Известия НАН Армении, Математика, том 56, н. 3, 2021, стр. 49 – 60.

VOLTERRA INTEGRAL OPERATORS FROM CAMPANATO SPACES INTO GENERAL FUNCTION SPACES

R. QIAN AND X. ZHU

Lingnan normal University, Guangdong, P. R. China¹

University of Electronic Science and Technology of China, Zhongshan, P. R. China E-mails: qianruishen@sina.cn; jyuzxl@163.com; xiangling-zhu@163.com

Abstract. In this paper, the boundedness and compactness of embedding from Campanato spaces $\mathcal{L}_{p,\lambda}$ into tent spaces $\mathcal{T}_{p,s}(\mu)$ are investigated. As an application, we give a characterization for the boundedness of the Volterra integral operator J_g from $\mathcal{L}_{p,\lambda}$ to general function spaces $F(p, p - 1 - \lambda, s)$. Meanwhile, the operator I_g and the multiplication operator M_g from $\mathcal{L}_{p,\lambda}$ to $F(p, p - 1 - \lambda, s)$ are studied. Furthermore, the essential norm of J_g and I_g from $\mathcal{L}_{p,\lambda}$ to $F(p, p - 1 - \lambda, s)$ are also considered.

MSC2010 numbers: 30H99; 47B38.

Keywords: Campanato space; Volterra integral operator; Carleson measure.

1. INTRODUCTION

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and $\partial \mathbb{D}$ its boundary. Let $H(\mathbb{D})$ denote the space of all analytic functions in \mathbb{D} . For 0 , the Hardy $space <math>H^p$ is the set of all $f \in H(\mathbb{D})$ satisfying (see [1])

$$\|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\partial \mathbb{D}} |f(r\zeta)|^p d\zeta < \infty$$

For $0 and <math>\alpha > -1$, the weighted Bergman space, denoted by A^p_{α} , consists of all $f \in H(\mathbb{D})$ such that

$$||f||_{A^p_{\alpha}}^p = (\alpha + 1) \int_{\mathbb{D}} |f(z)|^p (1 - |z|^2)^{\alpha} dA(z) < \infty,$$

where dA is the normalized Lebesgue area measure in \mathbb{D} such that $A(\mathbb{D}) = 1$. When $\alpha = 0, A^p_{\alpha}$ is the Bergman space, denoted by A^p . As usual, H^{∞} denotes the space of bounded analytic function.

In 1996, Zhao [26] introduced the general family of function spaces F(p,q,s). Namely, for $0 , <math>-2 < q < \infty$, $0 \le s < \infty$, the space F(p,q,s) consists of

¹This work was supported by NNSF of China (No. 11801250, No.11871257), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, the Key Program of Lingnan Normal University (No. LZ1905), and Department of Education of Guangdong Province (No. 2018KTSCX133).

functions $f \in H(\mathbb{D})$ satisfying

$$||f||_{F(p,q,s)}^{p} = |f(0)|^{p} + \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{p} (1 - |z|^{2})^{q} (1 - |\sigma_{a}(z)|^{2})^{s} dA(z) < \infty,$$

where $\sigma_a(z) = \frac{a-z}{1-\bar{a}z}$ is a Möbius transformation of \mathbb{D} interchanging a and 0. It is known that, for $p \geq 1$, F(p,q,s) is a Banach space under the above norm. Also, it is known that F(p,q,s) contains only constant functions if $s + q \leq -1$. Thus, it is natural to study F(p,q,s) spaces under the assumption that s + q > -1. F(p,p,0)is just the Bergman space. When p = 2 and q = 0, it gives the Q_s space (see [22]). Especially, Q_1 is the *BMOA* space, the space of analytic functions in the Hardy space whose boundary functions have bounded mean oscillation. When s > 1, Q_s is the Bloch space, denoted by \mathcal{B} , which is the space of all $f \in H(\mathbb{D})$ for which

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

The little Bloch space \mathcal{B}_0 , consists of all $f \in \mathcal{B}$ such that $\lim_{|z|\to 1} (1-|z|^2)|f'(z)| = 0$. See [13, 26] for more results of F(p, q, s) spaces.

