.04-3 10.5	Рассчитанные параметры (z T_0 , K H_0 Ω Ω_H y T_e/T p $t(-\infty)$ 2.7 98 1 1 5.976 1.903 36.9 8380 2.76 55 1 1 1.285 2.873 22.8 2000 2.7 50 5.13 0.03 1.263 1.07-2 2.90 8.83 2.7 100 1 1 5.796 1.883 37.6 8840 2.7 100 0.1 0.1 2.545 4.01-3 10.5 202 2.7 100 1 0.1 7.45-5 4.043 10.5 200	Рассчитанные параметры ($z = 0$) T_0, K H_0 Ω Ω_H y T_e/T p $t(-\infty)$ γ 2.7 98 1 1 5.976 1.90-3 36.9 8380 2.216 2.76 55 1 1 1.285 2.873 22.8 2000 3.926 2.7 50 5.13 0.03 1.26-3 1.07-2 2.90 8.83 1.44-4 2.7 100 1 1 5.79-6 1.88-3 37.6 8840 2.16-6 2.7 100 0.1 0.1 2.54-5 4.01-3 10.5 202 2.16-5 2.7 100 1 0.1 7.45-5 4.04-3 10.5 200 2.16-5

ПАРАМЕТРЫ МОДЕЛЕЙ

Начальное (при $z = z_0$) значение у находилось по формуле Саха. При решении системы (24) использовалась модель атома водорода с 60-ю уровнями, причем верхние уровни с $60 \ge i > n_{ap}$ (z) считались находящимися в равновесии с континуумом (для них мензеловские множители $b_1 = 1$). Эмпирически было найдено, что

$$n_{\rm up}(z) \approx T_*/[T_0(1+z)],$$
 (31)

где T = 39450 К—температура порога ионизации со второго уровня. При $z_0 > z > z_1$, где z_1 —параметр (обычно ~ 1000), все верхние уровни, начиная со второго, находятся в равновесии с континуумом ($b_1 = 1$, i > 2), $T_e = T$, и решается лишь одно уравнение (23). При $z < z_1$ населенности уровней с $i < n_{up}$ (z) определяются из решения системы (24). В дальнейшем, при еще меньших z, к уравнению (23) подключается уравнение (26), когда начальное значение τ , определяемое из условия равенства нулю правой части (26), станет меньше 0.99.

Результаты расчетов приведены на рис. 1, где для сравнения представлены также и данные [1] и [5] для моделей М1 и М4, М5, М6 соответственно (графики $\lg y$ и т для М1 и М4 неразличимы). Видно, что расхождения имеются при z < 900. Как раз в втой области населенности уровней с $n \ge 2$ заметно отличаются от равновесных. Предельная (при z = 0) степень ионизации получается примерно в 2 раза меньше, чем в [1]. В табл. 1 приведены предельные значения параметров для всех рассмотренных моделей, а в табл. 2 приведены значения r_{2x} и

Таблица 1

 $r_{2\nu}/r_{2\nu}$ лишь при z < 1100, поскольку при z > 1100 мензеловские множители $b_{2\nu} = b_2 = 1$. На рис. 2а приведены графики зависимости степени ионизации от красного смещения согласно решению системы (23) и (26) и по формуле Саха. Для модели МЗ дан также график зависимости y(z), рассчитанной без учета выхода фотонов Lya из процесса рассеяний вследствие космологического расширения. В моделях М1 и М2 выход фотонов Lya практически не влияет на степень ионизации: для модели М1 его вклад меньше 3% при z > 600, а для модели М2—меньше 4.5% при z > 700.

