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1. Introduction, basic notions and definitions

This paper studies the Fredholm property of semielliptic operators with variable

coefficients in anisotropic weighted Sobolev spaces in Rn. The class of semielliptic

operators is a special subclass of hypoelliptic operators which contains elliptic,

parabolic, 2b–parabolic operators, etc. (see [1]). The analysis of the Fredholm property

of semielliptic operators in Sobolev spaces in Rn has certain difficulties related to the

facts that Fredholm theorems for compact manifolds cannot always be used in this

case and characteristic polynomials of semielliptic operators are not homogeneous

as in elliptic case. The Fredholm property of such operators has been a subject of

interest for many authors.

The Fredholm property of elliptic operators in special weighted spaces is studied

in the works of L.A. Bagirov [2], R.B. Lockhart, R.C. McOwen [3, 4], E. Schrohe

[5] and others.

L.A. Bagirov [6], G.A. Karapetyan, A.A. Darbinyan [7] and A.A. Darbinyan,

A.G. Tumanyan [8, 9] studied the Fredholm property of semielliptic operators in

anisotropic weighted spaces. In G.V. Demidenko’s works [10, 11] the isomorphism

properties are obtained on the special scale of weighted spaces for quasi-homogenous

semielliptic operator with constant coefficients.

1This work is supported in part by Science Committee of Ministry of Education and Science
of Armenia and Russian Foundation of Basic Research under Thematic Program no. 18RF-004.
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In this work necessary and sufficient conditions are obtained for the Fredholm

property of semielliptic operators with special variable coefficients acting in anisotropic

Sobolev spaces with certain weight functions. The classes of considered operators

and the weight functions are extended compared to the ones from the works [8, 9].

Definition 1.1. A bounded linear operator A, acting from a Banach space X to a

Banach space Y , is called an n–normal operator, if the following conditions hold:

(1) the image of operator A is closed
(

Im(A) = Im(A)
)
;

(2) the kernel of operator A is finite dimensional (dim Ker(A) <∞).

An operator A is called a Fredholm operator if conditions 1-2 hold and

(3) the cokernel of operator A is finite dimensional

(dim coker(A) = dimY/ Im(A) <∞).

The difference between the dimension of the kernel and the cokernel of operator

A is called index of the operator:

ind (A) = dim Ker(A)− dim coker(A).

Definition 1.2. For a bounded linear operator A, acting from a Banach space X to

a Banach space Y , bounded linear operator R1 : Y → X and R2 : Y → X are called

respectively left and right regularizers if the following holds: R1A = IX +T1, AR2 =

IY +T2, where IX , IY – identity operators, T1 : X → X and T2 : Y → Y are compact

operators.

Definition 1.3. For a bounded linear operator A, acting from a Banach space X

to a Banach space Y , bounded linear operator R : Y → X is called a regularizer for

operator A, if it is left and right regularizer.

Let n ∈ N and Rn be Euclidean n-dimensional space, Zn+, Nn be the sets of

n-dimensional multiindices and multiindices with natural components respectively.

Consider the differential form

(1.1) P (x,D) =
∑

(α:ν)≤s

aα(x)Dα,

where s ∈ N, α ∈ Zn+, ν ∈ Nn, (α : ν) = α1

ν1
+ · · · + αn

νn
, Dα = Dα1

1 . . . Dαn
n , Dj =

i−1 ∂
∂xj

, x = (x1, . . . , xn) ∈ Rn, aα(x) ∈ C (Rn) .

Denote

(1.2) Ps (x,D) =
∑

(α:ν)=s

aα (x)Dα

the principal part of P (x,D), and
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(1.3) Ps (x, ξ) =
∑

(α:ν)=s

aα (x) ξα

the symbol of Ps (x,D) .

Definition 1.4. The differential form P (x,D) is called semielliptic at point x0 ∈
Rn, if the following is satisfied:

Ps (x0, ξ) 6= 0,∀ξ ∈ Rn, |ξ| 6= 0.

Definition 1.5. The differential form P (x,D) is called semielliptic in Rn, if P (x,D)

is semielliptic at each point x ∈ Rn.

For ξ ∈ Rn denote by

|ξ|ν =

(
n∑
i=1

ξ2νi
i

)1/2

.

Definition 1.6. The differential form P (x,D) is called uniformly semielliptic in

Rn, if there exists a constant C > 0 such that:

|Ps (x, ξ)| ≥ C |ξ|sν ,∀x ∈ Rn,∀ξ ∈ Rn.

For k ∈ R, ν ∈ Nn denote by Hk,ν(Rn) the space

Hk,ν (Rn) :=

{
u ∈ S

′
: û− function, ‖u‖k,ν =

(∫
|û (ξ)|2 (1 + |ξ|ν)

2k
dξ

) 1
2

<∞

}
,

S′ is the set of tempered distributions, û is the Fourier transform of function u.

For r ∈ Z+, ν ∈ Nn denote

Cr,ν (Rn) :=

{
a : Dβa(x) ∈ C(Rn), sup

x∈Rn
|Dβa(x)| <∞,∀β ∈ Zn+ s.t. (β : ν) ≤ r

}
,

Q := {g ∈ C (Rn) : g(x) > 0,∀x ∈ Rn} ,

Qr,ν :=

{
g ∈ Q : Dβg(x) ∈ C(Rn) and

1

g(x)
⇒ 0, max

y,|x−y|≤1

|g(x)− g(y)|
g(y)

⇒ 0,

|Dβg(x)|
g(x)1+(β:ν)

⇒ 0 when |x| → ∞,∀β ∈ Zn+, 0 < (β : ν) ≤ r

}
.