Let I be an arc of $\partial \mathbb{D}$ and |I| be the normalized Lebesgue arc length of I. The Carleson square based on I, denoted by S(I), is defined by

$$S(I) = \left\{ z = re^{i\theta} \in \mathbb{D} : 1 - |I| \le r < 1, e^{i\theta} \in I \right\}.$$

Let $0 , <math>0 < s < \infty$ and μ be a positive Borel measure on \mathbb{D} . The tent space $\mathcal{T}_{p,s}(\mu)$ consists of all μ -measurable functions f such that

$$\|f\|_{\mathcal{T}_{p,s}(\mu)}^p = \sup_{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^s} \int_{S(I)} |f(z)|^p d\mu(z) < \infty.$$

Let $p \geq 1$ and $0 \leq \lambda < \infty$. We say that an $f \in H^p$ belongs to the analytic Campanato space $\mathcal{L}_{p,\lambda}$ if (see [25])

$$||f||_{\mathcal{L}_{p,\lambda}} = |f(0)| + \left(\sup_{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{I} |f(\zeta) - f_{I}|^{p} \frac{|d\zeta|}{2\pi}\right)^{\frac{1}{p}} < \infty,$$

where

$$f_I = \frac{1}{|I|} \int_I f(\zeta) \frac{|d\zeta|}{2\pi}, \ I \subseteq \partial \mathbb{D}$$

When p = 2, the space $\mathcal{L}_{2,\lambda}$ is called the Morrey space, which was studied by Wu and Xie in [20]. When $\lambda = 0$, $\mathcal{L}_{p,0}$ is just the Hardy space H^p . $\mathcal{L}_{p,1}$ is the *BMOA* space. Recently, some fundamental function and operator-theoretic properties on $\mathcal{L}_{p,\lambda}$ have been investigated in [5, 10, 14, 18, 19, 20, 21, 24, 25]

Let $f, g \in H(\mathbb{D})$. The Volterra integral operator J_g and the integral operator I_g are defined by

$$J_g f(z) = \int_0^z g'(w) f(w) dw, \quad I_g f(z) = \int_0^z g(w) f'(w) dw, \quad z \in \mathbb{D},$$

respectively. The multiplication operator M_g is defined by $M_g f(z) = g(z)f(z), f \in H(\mathbb{D}), z \in \mathbb{D}.$

The operator J_g was introduced by Pommerenke in [12]. Pommerenke showed that $J_g : H^2 \to H^2$ is bounded if and only if $g \in BMOA$. Furthermore, in [3], Aleman and Siskakis proved that $J_g : H^p \to H^p$ is bounded if and only if $g \in BMOA$. In [4], Aleman and Siskakis showed that $J_g : A^p \to A^p$ is bounded if and only if $g \in \mathcal{B}$. For more information on Volterra integral operators, see [2] - [9], [11, 14, 15, 23] and the references therein.

Recently, Li, Liu and Lou in [5] proved that $J_g : \mathcal{L}_{2,\lambda} \to \mathcal{L}_{2,\lambda}$ is bounded if and only if $g \in BMOA$. In [18], Wang generalized the result in [5] and proved that $J_g : \mathcal{L}_{p,\lambda} \to \mathcal{L}_{2,1-2/p(1-\lambda)}$ is bounded if and only if $g \in BMOA$ under the assumption that $2 \leq p < \infty$ and $0 \leq \lambda < 1$. An interesting and nature question is to find an analytic function space X for which

$J_q: \mathcal{L}_{p,\lambda} \to X$ is bounded if and only if $g \in \mathcal{B}$.

In this paper, we prove that $J_g: \mathcal{L}_{p,\lambda}$ to $F(p, p-1-\lambda, s)$ is bounded if and only if $g \in \mathcal{B}$. Moreover, we show that the identity operator $i: \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is bounded (resp.compact) if and only if μ is a $s - \lambda + 1$ -Carleson measure(resp. a vanishing $s - \lambda + 1$ -Carleson measure) under the assumption that $2 \leq p < \infty$, $0 \leq \lambda < 1$ and $\lambda < s < \infty$. The essential norm of the operator J_g is also investigated. Furthermore, we study the boundedness and compactness of the operators I_g and M_g from $\mathcal{L}_{p,\lambda}$ to $F(p, p - 1 - \lambda, s)$.