Таблица 2а

-	N	A2	MW	4	M	5		16
z	r _{2a}	r_{2p}/r_{2s}	r _{2n}	r_{2p}/r_{2s}	r _{2s}	r2p/r2s	F28	r _{2 p} /r _{2s}
1100	4.35+5	1	5.81+5	1	5.73 + 5	1.00	5.72+5	1.00
1000	1.53+6	1.00	2.18+6	1.00	2.08+6	1.00	2.05+6	1.00
900	6.*0+6	1.00	8.61+6	1.00	8.53+6	1.00	8.30+5	1.00
800	2.18+7	1.00	2.42+7	1.00	2.4.)+7	1.00	2.16+7	1.00
700	2.90+7	1.01	2.8 +7	1.01	2.84- -7	1.0;	2.41+7	1.01
600	2.54+7	1.06	2.40 7	ĩ.09	2.40+7	1.08	1.957	1.08
500	1.88+7	1.86	1.75+7	2.24	1.67-7	2.16	1.15+7	1.96
440	9.07+ó	7.11	8.20-4-6	10.5	6.64-5	7.88	4.63+6	4.49
400	4.08+6	18.0	3.50+6	24.2	3.52 1-0	13.7	3.18+6	5.22
350	2.51+6	22.6	2.05+6	37.8	2.60+6	13.8	2.57-+6	4.69
300	1.72+6	17.7	1.35+6	27.3	1.91- -5	10.6	1.89+6	3.56
200	8.18+5	9.13	5.94+5	14.4	9.84 - 5	5.53	9.84+5	1.90
100	2.55+5	2.74	1.75+5	3.86	3.31+5	1.73	3.31+5	0.627
60	1.04+5	1.04	6.93+4	1.34	1.35+5	0.692	1.36+5	0.267
20	1.40+4	9.34-2	9.15+3	7.972	1.92+4	7.59-2	1.93+4	3.61-2
0	36.2	2.05-6	23.4	8.66-7	50.0	3.78-6	50.4	3.83-6
				1000 B	-			

РЕЗУЛЬТАТЫ РАСЧЕТОВ ДЛЯ МОДЕЛЕЙ М2, М4, М5 И М6

Результаты наших расчетов и результаты численных расчетов Джонса и Вайзе [5] приведены на рис. 2b. Для модели M4 между ними имеется хорошее согласие, а для модели M6 результаты из [5] хорошо «ложатся» на нашу кривую, но построенную без учета выхода фотонов Lya.

Сравнение точных зависимостей y(z) с рассчитанными по приближенным формулам Сюняева и Зельдовича [3], Зельдовича и др. [2],

Заботина и Насельского [4], Джонса и Вайзе [5] приведено на рис. 3. Согласно рис. 2 для моделей М1 и М2 при z > 1000 степень ионизации не сильно отличается от равновесной, т. е. наряду с двухфотонными «респадеми» состояния 2s существенную роль игрезот и сбратные пере-

Рис. 1. Зависимости $\lg y(z)$ и $\tau(z) = T_0/T$: линии—согласно настоящей работе (указаны номера моделей по табл. 1), косые крестики—согласно [1] для модели М1; прямые крестики—согласно [5] для моделей М4, М5 и М6.

Рис. 2. Зависимости *у(z)*: сплошные линии—согласно настоящей работе; штриховые—по формуле Саха; штрихпунктирные—по нашим расчетам, но бев учета выхода фотонов Lyα; крестики—согласно [5].

С. И. ГРАЧЕВ, В. К. ДУБРОВИЧ

ходы—с поглощением двух фотонов фонового чернотельного излучения, которые в [3] и в [4] не учитывались. Этим и объясняется существенное отличие от точных результатов для модели М1 при z > 1000. В [5] было предложено другое (более точное, чем в [3]) приближенное решение. Как видно на рис. 3, оно действительно не сильно отличается от

Рис. 3. Отношения точных значений у к вычислевным по приближенным формулам, приведенным в [4] (штриховая линия) и в [5] (сплошная линия).