Let νmax = max
1≤i≤n

νi. The examples of weight functions fromQr,ν include polynomial

functions as well as special exponential functions, for example:

(1 + |x|ν)
l
, l > 0, exp (1 + |x|ν)

σ
, 0 < σ <

1

νmax
.
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For k ∈ Z+, ν ∈ Nn, q ∈ Q and domain Ω ⊂ Rn denote by Hk,ν
q (Rn) and Hk,ν

q (Ω)

respectively the spaces of measurable functions {u} with norms

‖u‖k,ν,q := ‖u‖Hk,νq (Rn) :=
∑

(α:ν)≤k

‖Dαu · qk−(α:ν)‖L2(Rn) <∞,

‖u‖Hk,νq (Ω) :=
∑

(α:ν)≤k

‖Dαu · qk−(α:ν)‖L2(Ω) <∞.

Let k ∈ N, k ≥ s, q ∈ Q and the coefficients of differential expression P (x,D) of

the form (1.1) satisfy the following conditions:

(1.4)

|Dβaα(x)| ≤ Cα,β q(x)s−(α:ν)+(β:ν)
(
∀α, β ∈ Zn+ (α : ν) ≤ s, (β : ν) ≤ k − s

)
.

Then P (x,D) generates a bounded linear operator, acting from Hk,ν
q (Rn) to

Hk−s,ν
q (Rn).

In the paper [8] the fulfillment of special a priori estimate and the Fredholm

property of semielliptic operators are studied in anisotropic Sobolev spaces. The

following theorem is proved:

Theorem 1.1. Let the differential form P (x,D) with some constant C > 0 satisfies

the following estimate:

(1.5) ‖u‖k,ν,q ≤ C
(
‖Pu‖k−s,ν,q + ‖u‖L2(Rn)

)
,∀u ∈ Hk,ν

q (Rn) .

Then P (x,D) is uniformly semielliptic in Rn.

It is easy to check that in the case q ≡ 1 inverse statement is true with some

smoothness conditions on the coefficients of the principal part of the differential

form. In this paper it is proved that under the special conditions on the weight

function and coefficients of the differential form P (x,D) uniform semiellipticity in

Rn does not imply the fulfillment of a priori estimate of the form (1.5) and stronger

conditions are necessary for it. The results related to a priori estimates are further

used to establish necessary conditions for the Fredholm property of the considered

class of operators.

In this work necessary and sufficient conditions are obtained for the Fredholm

property of semielliptic operators with special variable coefficients acting in anisotropic

spaces Hk,ν
q (Rn).

2. Main results

Let k, s ∈ N, k ≥ s. Consider the differential form

(2.1) P (x,D) =
∑

(α:ν)≤s

aαq(x)s−(α:ν)Dα,
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where aα – some constant numbers, q ∈ Qk−s,ν and denotations from (1.1) are

used.

For N > 0 and x0 ∈ Rn denote

KN (x0) := {x ∈ Rn : |x− x0| ≤ N}, KN := KN (0).

Theorem 2.1. Let P (x,D) be the differential form (2.1) and k ∈ N, k ≥ s, q ∈
Qk−s,ν . Let the differential form P (x,D) with some constant κ > 0 satisfies the

following estimate:

(2.2) ‖u‖k,ν,q ≤ κ
(
‖Pu‖k−s,ν,q + ‖u‖L2(Rn)

)
, u ∈ Hk,ν

q (Rn).

Then there exists a constant δ > 0 such that∣∣∣∣∣∣
∑

(α:ν)≤s

aαλ
s−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s, ξ ∈ Rn, λ > 0.

Proof. LetM > 0, xM ∈ Rn\KM , ϕ ∈ C∞0 (Rn), suppϕ ⊂ K1(xM ), ‖ϕ‖L2(Rn) =

1 and ξ ∈ Rn. Consider the function ũ(x) = ei(q(xM )
1
ν ξ,x)ϕ(x).

Since lim
|x|→∞

max
|x−y|≤1

|q(x)−q(y)|
q(y) = 0, then for any r > 0 the following inequality is

fulfilled

(2.3) |q(x)r − q(xM )r| ≤ εr(M)q(xM )r, x ∈ K1(xM ),

where εr(M)→ 0 when M →∞.

Using (2.3) and the fact that supp ũ ⊂ K1(xM ) it is easy to see that there exists

a function ε(M) such that ε(M)→ 0 when M →∞ and the following inequalities

hold:

(2.4) ‖ũ‖k,ν,q ≥ (1− ε(M)) ‖ũ‖k,ν,q(xM ),

(2.5) ‖Pũ‖k−s,ν,q ≤ (1 + ε(M)) ‖Pũ‖k−s,ν,q(xM ).

Taking into consideration the definition of function ũ one can check that for any

α ∈ Zn+, (α : ν) ≤ k with some constant C1 = C1(ϕ) > 0 the following holds

‖Dαũ‖L2(Rn)q(xM )k−(α:ν) ≥ |ξα|‖ϕ‖L2(Rn)q(xM )k − C1(1 + |ξ|ν)kq(xM )k−
1

νmax .

Using previous inequality and the fact that ‖ϕ‖L2(Rn) = 1 we get that with some

constant C2 = C2(ϕ) > 0 the following holds

(2.6) ‖ũ‖k,ν,q(xM ) ≥
∑

(α:ν)≤k

|ξα| q(xM )k − C2(1 + |ξ|ν)kq(xM )k−
1

νmax .

