АСТРОФИЗИКА

TOM 31

ОКТЯБРЬ, 1989

ВЫПУСК 2

УДК: 524.354.4

О РОЛИ ТОКОВЫХ ПОТЕРЬ В ПУЛЬСАРАХ

И. Ф. МАЛОВ

Поступила 3 августа 1988 Принята к печати 4 ноября 1988

Показано, что наблюдаемые величины производной позиционного угла линейной поляризации и оценки углов β между магнитным полем и осью вращения не согласуются с предсказанием модели токовых потерь об увеличение β в процессе зволюции пульсара. Выявлено отсутствие изменения наблюдаемой ширины профяля с возрастом, что может быть связано с синхроиным изменением угла β и ширины конуса излучения. Обнаружено, что удаление пульсаров от плоскости Галактики, начиная с некоторого возраста, прекращается и намечается тенденция «оседания» их на плоскость Галактики.

1. Введение. В течение первых 15 лет исследования пульсаров считалось, что замедление вращения нейтронной эвезды связано с ее магнито-

дипольным излучением на частоте вращения $\Omega = \frac{2\pi}{P}$. При этом потери

энергии вращения сопровождаются потерей углового момента и торможением пульсара. В рамках таких представлений были объяснены основные особенности эволюции и распределения параметров пульсаров. Однако в 1983 г. в работе [1] был предложен альтернативный механизм торможения за счет пондеромоторного взаимодействия текущих по поверхности нейтронной звезды токов с ее магнитным полем. Как показали дальнейшие исследования (см., например, [2—3]), целый ряд существующих наблюдательных данных можно согласовать с предсказаниями токовой модели. В связи с этим было бы интересно провести сравнение с наблюдениями по тем пунктам, где предсказания указанных моделей различны.

В настоящей работе мы сопоставим некоторые следствия из моделей токовых и магнитодипольных потерь с существующими наблюдательными данными.

2. Замедление вращения пульсаров. В работе [2] показано, что скорость изменения энергии вращения пульсара за счет токовых потерь определяется соотношением:

$$J_{r}QQ = -\frac{f^{*}(\beta)}{8} \frac{B^{2}Q^{4}R^{6}}{c^{3}} i \cos \beta, \qquad (1)$$

где J_r — момент инерции нейтронной звезды, $f^*(\beta)$ — слабая функция от утла β между осью вращения и магнитным полем (при изменении β от 0° до 90° f^* принимает значения от 1.59 до 1.94), i — безразмерный ток, стекающий с поверхности звезды, B — магнитное поле на полюсе, R — радиус нейтронной эвезды. Из соотношения (1) следует, что при прочих равных параметрах быстрее будут эволюционировать пульсары с малыми углами β (соосные ротаторы), причем в этой модели угол β будет со временем увеличиваться. Основным параметром модели токовых потерь можно считать параметр

$$Q = 2P^{1.1} \dot{P}_{-15}^{-0.4}, \tag{2}$$

где $P_{-15} = 10^{15} dP/dt$. Для пульсаров с Q < 1 из соотношения (1) можно получить [2]:

$$P_{-15} \propto \cos^{3/2} \beta. \tag{3}$$

При потерях на магнитодипольное излучение соответствующее изменение внергии вращения составляет:

$$\int \Omega \Psi = -\frac{2B^2 \Omega^4 R^3}{3c^3} \sin^2 \beta.$$
 (4)

Из этого выражения следует, что

$$|P| \propto \sin^2 \beta, \tag{5}$$

т. е. быстрее должны өволюционировать пульсары с большими β (ортогональные ротаторы).

Сравним данные о производной периода P из работы [4]* и о значениях угла β_2 , полученные в [6] на частоте 1600 МГц, поскольку на этой частоте проведены оценки для наибольшего числа (39) пульсаров.

Окавалось (рис. 1), что существует заметная положительная корреляция $\lg P$ и β (коөффициент корреляции K = 0.44). Пунктирная прямая на рис. 1 проведена по методу наименьших квадратов. То же относится к прямым на всех последующих рисунках (для них в подписях к рисункам приведены соответствующие уравнения).

Для большей части пульсаров надежных оценок угла β не существует. Однако суждение о величине этого угла можно сделать по поляризацион-

* Для PSR 1353—62 велечена Р = 3.211 взята на каталога пульсаров [5].