точного при z > 1000 для модели М1. Однако для модели М6 точность приближенного решения из [5] уже значительно ниже. В модели М3 при z > 1600 роль двухфотонного возбуждения в состояние 2s мала, а роль выхода фотонов Lya велика (см. рис. 2). Последнее и объясняет большую погрешность решения из [4] при z > 900 (см. рис. 3). При z < 900 для всех шести моделей начинает также сказываться отклонение населенностей состояний 2s и 2p от равновесных. Что же касается различий с результатами [1—4] при достаточно малых z(< 320, см. рис. 1и 3), когда рекомбинация практически идет свободно, то они вызваны и недооценкой суммарного козффициента рекомбинации, который вычислялся в упомянутых работах без учета вынужденной рекомбинации в поле чернотельного излучения, причем в [2—4] предполагалось, что «отрыв» излучения от вещества происходит при z = 150, тогда как на самом деле (для модели М1) он происходит гораздо раньше (см. рис. 1).

Для сравнения нами были проведены также расчеты в предположении, что отдачи нет, т. е. $\rho = 0$, $l(-\infty) = 1$. Оказалось, что отдача практически не влияет ни на кинетику рекомбинации, т. е. на y(z) в $\tau(z)$, ни на крупномасштабный спектр l(v) рекомбинационного излучения в линии Lya (см. в следующем разделе формулу (37)). Влияние отдачи на y составляет менее 1%, на lg l(v)—менее 0.4%. Отдача заметно влияет лишь на локальный профиль линии Lya в современную апоху (z = 0) в окрестности $\lambda = 1216$ А.

	Ta	бл	uua	26
--	----	----	-----	----

_	M	2	M4		M5	M6	
z	g	T _e / T	g	T_{e}/T	y	T _e / T	y
1800		1 1	0.990	1	_	1	_
1700	0.992	1	0,950	1	0.994	1	0.994
1600	0.949	1	0.784	1	0.960	1	0.962
1500	0.766	1	0.465	1	0.802	1	0.842
1400	0.429	1	0.201	1	0.479	1	0.614
1300	0.176	1	7.41-2	1	0.208	1	0.362
1200	6.28-2	1	2.58-2	1	7.71-2	1	0.174
1100	2.06-2	1	8.40-3	1	2.56-2	1	6.71-2
1000	5.95-3	1	2.39-3	1	7.343	1	2.04-2
900	1.43-3	1	5.73-4	1	1.76-3	1	5.00-3
800	- 3.29-4	1	1.40-4	0.968	4.39-4	1	1.29-3
700	1.17-4	0.969	5.46-5	0.917	1.78-4	0.985	5.37-4
600	6.48-5	0.930	3.13-5	0.844	1.05-4	0.965	3.22-4
500	4.38-5	0.871	2.12-5	0.752	7.35-5	0.932	2.27-4
400	3.32-5	0.784	1.60-5	0.639	5.73-5	0.875	1.774
300	2.695	0.661	1.29-5	0.507	4.75-5	0.779	1.47-4
200	2.25-5	0.493	1.07-5	0.356	4.05-5	0.621	1.25-4
100	1.85-5	0.272	8.66-6	0.186	3.41-5	0.368	1.06-4
60	1.67-5	0.169	7.80-6	0.113	3.14-5	0.234	9.68-5
20	1.44-5	5.95-2	6.76-6	3.93-2	2.78-5	8.37-2	8.49-5
0	1.25-5	2.85-3	5.79-6	1.88-3	2.54-5	4.01-3	7.45-5

В конце этого раздела отметим некоторые законы подобия в рассматриваемой задаче. Речь идет о зависимости решений систем (23) и (26) от параметров H_0 , Ω и $\Omega_{\rm H}$. Согласно (28) и (30) при $z \gg 1/\Omega$ решения зависят лишь от двух комбинаций этих трех параметров: $h_0 \sqrt{\Omega}$ и $h_0^2 \ \Omega_{\rm H}$. Кроме того, при $1/\Omega \ll z \ll 1000$ справедлив и такой закон подобия: 8—143