For β ∈ Zn+, (β : ν) ≤ k − s with some constant C3 = C3(P ) > 0 we have the

following estimates
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(2.7)∥∥Dβ(P (x,D)ũ)
∥∥
L2(Rn)

q(xM )k−s−(β:ν) ≤
∥∥Dβ(P (xM ,D)ũ)

∥∥
L2(Rn)

q(xM )k−s−(β:ν)

+
∥∥Dβ ((P (x,D)− P (xM ,D))ũ)

∥∥
L2(Rn)

q(xM )k−s−(β:ν)

≤

∥∥∥∥∥∥
∑

(α:ν)≤s

aαq(xM )s−(α:ν)Dα+β ũ

∥∥∥∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

+ C3

∑
(α:ν)≤s

∥∥∥Dβ
(

(q(x)s−(α:ν) − q(xM )s−(α:ν))Dαũ
)∥∥∥

L2(Rn)
q(xM )k−s−(β:ν).

Taking into account q ∈ Qk−s,ν , inequality (2.3), the definition of function ũ

and the fact that supp ũ ⊂ K1(xM ), then for all α, β ∈ Z+ such that (α : ν) ≤
s, (β : ν) ≤ k− s with some constants C4 > 0, C5 = C5(ϕ) > 0 we get the following

estimate

(2.8)
∥∥∥Dβ

((
q(x)s−(α:ν) − q(xM )s−(α:ν)

)
Dαũ

)∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

≤
∥∥∥(q(x)s−(α:ν) − q(xM )s−(α:ν)

)
Dβ+αũ

∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

+ C4

∑
0≤γ<β

∥∥∥Dβ−γ
(
q(x)s−(α:ν)

)
Dγ+αũ

∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

≤ τ(M)(1 + |ξ|ν)kq(xM )k + C5(1 + |ξ|ν)kq(xM )k−
1

νmax ,

where τ(M) is such a function that τ(M)→ 0 when M →∞.

Similarly, using the definition of function ũ, with some constant C6 = C6(P,ϕ) >

0 we can get

(2.9)

∥∥∥∥∥∥
∑

(α:ν)≤s

aαq(xM )s−(α:ν)Dα+β ũ

∥∥∥∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

≤

∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ ∣∣ξβ∣∣ q(xM )k + C6(1 + |ξ|ν)kq(xM )k−
1

νmax .

Then from (2.7), (2.8) and (2.9), with some constant C7 = C7(P,ϕ) > 0 we get

(2.10)
∥∥Dβ(P (x,D)ũ)

∥∥
L2(Rn)

q(xM )k−s−(β:ν)

≤

∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ ∣∣ξβ∣∣ q(xM )k+ω(M)(1+|ξ|ν)kq(xM )k+C7(1+|ξ|ν)kq(xM )k−
1

νmax ,

where ω(M) is such a function that ω(M)→ 0 when M →∞.
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Therefore, with some constant C8 = C8(P,ϕ) > 0 the following holds

(2.11) ‖Pũ‖k−s,ν,q(xM ) ≤
∑

(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ q(xM )k

+ C8(1 + |ξ|ν)kq(xM )k−
1

νmax + ω̃(M)(1 + |ξ|ν)kq(xM )k,

where ω̃(M)→ 0 when M →∞.

From (2.2), according to inequalities (2.4)–(2.6), (2.11) and the definition of the

function ũ we get

(1− ε(M))

 ∑
(α:ν)≤k

|ξα| q(xM )k − C2(1 + |ξ|ν)kq(xM )k−
1

νmax


≤ κ

(1 + ε(M))

 ∑
(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ q(xM )k

+ C8(1 + |ξ|ν)kq(xM )k−
1

νmax + ω̃(M)(1 + |ξ|ν)kq(xM )k

+ 1

 .

From the last inequality, according to the facts that 1
q(x) ⇒ 0 when |x| → ∞ and

ε(M) → 0, ω̃(M) → 0 when M → ∞, dividing by (q(xM ))k and tending M → ∞
we get ∑

(β:ν)≤k

∣∣ξβ∣∣ ≤ κ ∑
(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ .
Since k, s ∈ N, k ≥ s, ν ∈ Nn, then there exist the constants δ1, δ2 > 0 such that∑

(α:ν)≤k

|ξα| ≥ δ1(1 + |ξ|ν)k,
∑

(α:ν)≤k−s

|ξα| ≤ δ2(1 + |ξ|ν)k−s, ξ ∈ Rn.(2.12)

Then with some constant δ = δ1
κδ2

> 0 we get∣∣∣∣∣∣
∑

(α:ν)≤s

aαξ
α

∣∣∣∣∣∣ ≥ δ(1 + |ξ|ν)s, ξ ∈ Rn.

Let λ > 0. By substituting ξ ∈ Rn in the last inequality with ξ

λ
1
ν

=

(
ξ1

λ
1
ν1

, . . . , ξn

λ
1
νn

)
,

it is easy to get the following estimate:∣∣∣∣∣∣
∑

(α:ν)≤s

aαλ
s−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s, ξ ∈ Rn, λ > 0.