Throughout this paper, we say that $A \leq B$, if there exists a constant C such that $A \leq CB$. The symbol $A \approx B$ means that $A \leq B \leq A$.

2. Embedding from $\mathcal{L}_{p,\lambda}$ to tent spaces

An important tool to study function spaces is Carleson type measure. For s > 0, a positive Borel measure μ on \mathbb{D} is said to be an *s*-Carleson measure if $\sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^s} < \infty$. For s = 1, we get the classical Carleson measures (see [1]). If μ is an *s*-Carleson measure, then we set

$$\|\mu\|_s = \sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^s}.$$

If $\lim_{|I|\to 0} \frac{\mu(S(I))}{|I|^s} = 0$, then μ is called a vanishing *s*-Carleson measure. It is well known (see [25]) that μ is an *s*-Carleson measure if and only if

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|a|^2)^s}{|1-\bar{a}z|^{2s}}d\mu(z)<\infty.$$

Moreover,

(2.1)
$$\sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^s} \asymp \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{(1-|a|^2)^s}{|1-\bar{a}z|^{2s}} d\mu(z).$$

Now we are in a position to state and prove the main results in this section.

Theorem 2.1. Let $2 \le p < \infty$, $0 \le \lambda < 1$, $\lambda < s < \infty$ and μ be a positive Borel measure on \mathbb{D} . Then the identity operator $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is bounded if and only if μ is a $(s + 1 - \lambda)$ -Carleson measure.

Proof. Assume that μ is a $(s + 1 - \lambda)$ -Carleson measure. Let I be any arc on $\partial \mathbb{D}$ and $a = (1 - |I|)e^{i\theta}$, where $e^{i\theta}$ is the midpoint of I. Let $f \in \mathcal{L}_{p,\lambda}$. From [18, Lemma 2.5], we get

$$|f(a)| \lesssim \frac{\|f\|_{\mathcal{L}_{p,\lambda}}}{(1-|a|)^{\frac{1-\lambda}{p}}} = \frac{\|f\|_{\mathcal{L}_{p,\lambda}}}{|I|^{\frac{1-\lambda}{p}}}.$$

Then

$$\begin{split} \frac{1}{|I|^s} \int_{S(I)} |f(z)|^p d\mu(z) &\lesssim \frac{1}{|I|^s} \int_{S(I)} |f(a)|^p d\mu(z) + \frac{1}{|I|^s} \int_{S(I)} |f(z) - f(a)|^p d\mu(z) \\ &= M + N. \end{split}$$

It is obvious that

$$M \lesssim \frac{\mu(S(I))}{|I|^{s-\lambda+1}} \|f\|_{\mathcal{L}_{p,\lambda}}^p \lesssim \|f\|_{\mathcal{L}_{p,\lambda}}^p.$$

Now we turn to estimate N. The estimate will be divided into two cases. Case 1: $s - \lambda \ge 1$.

By the assumed condition and Theorem 7.4 in [27], we know that the identity operator $i: A^p_{s-\lambda-1} \to L^p(d\mu)$ is bounded. Then

$$\begin{split} N &\asymp \int_{S(I)} \frac{|f(z) - f(a)|^p}{|1 - \bar{a}z|^s} d\mu(z) \\ &\asymp (1 - |a|^2)^{1-\lambda} \int_{S(I)} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^{3-\lambda+s}} d\mu(z) \\ &\lesssim (1 - |a|^2)^{1-\lambda} \int_{\mathbb{D}} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|(1 - \bar{a}z)^{\frac{3-\lambda+s}{p}}|^p} d\mu(z) \\ &\lesssim (1 - |a|^2)^{1-\lambda} \int_{\mathbb{D}} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^{3-\lambda+s}} (1 - |z|^2)^{s-\lambda-1} dA(z) \\ &\lesssim (1 - |a|^2)^{1-\lambda} \int_{\mathbb{D}} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^4} dA(z) \\ &= (1 - |a|^2)^{1-\lambda} \int_{\mathbb{D}} |f \circ \sigma_a(w) - f(a)|^p dA(w) \\ &\lesssim (1 - |a|^2)^{1-\lambda} \int_{\partial \mathbb{D}} |f \circ \sigma_a(\zeta) - f(a)|^p d\zeta \le \|f\|_{\mathcal{L}_{p,\lambda}}^p < \infty. \end{split}$$