261

$$y(z, T_0, h_0 \sqrt{\Omega}, h_0^2 \Omega_H) = h_0 \sqrt{\Omega} y(z, T_0, 1, h_0^2 \Omega_H),$$
(32)
$$\tau(z, T_0, h_0 \sqrt{\Omega}, h_0^2 \Omega_H) = \tau(z, T_0, 1, h_0^2 \Omega_H).$$
(33)

Он был обнаружен из сравнения результатов численных расчетов для моделей М5 и М6 при $h_0 = 4/3$ и проверен на модели с $h_0 = 2/3$. Соотношения (32) и (33) вытекают и из уравнений (23) и (26) и справедливы тогда, когда двухфотонное возбуждение атомов водорода из состояния 1s в состояние 2s играет малую роль, а роль выхода фотонов Lya либо мала с самого начала, либо рекомбинация через состояние 2p уже идет беспрепятственно. В последнем случае величина r_{2p} в правой части (23) пропорциональна $1/\gamma$ согласно последнему уравнению в (24) при l = p. Отсюда, используя (13), получаем $r_{2p} \propto (1 - y) N/H$. В итоге правая часть уравнения (23) оказывается пропорциональной параметру $p_1 = \sqrt{\Sigma}/(h_0 \Omega_H)$. Если сделать замены

$$y = p_1 p_2^{1/4} u(z, t_0, p_2), \tau = v(p_2 z, t_0, p_2), \qquad (34)$$

где

$$p_1 = \int \sqrt{2} t_0 / (h_0 Q_H), \ p_2 = t_0^{3/2} (h_0^2 Q_H)^{-1/3}, \ t_0 = T_0 / 2.7 \text{ K},$$
 (35)

то можно убедиться, используя полученные численные решения, что u и v слабо зависят от параметров t_0 и p_2 в области z < 600. Приведем еще приближенные формулы

$$y = 0.83 \cdot 10^{-5} p_1 p_1^{1/4} / (1 - 3.12 \cdot 10^{-2} p_2^{-1/4} \sqrt{z}), \tau = 0.23 \cdot 10^{-2} p_2(z+1), (36)$$

которые дают у и т с ошибками менее 10% при z<400 и z<100 (<60 для модели M3) соответственно.

Масштабный фактор p_1 (см. формулу (35)), зарактеризует также и влияние выхода фотонов Lya на кинетику рекомбинации, поскольку согласно (13) и (19) вероятность выхода $\beta \propto p_1$. Для моделей M4, M1 и M2 соответственно $p_1 = 0.75$, 0.77 и 1.36, а для моделей M5, M6 и M3— P_1 =2.37, 7.5 и 113. Таким образом, на стадиях рекомбинации при z < 800 решения целесообразно классифицировать по величине параметра p_1 . На важность параметра $\psi = 1/p_1$ обращалось внимание и в [10]. Этот нараметр появляется и в [5].

4. Спектр рекомбинационного излучения в линии Lya. Профиль лиини Lya, даваемый формулой (14) при значениях параметров при z=0, формируется в современную эпоху и характеризует мелкомасштабное распределение внергии в районе $\lambda = 1216$ А. С длинноволновой стороны от этого профиля должно «находиться» излучение в линии Lya, испущенное в предыдущие эпохи (z > 0) и регистрируемое нами в настоящич

262

момент времени. Оно образует крупномасштабный спектр рекомбинационного Lya-излучения. Излучение на частоте v в этом спектре возникает ранее при $z = v_{12}/v$ — 1 в длинноволновом крыле соответствующего локального (мелкомасштабного) профиля линии Lya (на крупномасштабной частоте v₁₂) и затем свободно распространяется в расширяющейся среде без рассеяний по пути, так что $I_{(v)} = (v/v_{12})^3 I(-\infty)$ и согласно (14)

$$I(v) = (2hv^{3}/c^{2})(r_{2n}/r_{1}) i(-\infty), \qquad (37)$$

где все величины, зависящие от z, вычисляются при $z = v_{12}/v$ —1. На рис. 4 приведены спектры для моделей M3, M4 и M6, рассчитанные по формуле (37). На больших длинах волн (малые частоты v) все они переходят в планковский спектр, поскольку при соответствующих больших z степень ионизации и населенности—разновесные, а $i(-\infty) \sim 1$.