�
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Let k, s ∈ N, k ≥ s. Consider the differential form P (x,D) (see (1.1)), which is

expressed in the following way:

(2.13) P (x,D) =
∑

(α:ν)≤s

aα(x)Dα =
∑

(α:ν)≤s

(
a0
α(x)q(x)s−(α:ν) + bα(x)

)
Dα,

where aα(x) = a0
α(x)q(x)s−(α:ν) + bα(x), a0

α(x) ∈ Ck−s,ν(Rn), q ∈ Qk−s,ν and

Dβ(bα(x)) = o(q(x)s−(α:ν)+(β:ν)), when |x| → ∞, (α : ν) ≤ s, (β : ν) ≤ k − s.

Denote

(2.14) L(x,D) =
∑

(α:ν)≤s

bα(x)Dα.

Theorem 2.2. Let k, s ∈ N, k ≥ s, q ∈ Qk−s,ν and P (x,D) be the differential form

(2.13) with the coefficients that satisfy lim
|x|→∞

max
|x−y|≤1

|a0
α(x)−a0

α(y)| = 0 for α ∈ Zn+,

(α : ν) ≤ s. Let there exists a constant κ > 0 such that:

(2.15) ‖u‖k,ν,q ≤ κ
(
‖Pu‖k−s,ν,q + ‖u‖L2(Rn)

)
,∀u ∈ Hk,ν

q (Rn).

Then there exist constants δ > 0 and M > 0 such that∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)λs−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s,∀ξ ∈ Rn, λ > 0, |x| ≥M.

Proof. Let M > 0, xM ∈ Rn\KM , ϕ ∈ C∞0 (Rn), suppϕ ⊂ K1(xM ), ‖ϕ‖L2(Rn) =

1 and ξ ∈ Rn. Consider the function ũ(x) = ei(q(xM )
1
ν ξ,x)ϕ(x).

Similar to the proof of Theorem 2.1 it is easy to check, that there exists a function

ε(M) such that ε(M)→ 0 when M →∞ and the following inequalities hold:

(2.16) ‖ũ‖k,ν,q ≥ (1− ε(M))‖ũ‖k,ν,q(xM ),

(2.17) ‖Pũ‖k−s,ν,q ≤ (1 + ε(M))‖Pũ‖k−s,ν,q(xM ).

Taking into account the definition of the function ũ one can check that with some

constant C1 = C1(ϕ) > 0 the following holds:

(2.18) ‖ũ‖k,ν,q(xM ) ≥
∑

(α:ν)≤k

|ξα| q(xM )k − C1(1 + |ξ|ν)kq(xM )k−
1

νmax .
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For any β ∈ Zn+, (β : ν) ≤ k − s

(2.19)
∥∥Dβ (P (x,D)ũ)

∥∥
L2(Rn)

q(xM )k−s−(β:ν) ≤

≤

∥∥∥∥∥∥
∑

(α:ν)≤s

a0
α(xM )q(xM )s−(α:ν)Dα+β ũ

∥∥∥∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

+
∑

(α:ν)≤s

∥∥∥Dβ
([
a0
α(x)q(x)s−(α:ν) − a0

α(xM )q(xM )s−(α:ν)
]
Dαũ

)∥∥∥
L2(Rn)

q(xM )k−s−(β:ν)

+
∑

(α:ν)≤s

∥∥Dβ(bα(x)Dαũ)
∥∥
L2(Rn)

q(xM )k−s−(β:ν).

Since a0
α(x) ∈ Ck−s,ν(Rn), lim

|x|→∞
max
|x−y|≤1

∣∣a0
α(x)− a0

α(y)
∣∣ = 0 and q ∈ Qk−s,ν , it is

easy to check that for β ∈ Zn+, 0 < (β : ν) ≤ k−s there exist functions ε̃1(M), ε̃2(M)

such that ε̃1(M), ε̃2(M) → 0 when M → ∞ and some constant C2 = C2(P ) > 0

that the following inequalities hold

(2.20)
∣∣∣a0
α(x)q(x)s−(α:ν) − a0

α(xM )q(xM )s−(α:ν)
∣∣∣

≤
∣∣a0
α(x)− a0

α(xM )
∣∣ q(x)s−(α:ν) +

∣∣∣a0
α(xM )

(
q(x)s−(α:ν) − q(xM )s−(α:ν)

)∣∣∣
≤ ε̃1(M)q(xM )s−(α:ν),∀x ∈ K1(xM ),

(2.21)
∣∣∣Dβ

(
a0
α(x)q(x)s−(α:ν)

)∣∣∣ ≤ ε̃2(M)q(xM )s−(α:ν)+(β:ν)

+ C2q(xM )s−(α:ν)+(β:ν)− 1
νmax ,∀x ∈ K1(xM ).

Taking into account that Dβ(bα(x)) = o(q(x)s−(α:ν)+(β:ν)) when |x| → ∞ and

the definition of function ũ, for multiindices α, β ∈ Zn+ such that (α : ν) ≤ s, (β :

ν) ≤ k − s with some constants C3 > 0, C4 = C4(P,ϕ) > 0 we get the following

estimate

(2.22)
∥∥Dβ (bα(x)Dαũ)

∥∥
L2(Rn)

≤ C3

∑
0≤γ≤β

∥∥Dγ(bα(x))Dβ−γ+αũ
∥∥
L2(Rn)