The last second inequality is come from [25, Theorem 1].

Case 2: $0 < s - \lambda < 1$. Since $H^p \subseteq A^p_{s-\lambda-1}$, we have

$$\begin{split} N &\asymp (1 - |a|^2)^{-s} \int_{S(I)} |f(z) - f(a)|^p d\mu(z) \\ &\asymp (1 - |a|^2)^{2-s} \int_{S(I)} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^4} d\mu(z) \\ &\lesssim (1 - |a|^2)^{2-s} \int_{\mathbb{D}} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^4} d\mu(z) \\ &\lesssim (1 - |a|^2)^{2-s} \int_{\mathbb{D}} \frac{|f(z) - f(a)|^p (1 - |a|^2)^2}{|1 - \bar{a}z|^4} (1 - |z|^2)^{s-\lambda-1} dA(z) \\ &= (1 - |a|^2)^{2-s} \int_{\mathbb{D}} |f \circ \sigma_a(w) - f(a)|^p (1 - |\sigma_a(w)|^2)^{s-\lambda-1} dA(w) \\ &\lesssim (1 - |a|^2)^{1-\lambda} \int_{\mathbb{D}} |f \circ \sigma_a(\zeta) - f(a)|^p d\zeta \lesssim ||f||_{\mathcal{L}_{p,\lambda}}^p < \infty. \end{split}$$

Combining the estimates M and N, we conclude that the identity operator i: $\mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is bounded.

Conversely, suppose that the identity operator $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is bounded. For $a \in \mathbb{D}$, let

(2.2)
$$f_a(z) = \frac{(1-|a|^2)^{1+\frac{\lambda-1}{p}}}{(1-\bar{a}z)}, \quad z \in \mathbb{D}.$$

By [18, Lemma 2.3], we have that $f_a \in \mathcal{L}_{p,\lambda}$ with $\sup_{a \in \mathbb{D}} ||f_a||_{\mathcal{L}_{p,\lambda}} \leq 1$. Fixed an arc $I \subseteq \partial \mathbb{D}$. Let $e^{i\theta}$ be the center of I and $a = (1 - |I|)e^{i\theta}$. Then

$$|1 - \bar{a}z| \simeq 1 - |a| = |I|, \quad |f_a(z)|^p \simeq |I|^{\lambda - 1},$$

whenever $z \in S(I)$. So

$$\frac{\mu(S(I))}{|I|^{s+1-\lambda}} \asymp \frac{1}{|I|^s} \int_{S(I)} |f_a(z)|^p d\mu(z) \le \|f_a\|_{\mathcal{T}_{p,s}(\mu)}^p < \infty.$$

Consequently, μ is a $(s + 1 - \lambda)$ -Carleson measure.

Theorem 2.2. Let $2 \leq p < \infty$, $0 \leq \lambda < 1$, $\lambda < s < \infty$ and μ be a positive Borel measure on \mathbb{D} such that point evaluation is a bounded functional on $\mathcal{T}_{p,s}(\mu)$. Then the identity operator $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is compact if and only if μ is a vanishing $(s - \lambda + 1)$ -Carleson measure.