ным данным на основе следующих соображений. В рамках общепринятой модели полого конуса при дипольном магнитном поле изменение позиционного угла ф линейной поляризации в зависимости от долготы ф в среднем профиле описывается выражением [7]:

PHC. 1. Зависимость lg P от угла β . lg $P_{-15} = (0.019 \pm 0.005) \beta^{\circ} - (0.187 \pm 0.213)$

где ξ — угол между лучом зрения наблюдателя и осью вращения пульсара. Максимальное изменение ψ происходит на центральном меридиане ($\phi = 0$) и описывается соотношением:

$$\left(\frac{d\psi}{d\varphi}\right)_{M} = \frac{\sin\beta}{\sin(\zeta - \beta)},$$
(7)

из которого следует, что, в среднем, чем меньше β , тем меньше $\left| \frac{d\psi}{d\varphi} \right|_{M}$ Для дальнейших оценок используем измеренные нами и частично приведенные в работе [8] значения $\left| \frac{d\psi}{d\varphi} \right|_{M}$, которые вместе с производными периода из [4] и величинами Q, вычисленными по соотношению (2), даны в табл. 1. Если известны измерения на нескольких частотах, указаны минимальное и максимальное значения $\left| \frac{d\psi}{d\varphi} \right|_{M}$.

(6)

Таблица 1

No	PSR	<i>₽</i> _15	<u>d</u> <u>d</u> d d d	Q
1	2	3	4	5
1	0031-07	0.408	0.6-1.6	2.67
2	0149-16	1.300	0	1.47
3	0301+19	1.296	11.0-17.1	2.59
4	0355+54	4.338	1.2-2.2	0.15
5	045018	5.749	4.3	0.51
6	0525+21	40.057	20.8-31.1	1.96
7	0540+23	15.429	1.0-3.0	0.14
8	0611+22	59.630	3.3-3.7	0.12
9	0628-28	7.107	3.3-4.1	1.16
10	0740-28	16.832	2.0-9.2	0.09
11	0809+74	0.168	2.5	5.38
12	0818-13	2.106	1.3-7.5	1.88
13	0823+26	1.724	20.8-21.9	0.80
14	0833-45	124.687	1.7-7.5	0.02
15	0834+06	6.799	22.1	1.21
16	0835-41	3.546	6.6-20.1	0.88
17	0919-+ 06	13.725	2.8	0.28
18	0940-55	22.739	1.9	0.37
19	0943-+10	3.529	2.5-3.0	1.34
20	0950+08	0.229	1.6-2.9	0.78
21	095954	51.665	37.7	0.62
22	1055-52	5.834	1.6-1.9	0.17
23	1112 - 50	2.493	6.1	2.42
24	1133+16	3.733	6.4-12.1	1.43
25	1154-62	3.930	02.5	0.42
26	1221-63	4.955	6.1-16.4	0.20
27	1240—64	4.500	4.6	0.39
28	1323-62	18.890	34.1	0.31
29	1353-62	3.211	7.0	0.53
30	1426-66	2.771	6.9-10.2	1.03
31	1449-64	2.748	0-3.4	0.20
32	1451-68	0.099	03.0	1.15
33	1508+55	5.033	10.7-16.7	0.75
34	1530-53	1.428	29.0	2.45
35	1541+09	0.430	0	2.04
36	1556-44	1.020	5.0	0.46
37	1557-50	5.063	5.1	0.17
_38	1558-50	69.572	10.7	0.31

токовые потери в пульсарах

Таблица 1 (окончание)