≤ δ(M)(1+|ξ|ν)(α:ν)+(β:ν)q(xM )s+(β:ν)+C4(1+|ξ|ν)(α:ν)+(β:ν)q(xM )s+(β:ν)− 1
νmax ,

where δ(M) is such a function that δ(M) → 0 when M → ∞. Then from the

estimates (2.19)–(2.22) with some constant C5 = C5(ϕ, P ) > 0 we get

(2.23) ‖Pũ‖k−s,ν,q(xM ) ≤
∑

(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(xM )ξα

∣∣∣∣∣∣ q(xM )k

+ C5(1 + |ξ|ν)kq(xM )k−
1

νmax + ω̃(M)(1 + |ξ|ν)kq(xM )k,

where ω̃(M) is such a function that ω̃(M)→ 0 when M →∞.
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From the estimate (2.15), according to (2.16)–(2.18), (2.23) and the definition of

the function ũ, we get

(1− ε(M))

 ∑
(β:ν)≤k

∣∣ξβ∣∣ q(xM )k − C1(1 + |ξ|ν)k

 q(xM )k−
1

νmax

≤ κ

(1 + ε(M))

 ∑
(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

a0(xM )ξα

∣∣∣∣∣∣ q(xM )k

+ C5(1 + |ξ|ν)kq(xM )k−
1

νmax + ω̃(M)(1 + |ξ|ν)kq(xM )k

+ 1

 .

From the last inequality, taking into account that 1
q(x) ⇒ 0 when |x| → ∞,

ω̃(M)→ 0, ε(M)→ 0 when M →∞, dividing by (q(xM ))
k, we get

∑
(β:ν)≤k

∣∣ξβ∣∣− τ(M)(1 + |ξ|ν)k ≤ κ
∑

(β:ν)≤k−s

∣∣ξβ∣∣
∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(xM )ξα

∣∣∣∣∣∣ ,
where τ(M) is such a function that τ(M)→ 0 when M →∞.

From the last estimate, using inequalities (2.12), we get∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(xM )ξα

∣∣∣∣∣∣ ≥ δ1
κδ2

(1 + |ξ|ν)s − τ(M)

κδ2
(1 + |ξ|ν)s.(2.24)

Since τ(M)→ 0 when M →∞, then there exists M0 = M0(P,ϕ, δ1, δ2, κ) > 0 such

that for any M ≥M0 with some constant δ = δ(κ, δ1, δ2) > 0 the following is true∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)ξα

∣∣∣∣∣∣ ≥ δ(1 + |ξ|ν)s,∀ξ ∈ Rn, |x| ≥M.

Similarly to the proof of Theorem 2.1 from the last inequality it is easy to get the

following ∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)λs−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s,∀ξ ∈ Rn, λ > 0, |x| ≥M.

�

Theorem 2.3. (see [14], theorem 7.1). Let E, F and E0 be Banach spaces such

that E is compactly embedded in E0. Let A be a bounded linear operator acting from

E to F . Operator A : E → F is an n−normal if and only if there exists a constant

C > 0 such that

‖x‖E ≤ C (‖Ax‖F + ‖x‖E0
) , x ∈ E.

Applying the previous theorem for operator P (x,D), acting from Hk,ν
q (Rn) to

Hk−s,ν
q (Rn), we get
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Theorem 2.4. Let P (x,D) be differential form (1.1). Then operator P (x,D),

acting from Hk,ν
q (Rn) to Hk−s,ν

q (Rn), is an n−normal if and only if there exist

constants κ > 0 and R > 0 such that the following holds

‖u‖k,ν,q ≤ κ
(
‖Pu‖k−s,ν,q + ‖u‖L2(KR)

)
, u ∈ Hk,ν

q (Rn) .

Corollary 2.1. Let k, s ∈ N, k ≥ s, q ∈ Qk−s,ν and P (x,D) be the differential

form (2.13) with the coefficients that satisfy lim
|x|→∞

max
|x−y|≤1

|a0
α(x) − a0

α(y)| = 0 for

α ∈ Zn+, (α : ν) ≤ s. Let operator P (x,D), acting from Hk,ν
q (Rn) to Hk−s,ν

q (Rn),

be a Fredholm operator. Then there exist constants δ > 0 and M > 0 such that∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)λs−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s, ξ ∈ Rn, λ > 0, |x| ≥M.

Proof. Since operator P (x,D), acting fromHk,ν
q (Rn) toHk−s,ν

q (Rn), is a Fredholm

operator, then it is an n−normal operator. From Theorem 2.4 we get that there

exist such constants κ > 0 and R > 0 that the following estimate holds

‖u‖k,ν,q ≤ κ
(
‖Pu‖k−s,ν,q + ‖u‖L2(KR)

)
≤ κ

(
‖Pu‖k−s,ν,q + ‖u‖L2(Rn)

)
, u ∈ Hk,ν

q (Rn).

From last estimate and the conditions on the coefficients of P (x,D) using Theorem

2.2 we obtain that there exist constants δ > 0 and M > 0 such that∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)λs−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s, ξ ∈ Rn, λ > 0, |x| ≥M.

�

Theorem 8.5.14 from [12] can be formulated in the following equivalent way:

Theorem 2.5. Let A be a bounded linear operator acting from a Banach space X

to a Banach space Y . Then the following holds:

(1) if operator A has left regularizer, then kernel of operator A in X is finite

dimensional;

(2) if operator A has right regularizer, then the image of operator A is closed

in Y and cokernel is finite dimensional;

(3) operator A has left and right regularizers if and only if A is a Fredholm

operator.

It is easy to check that the following proposition holds:

Proposition 2.1. Let k, s ∈ N, k ≥ s, q ∈ Qk−s,ν , P (x,D) be the differential

expression of the form (1.1) with the coefficients that satisfy conditions (1.4) and

ϕ ∈ C∞0 (Rn). Then operator

Tu := P (uϕ)− ϕPu, u ∈ Hk,ν
q (Rn)
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is a compact operator acting from Hk,ν
q (Rn) to Hk−s,ν

q (Rn).

