АСТРОФИЗИКА

ТОМ 31 АВГУСТ, 1989

выпуск і

КРАТКИЕ СООБЩЕНИЯ

УДК: 524.7—355

О ПЕРЕМЕННОСТИ СПЕКТРА ГАЛАКТИКИ № 163

Галактика № 163 из списка [1] обладает сильным УФ-избытком со спектрально-морфологической характеристикой sd1. Она состоит из северной (N) и южной (S) частей, причем N имеет вллиптический вид, а S—компактная, со звездообразным ядром (ее фотография приведена в [2]).

Первые спектральные наблюдения втой талактики, выполненные на 6-м телескопе САО АН СССР со сканером в 1981 т., показали, что S имеет особенности галактик Сейферта первого типа, а № — нормальной валиптической галактики [2]. Красное смещение части S, приведенное в [2], равно 0.0627, а части N, определенное по линиям H и K Са II при помощи спектра № 8, равно 0.0629. В [3] для красного смещения части S приводится значение 0.0632, а для N отмечается, что оно не отличается от такового части S. В [2] был сделан вывод, что объект № 163 является двойной галактикой, компоненты которой по своей активности сильно отличаются друг от друга; среди галактик с УФ-избытком ее можно выделить в качестве нового объекта.

Результаты *UBV*-фотографического исследования галактики № 163 показывают, что распределение показателей цвета *U—B* и *B—V* у S такое, как у галактик типа Сейферта, а у N — нормальной вллиптической талактики [4].

Сейфертовский компонент одновременно является рентгеновским источником и входит в каталот [5].

Координаты галактики: $\alpha=17^h47^m3$, $\delta=+68^\circ38'$ (1950), UBV—величины ядра $S:B=15^m79$, $U-B=-0^m63$, $B-V=0^m42$, $M_B=-21^m21$. При определении M_B принималось H=75км/с Мпк. Угловое расстояние между частями N и S составляет примерно 9'' [4] или 11 кпк.

Все спектры получены на 6-м телескопе САО АН СССР со спектротрафом UAGS, обратная дисперсия которого примерно 100 А/мм. В качестве приемников излучения использовались сканеры [6, 7] и ЭОП УМК 91В. При получении опектров с ЭОП УМК 91В использовалась пленка Коdak 103а-0. Ширина щели спектрографа при наблюдениях была примерно 1". Сведения о спектральных наблюдениях приведены в табл. 1. В ней в скобках отмечается число каналов использованного сканера. Приводятся также звезды сравнения, которые использовались для определения кривой чувствительности аппаратуры наблюдения. Распределения энергии в спектрах стандартных звезд приведены в [8]. Всего получено 17 спектров, охватывающих период примерно 5 лет. Из них 13 получены только для части S, спектр № 5 для части N, а № 8 и 9 — одновременно для S и N.

пинацованые наблюдения

Ταδλυμα 1

Ne cnex- tpa	Дата наблюдения		Светоприем- ная аппара- тура	Споктральный днапазон (А)	Коли- чество спектров	Эксповиция (в мин).	Звезда сравнения	
1	31. 10.	1981	Сканнер (512)	5650—7100	2	10	Kopff 27	
2	99		11	4320-5750	2	- "	99	
3	19		11	3350-4780	2			
4	, ,,			59607430	2'	15		
5	28. 05.	1982	11	4320-5750	2	10		
6	.,		"		2			
7	,			5960-7430	2		2 01	
8	30. 09.	1984	эоп умк 91в	3550-6400	1	25	Feige 92	
9	**		11	470 0—7700	1			
10	6. 06.	1986	Сканнер (1024)	3650—5450	1	18	BD - 33 2642	

Методика обработки спектров № 1—7, а также результаты приведены в работе [2]. Обработка спектров № 8 и 9 производилась на PDS Бюраканской обсерватории. Спектр № 10 обрабатывался на ЭВМ СМ-4 там же.

Фотографическая точность результатов изменяется в интервале 10—30%.

Существенной особенностью опектра части S, как отмечалось в [2], является наличие на широких крыльях водородных линий двух компонентов—длинноволнового (I) и коротковолнового (II), смещенных относительно главного максимума соответственно на 970 и 1300 км/с.

На рис. 1 приведены профили наиболее сильных омиссионных линий бальморовской серии, а также N_1 и N_2 , полученные в разные периоды наблюдений. Из рисунка видно, что наблюдавшиеся ранее в 1981 г. (и остававшиеся почти такими же в 1982 г., из-за чето отдельно не показаны) компоненты на спектрах 1984 г. и 1986 т. практически отсутствуют. Вместе с тем заметно существенное уменьшение полных ширии на уровне непрерывного спектра (FWZI), хотя и после отого они еще достаточно велики у во-

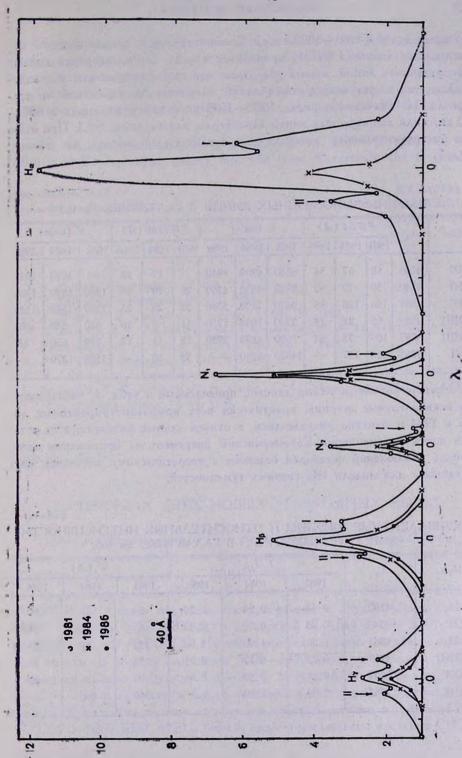


Рис. 1. Профили эмиссионных линий в галактике № 163 в различные периоды наблюдений,