1	2	3	4	5
39	160400	0.306	6.2	1.23
40	164203	1.781	3.5-5.1	0.56
41	1700-32	0.700	25.0-25.5	2.85
42	1706-16	6.380	6.4-9.0	0.59
-43	1727-47	163.672	5.2-21.2	0.21
-44	1742-30	10.700	10.2	0.26
-45	1747-46	1.295	6.9 - 29.3	1.29
-46	1749-28	8.154	0-2.5	0.46
47	1818-04	6.338	24.1	0.54
48	1845-01	5.200	4.3	0.65
49	1859+03	7.487	3.5	0.56
50	1900+01	4.032	2.3-13.4	0.81
51	1907+02	3.764	4.0	1.32
52	1907+10	2.636	2.8	0.34
53	1911-04	4.070	4.0-8.9	0.92
54	1915+13	7,203	2.7-9.6	0.15
55	1916+14	211.400	20.2	0.28
56	1919+14	5.612	3.0	0.59
57	1919+21	1.348	3.3-11.1	2.45
58	1920+21	8.190	13.5	0.94
59	1924+16	18.004	1.4-1.6	0.35
60	1929+10	1.157	1.0-1.9	0.37
61	1933+16	6.004	5.0	0.32
62	1944+17	0.024	0.3-1.0	3.88
63	1946+35	7.052	9.3-10.2	0.64
64	1952+29	0.002	3.2	9.49
65	2016+28	0.149	0-9.0	2.26
66	2021+51	3.052	3.3-5.1	0.64
67	2045-16	10.961	15.0-42.0	1.61
68	2111+46	0.720	2.1-2.5	2.31
69	2148+63	0.168	8.3	1.40
70	2154+40	3.417	3.4-7.8	1.95
71	2217+47	2.764	0.5-17.1	0.66
72	2303-+30	2.896	10.0-12.7	2.16
73	2319+60	7.037	7.5-7.6*	2.25
74	2324+60	0.309	5.5	0.63
75	2327-20	4.634	40	1.87

327

7-490

1 - -

Эти данные позволяют сопоставить значения $\left| \frac{d\tau}{d\tau} \right|_{N}$ увеличивающиеся, в среднем, с увеличением угла β , и величины P, пропорциональные скорости замедления вращения нейтронных звезд. На рис. 2 представлена наблюдаемая зависимость $\lg \dot{P} \left(\left| \frac{d\psi}{d\varphi} \right|_{M} \right)$ для 75 пульсаров. Из^г этого. рисунка следует, что \dot{P} растет с увеличением $\left| \frac{d\psi}{d\varphi} \right|_{M}$. Такая тендеяция качественно согласуется с предскаваниями магнито ипольной модели (соотношением (5)). Чтобы сопоставить наблюдения с токовой моделью, мы отобрали из табл. 145 пульсаров с Q < 1 (рис. 2). Оказалось, что для этих пульсаров также наблюдается тенденция ка увеличению скорости торможения с возрастанием β в противоречии с соотношением (3) для токовой модели.

Рис. 2. Днаграмма наблюдаемых велечие $\lg \dot{P}\left(\left|\frac{d\psi}{d\varphi}\right|_{M}\right)$ для 75 пульсаров:: lg $\dot{P}_{-15} = (0.026 \pm 0.010) \left|\frac{d\psi}{d\varphi}\right|_{M} + (0.28 \pm 0.12), K = 0.29$. Крушками отмечены пульcapы с Q < 1, для них $\lg \dot{P}_{-15} = (0.02 \pm 0.01) \left|\frac{d\psi}{d\varphi}\right|_{M} + (0.67 \pm 0.11)$ (пунктир), K = = 0.29.

Нанболее определенную оценку угла β можно сделать для шульсаров. с малыми значениями $\left| \frac{d\psi}{d\varphi} \right|_{M}$. Угловой раствор конуса открытых силовых линий равен

$$\theta \approx \sqrt{\frac{r}{r_{LC}}},$$
 (8)

где $r_{LC} = \frac{cP}{2\pi}$ — радиус светового цилиндра. По разным оценкам средние частоты (от 100 до 1000 МГц) генерируются на уровне $\frac{r}{r_{LC}} \lesssim 0.1$, что соответствует $\theta \lesssim 18^{\circ}$. Можно считать, что, в среднем, луч зрения наблюдателя проходит на расстоянии $(\overline{\zeta - \beta}) \sim \frac{\theta}{2} \leqslant 9^{\circ}$,