Theorem 2.6. Let k, s ∈ N, k ≥ s, q ∈ Qk−s,ν and the differential form P (x,D)

(see (2.13)) be semielliptic in Rn with the coefficients that satisfy

lim
|x|→∞

max
|x−y|≤1

|a0
α(x)− a0

α(y)| = 0, α ∈ Zn+, (α : ν) ≤ s.

Then the operator P (x,D) : Hk,ν
q (Rn)→ Hk−s,ν

q (Rn) is a Fredholm operator if and

only if there exist constants δ > 0 and M > 0 such that∣∣∣∣∣∣
∑

(α:ν)≤s

a0
α(x)λs−(α:ν)ξα

∣∣∣∣∣∣ ≥ δ(λ+ |ξ|ν)s, ξ ∈ Rn, λ > 0, |x| ≥M.(2.25)

Proof. Let’s first prove sufficient part.

Let δ0 > 0,ϕ (x) ∈ C∞0 (Rn) be such that 0 ≤ ϕ (x) ≤ 1 for all x ∈ Rn and

ϕ (x) = 1 for x ∈ K δ0
2
, ϕ (x) = 0 for |x| ≥ δ0 and ψ ∈ C∞0 (Rn) such that suppψ ⊂

K2δ0 and ψ(x) = 1 for x ∈ Kδ0 . Let ω > 0 be such that ω
√
n < δ0. Let’s denote

{zm}∞m=0 points on the lattice in Rn with a side equals to ω.

Denote

ϕm(x) := ϕ(x− zm)

( ∞∑
l=0

ϕ(x− zl)

)−1

, ψm(x) := ψ(x− zm), m ∈ Z+.

Then {ϕm}∞m=0 is a partition of unity that satisfies the following condition:

(i) max
x,y∈suppϕm

|x− y| < δ0,

(ii) there exists r ∈ N such that for any number i there are no more than r

functions ϕj(x) such that suppϕi ∩ suppϕj 6= ∅;

(iii) for any α ∈ Zn+ there exists some constant Cα > 0 such that |Dαϕm(x)| ≤
Cα, ny x ∈ Rn, m ∈ Z+.

Denote Wm = suppϕm, m ∈ Z+. Let xm ∈ Wm and m0 ∈ N. For m ≤ m0

denote

Pm(x,D) :=
∑

(α:ν)≤s

(ψm(x) (aα(x)− aα(xm)) + aα(xm))Dα.

For m > m0 denote

Pm(x,D) :=∑
(α:ν)≤s

(
ψm(x)

(
a0
α(x)q(x)s−(α:ν) − a0

α(xm)q(xm)s−(α:ν)
)

+ a0
α(xm)q(xm)s−(α:ν)

)
Dα.

Since q ∈ Qk−s,ν and lim
m→∞

max
|x−xm|≤1

|a0
α(x)−a0

α(xm)| = 0, according to Theorem

2.2 from [7], we can choose m0 big enough such that for m > m0 operator Pm :

Hk,ν
q (Rn)→ Hk−s,ν

q (Rn) has the inverse operator Rm : Hk−s,ν
q (Rn)→ Hk,ν

q (Rn).
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For m ≤ m0 consider

Rm0 := F−1 |ξ|sν
(1 + |ξ|sν)Pms (xm, ξ)

F.

Since P (x,D) is semielliptic in Rn, then using Lemma 4.3 from work [13] we get

that for a small enough δ0 from condition (i) the following holds

(2.26)

Rm0 P
m(x,D) = Rm0 P

m(xm,D) +Rm0 (Pm(x,D)− Pm(xm,D)) = I + Tm1 + Tm2 ,

where Tm1 : Hk,ν(Rn)→ Hk+σ,ν(Rn) with some number σ = σ(ν) > 0 and operator

Tm2 : Hk,ν(Rn)→ Hk,ν(Rn) satisfies ‖Tm2 ‖ < 1.

For m ≤ m0 let Rm := (I + Tm2 )−1Rm0 . From (2.26) we have

(2.27) RmPm(x,D) = I + Tm,

where Tm : Hk,ν(Rn)→ Hk+σ,ν(Rn) with some number σ = σ(ν) > 0. Denote

Rf :=

∞∑
l=0

ψlR
l(ϕlf), f ∈ Hk−s,ν

q (Rn).

Since (2.25) holds one can check that the norms of operators Rl, acting from

Hk−s,ν
q (Rn) to Hk,ν

q (Rn), are uniformly bounded. From this fact, taking into

account that 1
q(x) ⇒ 0 when |x| → ∞ and properties (i)–(iii) of the functions

{ϕm}∞m=0, {ψm}∞m=0, it is easy to check that R is a bounded linear operator, acting

from Hk−s,ν
q (Rn) to Hk,ν

q (Rn).