дородных линий (4000—6000 км/с). Соответствующие данные вместе с полуширинами линий (FWHM) приводятся в табл. 2. Рассматривая данные о полуширинах линий, можно убедиться, что эти величины как для водородных, так и для запрещенных линий значительных изменений не претерпели. Их значения порядка 1300—1500 км/с для водородных и 600—700 км/с для запрещенных линий характерны для галактик Sy 1. При этом учет инструментального профиля не повлияет существенно на данные табл. 2.

 $T_{a6 \pi u g a} \ 2$ ШИРИНЫ ЭМИССИОННЫХ ЛИНИЙ В ГАЛАКТИКЕ № 163

Ион	λο	FWZI (A)			V (xm/c)			FWHM (A)			V (xm/c)		
		1981	1984	1986	1981	1984	1986	1981	1984	1986	1981	1984	1986
н	4102	90	67	54	6580	4900	3940	-3	17	18	_	1240	1310
HI	4340	130	70	63	8980	4830	4350	20	19	20	1380	1320	1380
HI	4861	160	123	95	9870	7590	5860	22	25	25	1350	1540	1540
[OIII]	4959	38	28	29	2300	1690	1750	11	9	10	660	540	600
[OIII]	5007	100	73	34	5990	4370	2030	12	11	12	719	650	71
HI	6563	320	137	_	14620	6260	-	33	30	-	1508	1370	_

Спектрофотометрические данные, приведенные в табл. 3, показывают, что эквивалентные ширины практически всех профотометрированных линий к 1984 т. заметно уменьшились, а относительные интенсивности остались почти неизменными. Бальмеровский декремент на протяжении всего периода наблюдений оставался близким к теоретическому значению, рассчитанному для модели «В» газовых туманностей.

 $T_{a6
m Auga}$ 3 ЭКВИВАЛЕНТНЫЕ ШИРИНЫ И ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЭМИССИОННЫХ ЛИНИЙ В ГАЛАКТИКЕ № 163

Ион			$I_{\lambda}/I_{H\beta}$	$W_{\lambda}(A)$			
ИОН	10	1981	1984	1986	1981	1984	1986
. Н	4102	0.34	0.29	0.21	29	16	16
H,	4340	0.45	0.30	0.32	50	15	24
H ₈	4861	1.00	1.00	1.00	125	4.5	70
[OIII]	4959	0.23	0.17	0.27	28	8	19
[OIII]	5007	0.66	0.50	0.86	90	26	60
H,	6563	2.95	2.90	-	540	150	-

Отмеченные выше изменения в спектре части S, по всей вероятности, являются результатом одновременного изменения как эмиссионных линий, так и непрерывного спектра.

Таким образом, галактике № 163 можно приписать еще одну важную особенность — переменность спектра ее составной части S.

On the Spectral Variability of Galaxy No. 163. The spectrum variability of Seyfert type galaxy No. 163 from Kazarian's list is shown.

2 марта 1989 Ереванский государственный университет М. А. КАЗАРЯН В. С. ТАМАЗЯН Э. Л. КАРАПЕТЯН

ЛИТЕРАТУРА

- 1. М. А. Казарян, Астрофизика, 15, 193, 1979.
- 2. М. А. Казарян, Астрофизика, 19, 411, 1983.
- 3. G. A. Kriss, C. R. Canizares, Astrophys. J., 261, 51, 1982
- 4. М. А. Казарян, В. С. Тамазян, Письма в Астрон. ж., 10, № 11, 815, 1984.
- 5. P. Veron-Cetty, P. A. Veron, Sci. Rep. ESO, No. 1, 1984.
- 6. R. P. S. Stone, Astrophys. J., 218, 767, 1977.
- 7. И. И. Балеза и др., Астрофия. исслед., Ивв. Спец. астрофия. обсерв., 11, 248, 1979.
- 8. С. В. Драбек, И. М. Копылов, Н. Н. Сомов, Т. А. Сомова, Астрофия. неслед., Изв. спец. астрофия. обсерв., 22, 64, 1986.

УДК: 524.318-355

О СПЕКТРАХ ДВУХ НОВЫХ УГЛЕРОДНЫХ ЗВЕЗД

Новые утлеродные звезды FBS 1934+545 и FBS 1713+527 были выявлены на пластинках Первого Бюражанского спектрального обзора неба (The First Byurakan Survey-FBS) [1—3].

а) Для звезды FBS 1934+545 ($m_0 \approx 14^m$, $\alpha_{1950} = 19^h$ 34^m 20^s и $\delta_{1950} = +54^\circ$ 34′ 00″) были получены спектрограммы в двух областях спектра (3680—5280 A и 5070—6870 A) с дисперсией 61 А/мм в ночь 30.09.1986 г. на сканнере CAO AH CCCP. На рис. 1 приведены регистрограммы спектра этой звезды. В области длин волн 5070—6870 A хорошо видны полосы поглощения Свана молекулы $C_2 = 5165$, 5636, и 6191 A. Из них полоса $C_2 = 5165$ A системы Свана особенно интенсивна. В спектре звезды присутствуют также полосы поглощения красной системы молекулы CN = 5730, 6115, 6260, 6333, 6510 и 6664 A полосы поглощения изотопов $C^{12}C^{12}$