Proof. Assume that μ is a vanishing $(s - \lambda + 1)$ -Carleson measure. It is clear that μ is a $(s - \lambda + 1)$ -Carleson measure. Hence $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is bounded. For 0 < r < 1, let $\chi_{\{z:|z| < r\}}$ be the characteristic function of the set $\{z: |z| < r\}$. From

[6] we see that $\lim_{r\to 1} \|\mu - \mu_r\|_{s-\lambda+1} = 0$, where $d\mu_r = \chi_{\{z:|z| < r\}} d\mu$. Let $\{f_k\}$ be a bounded sequence in $\mathcal{L}_{p,\lambda}$ such that $\{f_k\}$ converges to zero uniformly on compact subsets of \mathbb{D} . We have

$$\begin{split} \frac{1}{|I|^s} \int_{S(I)} |f_k(z)|^p d\mu(z) &\lesssim \frac{1}{|I|^s} \int_{S(I)} |f_k(z)|^p d\mu_r(z) + \frac{1}{|I|^s} \int_{S(I)} |f_k(z)|^p d(\mu - \mu_r)(z) \\ &\lesssim \frac{1}{|I|^s} \int_{S(I)} |f_k(z)|^p d\mu_r(z) + \|\mu - \mu_r\|_{s-\lambda+1} \|f_k\|_{\mathcal{L}_{p,\lambda}}^p \\ &\lesssim \frac{1}{|I|^s} \int_{S(I)} |f_k(z)|^p d\mu_r(z) + \|\mu - \mu_r\|_{s-\lambda+1} \to 0, \end{split}$$

as $r \to 1$ and $k \to \infty$. Therefore, $\lim_{k\to\infty} ||f_k||_{\mathcal{T}_{p,s}(\mu)} = 0$, which means that the identity operator $i: \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is compact.

Conversely, suppose that the identity operator $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu)$ is compact. Let $\{I_k\}$ be a sequence arcs with $\lim_{k\to\infty} |I_k| = 0$. We denote the center of I_k by $e^{i\theta_k}$. Set $a_k = (1 - |I_k|)e^{i\theta_k}$ and

(2.3)
$$f_k(z) = \frac{(1 - |a_k|^2)^{1 + \frac{\lambda - 1}{p}}}{(1 - \bar{a_k}z)}, \quad z \in \mathbb{D}.$$

It is easy to check that $\{f_k\}$ is bounded in $\mathcal{L}_{p,\lambda}$ and $\{f_k\}$ converges to zero uniformly on compact subsets of \mathbb{D} . Then $\lim_{k\to\infty} ||f_k||_{\mathcal{T}_{p,s}(\mu)} = 0$ by the assumption. Since

$$|f_k(z)| \asymp (1 - |a_k|)^{\frac{\lambda - 1}{p}} = |I_k|^{\frac{\lambda - 1}{p}},$$

when $z \in S(I_k)$, we obtain

$$\frac{\mu(S(I_k))}{|I_k|^{s-\lambda+1}} \asymp \frac{1}{|I_k|^s} \int_{S(I_k)} |f_k(z)|^p d\mu(z) \le \|f_k\|_{\mathcal{T}_{p,s}(\mu)}^p \to 0, \quad k \to \infty,$$

which implies that μ is a vanishing $(s - \lambda + 1)$ -Carleson measure.

3. Boundedness of J_g , I_g and M_g

In this section, via the embedding theorem (Theorem 2.1), we provide a characterization for the boundedness of Volterra integral operator J_g from $\mathcal{L}_{p,\lambda}$ to $F(p, p-1-\lambda, s)$. We also study the boundedness of the operators I_g and M_g .

Theorem 3.1. Let $2 \leq p < \infty$, $0 \leq \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$, then $J_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded if and only if $g \in \mathcal{B}$. Moreover, $\|J_g\| \asymp \|g\|_{\mathcal{B}}$.