For P (x,D) and RP (x,D), taking into account (2.13), (2.14) and definitions of

the functions {ϕm}∞m=0, {ψm}∞m=0, we have the following representations

P (x,D)u =

∞∑
m=0

ϕmP (x,D)(ψmu)

=

m0∑
m=0

ϕmP
m(x,D)(ψmu)+

∞∑
m=m0+1

ϕmP
m(x,D)(ψmu)+

∞∑
m=m0+1

ϕmL(x,D)(ψmu),

(2.28)

RP (x,D)u =

m0∑
l=0

m0∑
m=0

ψlR
l (ϕlϕmP

m(ψmu))+

m0∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmP

m(ψmu))

+

∞∑
l=m0+1

m0∑
m=0

ψlR
l (ϕlϕmP

m(ψmu)) +

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l (ϕlϕmP

m(ψmu))

+

m0∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmL(ψmu)) +

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l (ϕlϕmL(ψmu)) ,

where u ∈ Hk,ν
q (Rn).
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For m, l ∈ Z+ such that l ≤ m0 and m ≤ m0, based on the definitions of

Pm(x,D) and the functions {ϕm}∞m=0, {ψm}∞m=0, the following holds:

ϕlϕmP
m(x,D) (ψmu) = ϕlϕmP (x,D) (ψmu) = ϕlϕmP

l(x,D) (ψmu) .

From the last equality, using (2.27) and the fact that ϕm(x)ψm(x) = ϕm(x) for all

x ∈ Rn and m ∈ Z+, we get
m0∑
l=0

m0∑
m=0

ψlR
l (ϕlϕmP

m(ψmu)) =

m0∑
l=0

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψmu)
)

=

m0∑
l=0

m0∑
m=0

ψlR
lP l(ϕlϕmψmu) +

m0∑
l=0

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψmu)− P l(ϕlϕmψmu)
)

=

m0∑
l=0

m0∑
m=0

ϕlϕmu+

m0∑
l=0

m0∑
m=0

ψlT
l(ϕlϕmu)

+

m0∑
l=0

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψmu)− P l(ϕlϕmψmu)
)
,

where u ∈ Hk,ν
q (Rn). Consider

T1 :=

m0∑
l=0

m0∑
m=0

ψlT
l(ϕlϕm·) +

m0∑
l=0

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)
.

Using Proposition 2.1 we get that ψlRl
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)
, acting

fromHk,ν
q (Rn) toHk,ν

q (Rn), is a compact operator. Similarly, since T l : Hk,ν(Rn)→
Hk+σ,ν(Rn) with some σ > 0, it is easy to check that operator ψlT l(ϕlϕm·), acting
from Hk,ν

q (Rn) to Hk,ν
q (Rn) is a compact operator. As the finite sum of compact

operators T1 is a compact operator, acting from Hk,ν
q (Rn) to Hk,ν

q (Rn). So we get
m0∑
l=0

m0∑
m=0

ψlR
l (ϕlϕmP

m(ψmu)) =

m0∑
l=0

m0∑
m=0

ϕlϕmu+ T1u, u ∈ Hk,ν
q (Rn),

where T1 : Hk,ν
q (Rn)→ Hk,ν

q (Rn) is a compact operator.

For m, l ∈ Z+ such that l ≤ m0 and m > m0, based on the definitions of

Pm(x,D), L(x,D) and the functions {ϕm}∞m=0, {ψm}∞m=0, the following holds:

ϕlϕmP
m(x,D) (ψmu) = ϕlϕm (P (x,D)− L(x,D)) (ψmu)

= ϕlϕmP
l(x,D) (ψmu)− ϕlϕmL(x,D) (ψmu) .

From the last equality we get

(2.29)
m0∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmP

m(ψmu)) =

m0∑
l=0

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψmu)
)

−
m0∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmL(x,D) (ψmu)) , u ∈ Hk,ν

q (Rn).
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Now consider
m0∑
l=0

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψm·)
)
.

Using (2.27) and the properties of the functions {ϕm}∞m=0, {ψm}∞m=0 we can check

that the following holds:
m0∑
l=0

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψmu)
)

=

m0∑
l=0

∞∑
m=m0+1

ϕlϕmu+ T2u, u ∈ Hk,ν
q (Rn)

where

T2 :=

m0∑
l=0

∞∑
m=m0+1

ψlT
l(ϕlϕm·) +

m0∑
l=0

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)

=

m0∑
l=0

m1∑
m=m0+1

ψlT
l(ϕlϕm·) +

m0∑
l=0

m1∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)
,

where

m1 := max
m>m0

{m : suppϕm
⋂(

m0⋃
l=0

suppϕl

)
6= ∅}.

Since T2 contains the finite number of terms for which ϕlϕm 6= 0, similarly as for

operator T1, we can show that T2 is a compact operator, acting from Hk,ν
q (Rn) to

Hk,ν
q (Rn).

For m, l ∈ Z+ such that l > m0 and m ≤ m0, based on the definitions of

Pm(x,D), L(x,D) and the functions {ϕm}∞m=0, {ψm}∞m=0, the following holds:

ϕlϕmP
m(x,D) (ψmu) = ϕlϕmP

l(x,D) (ψmu) + ϕlϕmL(x,D) (ψmu) .

Analogously, from the last equality and the fact that for l > m0 operators Rl :

Hk−s,ν
q (Rn)→ Hk,ν

q (Rn) are the inverse operators of P l : Hk,ν
q (Rn)→ Hk−s,ν

q (Rn)

we get

(2.30)
∞∑

l=m0+1

m0∑
m=0

ψlR
l (ϕlϕmP

m(ψmu)) =

∞∑
l=m0+1

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψmu)
)

+

∞∑
l=m0+1

m0∑
m=0

ψlR
l (ϕlϕmL(x,D)(ψmu)) ,

(2.31)
∞∑

l=m0+1

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψmu)
)

=

∞∑
l=m0+1

m0∑
m=0

ϕlϕmu+ T3u, u ∈ Hk,ν
q (Rn)

where

T3 :=

∞∑
l=m0+1

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)

=

m1∑
l=m0+1

m0∑
m=0

ψlR
l
(
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
)
,

75



A. TUMANYAN

m1 := max
l>m0

{l : suppϕl ∩

m0⋃
j=0

suppϕj

 6= ∅}.