5. Заключение. В настоящей работе покавано, что более аккуратное описание кинетики рекомбинации с использованием уравнений статистического равновесия приводит к меньшим (примерно в 2 раза) предельным вначениям степени ионизации и к меньшим температурам газа посравнению с предыдущими исследованиями [1, 2, 4, 5]. Найдено также, что более детальное описание переноса излучения в линии Lya (ЧПЧ в диффузионном приближении с учетом отдачи вместо ППЧ) практически не влияет на кинетику рекомбинации.

Ленинградский государственный увиверситет Специальная астрофизическая обсерватория АН СССР

THE HYDROGEN RECOMBINATION IN THE EXPANDING UNIVERSE

S. I. GRACHEV, V. K. DUBROVICH

A fractional electron density $y = N_e / N$ and an electron temperature T. in the expanding Universe are calculated as functions of a redshift z (0 < z < 1800) by means of combined numerical solutions of statistical equilibrium equations (for hydrogen atoms) and energy equation for different values of the Hubble constant and cosmological density parameters Q and Q_H . Approximate analytical expressions are obtained for y(z) and $\tau(z) = T_e/T$ (where T is the temperature of the background blackbody radiation) in the range 0 < z < 100. It is shown that for z > 900 there is an agreement with the previous investigations ([1], [2], [4], [5]) in which simpler treatments of the problem are used, but for z < 900 our values of y and τ turn out to be systematically lesser (by factor of ~ 2 for y at z = 0) than in the pointed papers. It is found also that the strict description of radiation transfer in the hydrogen Lya line (with a proper account of a partial frequency redistribution including a recoil under scatterings) has no significant influence on the recombination kynetics in contrast to the previous statements in [10].

ЛИТЕРАТУРА

- 1. P. J. Peebles, Astrophys. J., 153, 1, 1968.
- 2 Я. Б. Зельдович, В. Г. Курт, Р. А. Сюняев, Ж. эксперым. н теор. физ., 55, 273, 1968.
- 3. R. A. Sungaev, Ya. B. Zeldoutch, Astrophys. Space Sci., 7, 3, 20, 1970.
- 4. Н. А. Заботин, П. Д. Насельский Астрон. ж., 59, 447, 1982.
- 5. B. J. T. Jones, R. F. G. Wyse, Astron. and Astrophys., 149, 144, 1985.
- .6. T. Matsuda, H. Sato, H. Takeda, Progr. Theor. Rhys., 46, 416, 1971.
- 7. S. A. Bonometto, A. Caldara, F. Lucchin, Astron. and Astrophys., 126, 377, 1983.
- 8. M. L. Wilson, J. Silk, Astrophys. J., 243, 14, 1981.
- 9. P. J. E. Peebles, Astrophys. J., 248, 885, 1981.
- 10. J. H. Krolik, Astrophys. J., 338, 594, 1989.
- 11. С. И. Грачев, Астрофизика, 30, 347, 1989.
- 12. J. P. Harrington, Mon. Notic. Roy. Astron. Soc., 162, 43, 1973.
- 13. М. М. Баско, Ж. эксперия. и теор. физ., 75, 1278, 1978.
- 14. Н. Н. Чузай, Аспрофизника, 26, 89, 1987.
- 15. К. У. Аллен, Астрофизические величины, ИЛ, М., 1960.
- 16. A. Burgess, Mon. Notic. Roy. Astron. Soc., 118, 477, 1958.