т. е. sin $(\zeta - \beta) \sim 0.16$, и из соотношения (7) получим:

$$\frac{d\psi}{d\varphi} \sim 6 \sin \beta. \tag{9}$$

Будем считать малыми углы $\beta \leq 30^{\circ}$. Для таких углов $\left|\frac{d\psi}{d\varphi}\right| < 3$. Табл. 1 содержит 20 пульсаров с $\frac{d\psi}{d\varphi}$, удовлетворяющих этому ус ловию. Из них у 13 объектов Q < 1, и должно выполняться соотношение (3) (если верна токовая модель). Для таких пульсаров должно быть $\dot{P} > \ddot{P}$. В магнитодипольной модели для пульсаров с малыми β $\dot{P} < \ddot{P}$. Среднее по всей выборке пульсаров ив [4] равно $\ddot{P}_{-15} = 9.4$. Как показывают данные табл. 1, у 9 из 13 пульсаров с Q < 1 $\dot{P} < \ddot{P}$, а среднее для этих 13 объектов равно 8.0. Если использовать все 20 пульсаров с малыми $\left|\frac{d\psi}{d\varphi}\right|_{M}$, то для них $\ddot{P}_{-15} = 5.52$, т. е. значительно меньше, чем среднее по всем пульсарам.

Следовательно, наблюдаемая тенденция изменения \dot{P} в зависимости от $\left|\frac{d\psi}{d\varphi}\right|_{M}$ качественно согласуется с предсказаниями магнитодипольной. модели и противоречит концепции токового торможения.

3. Изменения наблюдаемой ширины профиля с воврастом. В рамках традиционной модели полого конуса наблюдаемая ширина профиля W₁₀ (в градусной мере) связана с реальным раскрывом конуса θ соотношением [7]:

$$\cos W_{10} = \frac{\cos \theta - \cos \beta \, \cos \zeta}{\sin \theta \, \sin \zeta} \,. \tag{10}$$

32?

Для оценки изменения W_{10} в зависимости от угла β будем считать, что луч зрения проходит через центр конуса, т. е. $\zeta = \beta$. В этом случае из (10) легко получить:

$$\sin\frac{u\nu_{10}}{2} = \frac{\sin\frac{\theta}{2}}{\sin\beta},$$
 (11)

т. е. при фиксированной ширине конуса ($\theta = \text{const}$) наблюдаемая ширина профиля тем больше, чем ближе ось конуса к оси вращения (чем меньше β).

Рис. 3. Днаграмма $W_{10}(Q)$ для пульсаров с Q < 1: $W_{10}^{\circ} = (-29.87 \pm 11.48) Q + (46.98 \pm 6.69), K = -0.22$ к пульсаров с Q > 1: $W_{10}^{\circ} = (34.4 \pm 1.49) Q + (16.21 \pm 4.15), K = 0.20$. Сплотная прямая построена для всей выборки (271 пульсар): $W_{10}^{\circ} = (-0.37 \pm 1.30) Q + (28.39 \pm 2.60), K = -0.01$.

В модели токового торможения во время эволющии β увеличивается, поэтому с возрастом W_{10} должно уменьшаться (для старых пульсаров W_{10} должно быть, в среднем, меньше, чем для молодых). Для разделения пульсаров по возрасту можно использовать параметр Q: молодыми будем считать пульсары с Q < 1, старыми — с Q > 1 [2]. Наблюдательные данные показывают, что ожидаемая тенденция отсутствует (рис. 3). Для всей выборки пульсаров зависимости $W_{10}(Q)$ нет. Средние значения $\overline{W}_{10} =$ = 31°. 1 для 136 молодых пульсаров ($\overline{Q} = 0.53$) и для 135 старых объектов ($\overline{Q} = 2.41$) $\overline{W}_{10} = 24°.5$ очень близки к среднему по 271 пульсару $\overline{W}_{10} = 27°.8$ ($\overline{Q} = 1.47$) (средне-квадратичное отклонение от среднего составляет 12°). Интересно отметить, что намечается тенденция убывания функции $W_{10}(Q)$ при Q < 1 и ее возрастания для Q > 1 (рис. 3).

Таким образом, данные этого раздела не дают преимущества ни модели магнитодипольного торможения, ни модели токовых потерь.

4. Удаление пульсаров от плоскости Галактики. В настоящее время считается общепринятым, что пульсары образуются в плоскости Галактики и имеют высокие пространственные скорости. Поэтому, чем больше возраст пульсара, тем большим должно быть его удаление от галактической плоскости (больше Z-координата). Как уже указывалось, мерилом возраста пульсара может служить параметр Q. Следовательно, должна наблюдаться положительная корреляция Z(Q). На рис. 4 представлены соответствующие наблюдательные данные для всей выборки пульсаров, а также для пульсаров с Q < 1 и с Q > 1. Из этого рисунка видно, что ожидаемая зависимость Z(Q) присутствует только у пульсаров с Q < 1, а у пульсаров с Q > 1 намечается тенденция к уменьшению Z-расстояния с ростом Q.