As T3 contains the finite number of terms for which ϕlϕm 6= 0, taking into account

Proposition 2.1, we get that operator T3 is a compact operator, acting fromHk,ν
q (Rn)

to Hk,ν
q (Rn).

For l > m0 and m > m0, based on the definitions of Pm(x,D) and the functions

{ϕm}∞m=0, {ψm}∞m=0, we have:

ϕlϕmP
m(x,D) (ψmu) = ϕlϕmP

l(x,D) (ψmu) .

From the last equality and the fact that for m > m0 operators Rm : Hk−s,ν
q (Rn)→

Hk,ν
q (Rn) are the inverse operators of Pm : Hk,ν

q (Rn)→ Hk−s,ν
q (Rn) we get

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l (ϕlϕmP

m(ψmu)) =

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψmu)
)

=

∞∑
l=m0+1

∞∑
m=m0+1

ϕlϕmu+

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l
(
ϕlϕmP

l(ψmu)− P l(ϕlϕmψmu)
)
,

where u ∈ Hk,ν
q (Rn).

Taking into account (2.13), the definitions of P l(x,D) and the properties of

functions {ϕm}∞m=0, {ψm}∞m=0, for l > m0 and m > m0 with some constant C1 > 0

we get

‖ϕlϕmP l(ψmu)− P l(ϕlϕmψmu)‖k−s,ν,q

≤ C1

∥∥∥∥∥∥
∑

(α:ν)≤s

∑
β+γ=α,|γ|>0

a0
α(x)Dβ(ψmu)Dγ(ϕlϕm)q(x)s−(α:ν)

∥∥∥∥∥∥
k−s,ν,q

≤ C1

∥∥∥∥∥∥
∑

(α:ν)≤s

∑
β+γ=α,|γ|>0

a0
α(x)Dγ(ϕlϕm)

1

q(x)(γ:ν)
Dβ(ψmu)q(x)s−(β:ν)

∥∥∥∥∥∥
k−s,ν,q

.

From the last inequality, taking into account that 1
q(x) ⇒ 0 when |x| → ∞,

properties (i)–(iii) of the functions {ϕm}∞m=0, {ψm}∞m=0 and the conditions on the

coefficients {a0
α(x)} (see (2.13)) we get

‖ϕlϕmP l(ψmu)− P l(ϕlϕmψmu)‖k−s,ν,q ≤ ω(m0)‖u‖Hk,νq (Wl∩Wm).(2.32)

where ω(m0) is such a function that ω(m0)→ 0 when m0 →∞.

Since (2.25) holds the norms of operatorsRl, acting fromHk−s,ν
q (Rn) toHk,ν

q (Rn),

are uniformly bounded. Using this fact, inequality (2.32), the properties (i)–(iii) of

the functions {ϕm}∞m=0, {ψm}∞m=0, it is easy to check that for a big enough m0
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operator

T4 :=

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l
[
ϕlϕmP

l(ψm·)− P l(ϕlϕmψm·)
]
,

acting from Hk,ν
q (Rn) to Hk,ν

q (Rn), satisfies ‖T4‖ <
1

2
.

Similarly for remained terms from (2.28), (2.29) and (2.30), taking into account

that Dβ(bα(x)) = o(q(x)s−(α:ν)+(β:ν)) when |x| → ∞, (α : ν) ≤ s, (β : ν) ≤ k − s
(see (2.13), (2.14)), for a big enough m0 we get that the operator

T5 :=

∞∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmL(ψm·))−

m0∑
l=0

∞∑
m=m0+1

ψlR
l (ϕlϕmL(ψm·))

+

∞∑
l=m0+1

m0∑
m=0

ψlR
l (ϕlϕmL(ψm·)) ,

acting from Hk,ν
q (Rn) to Hk,ν

q (Rn), has a norm that satisfies ‖T5‖ <
1

2
.

Denote

T
′

:= T1 + T2 + T3, T
′′

:= T4 + T5.

From the representation (2.28) we get

RPu =

∞∑
l=0

∞∑
m=0

ϕlϕmu+ T1u+ T2u+ T3u+ T4u+ T5u = u+ T
′
u+ T

′′
u,

where u ∈ Hk,ν
q (Rn), T

′
: Hk,ν

q (Rn) → Hk,ν
q (Rn) is a compact operator and for

operator T
′′

: Hk,ν
q (Rn)→ Hk,ν

q (Rn) we have ‖T ′′‖ < 1.

Therefore (
I + T

′′
)−1

RP = I +
(
I + T

′′
)−1

T
′
,

where T :=
(
I + T

′′
)−1

T
′

: Hk,ν
q (Rn) → Hk,ν

q (Rn) is a compact operator. So we

get that operator
(
I + T

′′
)−1

R : Hk−s,ν
q (Rn)→ Hk,ν

q (Rn) is a left regularizer.

Analogously we can construct a right regularizer.

Since right and left regularizers exist, applying Theorem 2.5, we obtain the

Fredholm property of operator P (x,D) : Hk,ν
q (Rn)→ Hk−s,ν

q (Rn).

Necessity of condition (2.25) for the Fredholm property of P (x,D) : Hk,ν
q (Rn)→

Hk−s,ν
q (Rn) follows from Corollary 2.1. �
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