Рис. 4. Зависимость между удаленностью пульсара от плоскости Галактики (в кпя) в параметром Q: для 152 пульсаров с $Q < 1 - пунктир - Z = (0.26 \pm 0.07) \times 2 + (0.12 \pm 0.04), K = 0.29,$ для 141 пульсара с $Q > 1 - сплошия прямая - Z = (-0.02 \pm 0.02) Q + (0.40 \pm 0.04), K = -0.10.$

Следует подчеркнуть, что параметр Q может служить возрастным критернем как в магнитодипольной, так и в токовой модели: его увеличение связано с увеличением периода P и уменьшением производной P, что действительно наблюдается у пульсара в Крабовидной туманности и ожидается для других радиопульсаров. Параметр $Q = 2 \frac{P^{1.1}}{P^{0.4}}$ является аналогом зарактеристического возраста пульсара $\tau = P/2P$. Поэтому полученные результаты свидетельствуют о том, что по достижении некоторого возраста, соответствующего, в среднем, $Q \sim 1$, пульсары перестают удаляться от плоскости Галактики (а, может быть, даже начинают «оседать» на нее). Альтернативное объяснение образования пульсаров с Q > 1 вбливи плоскости Галактики с малыми пространственными скоростями не может быть принято, поскольку у этих пульсаров среднее Z-расстояние ($|\overline{Z}| = 0.36$) больше, чем соответствующая величина ($|\overline{Z}| = 0.26$) для объектов с Q < 1.

5. Зависимости наблюдаемых параметров от величины Q. Как уже отмечалось, при любой из двух альтернативных схем эволюции пульсаров рост параметра Q соответствует увеличению возраста пульсара. Поэтому наблюдаемые зависимости различных параметров от Q характеривуют лишь их изменение в процессе эволюции пульсара и не могут служить прямым доказательством справедливости токовой модели.

Рис. 5. Зависимость светимости пульсара от параметра Q [9]: lg $L = (-0.81 \pm 0.20)$ $Q + (1.97 \pm 0.09)$, K = -0.82.

Отмеченная в работе [9] зависимость светимости L от Q может быть представлена как монотонное уменьшение L с возрастом (рис. 5). Действительно, в течение жизни пульсара увеличение периода и уменьшение его производной связано как с уменьшением энертии вращения нейтронной звезды $E = 2\pi^2 I_r/P^2$, так и с уменьшением скорости ее потери $|\dot{E}| = 4\pi^3 I_7 \dot{P}/P^3$. Поскольку энергия радиоизлучения пульсара в конечном счете черпается из энергии вращения, то при уменьшения E и $|\dot{E}|$ следует ожидать и падения радиосветимости.

В работе [10] найдена корреляция относительной внергии межимпульсного излучения с величиной Q. В связи с втим можно заметить следующее. У молодых короткопериодических пульсаров генерация излучения происходит, по-видимому, вблизи светового цилиндра [11], где за счет релятивистских эффектов формируется узкий импульс, но может оставаться и ваметное межимпульсное излучение. В основном относительная доля этого излучения зависит от расстояния до светового цилиндра и спектра излучения в собственной системе отсчета, связанной с пульсаром [12]. Количественное сопоставление теории релятивистского формирования импульса с наблюдениями — предмет специального исследования.

6. Отдельные пульсары. В качестве пробных объектов для проверки справедливости рассмотренных моделей можно взять самый молодой из известных пульсаров PSR 0531+21 и один из старых пульсаров PSR 0826 — 34.

В первом из этих объектов самые разные оценки и соображения приводят к выводу о том, что ось магнитного диполя перпендикулярна оси вращения (см., например, [13]), и если угол в изменяется в процессе оволюции, то он может только уменьшаться.

В случае PSR 0826—34 тот факт, что его периоды молчания (нуллинги) достигают 8 часов [9] и это характеристический возраст ~ 30 миллионов лет, заставляют считать этот пульсар старым объектом. С другой стороны, малое изменение позиционного утла в его среднем профиле

 $\frac{d\psi}{d\phi} \sim 1.5$ [14] и наличие заметного излучения в течение всего пе-

рнода означают, что PSR 0826—34 представляет собой соосный ротатор.

Таким образом, данные по самому молодому и одному из старых пульсаров не подтверждают точку врения об эволюции угла β от малых значений к 90°, предсказываемой моделью токовых потерь, и, напротив, соответствуют представлениям о магнитодипольном торможении.

7. Заключение. В результате проведенного анализа можно сделать следующие выводы.

1. Существующие данные о скорости изменения периода в вависимости от величины угла β между матнитным полем и осью вращения не подтверждают предсказанного теорией токовых потерь увеличения со времемем наклона матнитной оси к оси вращения пульсара. Напротив, данные наблюдений соответствуют общепринятой концепции замедления вращения за счет потерь на магнитодипольное излучение.

2. По наблюдаемым изменениям ширины профиля W_{10} в зависимости от возраста (от параметра Q) нельзя отдать предпочтение ни модели токовых потерь, ни матнитодипольному торможению. Отсутствие заметной корреляции $W_{10}(Q)$ может быть вызвано как большой дисперсией индивидуальных особенностей пульсаров, так и изменением с возрастом истинной ширины конуса излучения (см. соотношение (11)).

3. Изменение расстояния пульсаров от плоскости Галактики (Z-координаты) с возрастом, по-видимому, немонотонно. Для молодых пульсаров (Q < 1) существует тенденция увеличения Z-расстояния с ростом Q, для старых объектов (Q > 1) намечается обратная тенденция («оседание» пульсаров на плоскость Галактики).

4. Зависимость светимости и относительной доли межимпульсного излучения от параметра Q может быть объяснена в рамках традиционных представлений без привлечения предположений о токовых потерях.

5. Данные об утлах β в PSR 0531+21 и 0826-34 не согласуются с выводом о малых β у молодых шульсаров и больших — у старых.

Эти результаты показывают, что в настоящее время нет оснований для исключения из рассмотрения предположения о потерях вращательной внергии за счет магнитодипольного излучения и для предпочтения модели токовых потерь.

В заключение автор выражает благодарность В. С. Бескину и группе исследования пульсаров Радноастрономической станции ФИАН за полезные замечания.

Физический внотитут нм. П. Н. Лебедева АН СССР

ON THE ROLE OF "CURRENT LOSS" IN PULSARS I. F. MALOV

It has been shown that estimates for angles between magnetic and rotational axes do not confirm growing of these angles β during pulsar evolution predicted by "the current model". It has been found that evolutional changes of observable pulse widths are absent. This result may be connected with a synchronous change of the angle β and the width of the radiation cone. It is revealed that the increase of pulsar Z-distances ceases for some ages. Then the pulsars fall back on the Galactic plane.

ЛИТЕРАТУРА

- 1. В. С. Бескин, А. В. Гуревич, Я. Н. Истомин, Ж. эксперим. и теор. физ., 85. 401. 1983.
- V. S. Beskin, A. V. Gurevich, Ya. N. Istomin, Astrophys. and Space Sci., 102 301, 1984.
- 3. В. С. Бескин, А. В. Гуревич, Я. Н. Истомин, Успехи физ. наук, 150, 257, 1986.
- 4. R. N. Manchester, J. H. Taylor, Astron. J., 86, 1953, 1981.
- 5. R. N. Manchester, J. H. Taylor, Astron. J. (in press).
- 6. И. Ф. Малов, Астрофизика, 24, 507, 1986.
- 7. Р. Манчестер, Дж. Тейлор, Пульсары, Мир, М., 1980.
- 8. И. Ф. Малов, С. А. Сулейманова, Астрофизика (в печати).
- 9. J. H. Taylor, D. R. Stinebring, Annu. Rev. Astron. and Astrophys., 24, 285, 1986.
- 10. Т. В. Смирнова, Т. В. Шабанова, Т.р. Физ- ин-та АН СССР, № 199 (в печаты).
- 11. И. Ф. Малов, Астрон. ж., 62, 252, 1985.
- 12. F. G. Smith, Mon. Notic. Roy. Astron. Soc.. 154, 5P, 1971.
- J. Kristian, N. Visvanatan, J. A. Westphal, G. H. Snellen, Astrophys. J., 162, 475, 1970.
- J. D. Biggs, P. M. McCulloch, P. A. Hamilton, R. N. Manchester, A. G. Lyne Mon. Notic. Roy. Astron. Soc., 215, 281, 1985.