Proof. Let $g \in \mathcal{B}$. Using the equivalent norm of Bloch function (see [26]), we obtain

$$\begin{split} \|g\|_{\mathcal{B}}^{p} &\asymp \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |g'(z)|^{p} (1-|z|^{2})^{p-2} (1-|\sigma_{a}(z)|^{2})^{s-\lambda+1} dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |g'(z)|^{p} (1-|z|^{2})^{p-1+s-\lambda} \left(\frac{1-|a|^{2}}{|1-\bar{a}z|^{2}}\right)^{s-\lambda+1} dA(z) \\ &\asymp \sup_{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^{s-\lambda+1}} \int_{S(I)} |g'(z)|^{p} (1-|z|^{2})^{p-1+s-\lambda} dA(z) \asymp \sup_{I \subseteq \partial \mathbb{D}} \frac{\mu_{g}(S(I))}{|I|^{s-\lambda+1}}, \end{split}$$

which implies that $d\mu_g(z) = |g'(z)|^p (1-|z|^2)^{p-1+s-\lambda} dA(z)$ is a $(s-\lambda+1)$ -Carleson measure. By Theorem 2.1, the identity operator $i : \mathcal{L}_{p,\lambda} \to \mathcal{T}_{p,s}(\mu_g)$ is bounded. Let $f \in \mathcal{L}_{p,\lambda}$. We deduce that

$$\begin{split} \|J_g f\|_{F(p,p-1-\lambda,s)}^p &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f(z)|^p |g'(z)|^p (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f(z)|^p |g'(z)|^p (1-|z|^2)^{p-1-\lambda+s} \left(\frac{1-|a|^2}{|1-\bar{a}z|^2}\right)^s dA(z) \\ &\asymp \sup_{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^s} \int_{S(I)} |f(z)|^p d\mu_g(z) \\ &= \|f\|_{\mathcal{T}_{p,s}(\mu_g)}^p \lesssim \|\mu_g\|_{s-\lambda+1} \|f\|_{\mathcal{L}_{p,\lambda}}^p \asymp \|g\|_{\mathcal{B}}^p \|f\|_{\mathcal{L}_{p,\lambda}}^p < \infty. \end{split}$$

That is, $J_g: \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded and $||J_g|| \leq ||g||_{\mathcal{B}}$.

Conversely, suppose that $J_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded. For any $a \in \mathbb{D}$, let f_a be defined as in (2.2). Then $f_a \in \mathcal{L}_{p,\lambda}$ and $||f_a||_{\mathcal{L}_{p,\lambda}} \lesssim 1$. Thus,

$$||J_g f_a||_{F(p,p-1-\lambda,s)} \le ||J_g|| ||f_a||_{\mathcal{L}_{p,\lambda}} \lesssim ||J_g||.$$

By Lemma 4.12 of [27], we have

$$\begin{split} \|J_g f_a\|_{F(p,p-1-\lambda,s)}^p &\geq \int_{\mathbb{D}} |g'(z)|^p \frac{(1-|a|^2)^{p-1+\lambda}}{|1-\bar{a}z|^p} (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &= \int_{\mathbb{D}} |g'(z)|^p \frac{(1-|a|^2)^{p-1+\lambda+s} (1-|z|^2)^{p-1-\lambda+s}}{|1-\bar{a}z|^{2s+p}} dA(z) \\ &\geq \int_{D(a,r)} |g'(z)|^p \frac{(1-|a|^2)^{p-1+\lambda+s} (1-|z|^2)^{p-1-\lambda+s}}{|1-\bar{a}z|^{2s+p}} dA(z) \\ &\gtrsim |g'(a)|^p (1-|a|^2)^p. \end{split}$$

Hence, for any $a \in \mathbb{D}$,

$$|g'(a)|(1-|a|^2) \lesssim ||J_g f_a||_{F(p,p-1-\lambda,s)} \lesssim ||J_g||,$$

which implies that $g \in \mathcal{B}$ and $||g||_{\mathcal{B}} \lesssim ||J_g||$.

Theorem 3.2. Suppose that $2 \leq p < \infty$, $0 \leq \lambda < 1 < s < \infty$ or p = 2, $0 \leq \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$, then $I_g : \mathcal{L}_{p,\lambda} \to F(p, p - 1 - \lambda, s)$ is bounded if and only if $g \in H^{\infty}$. Furthermore, $\|I_g\| \asymp \|g\|_{H^{\infty}}$.

Proof. Assume that $I_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded. For any $a \in \mathbb{D}$, set $h_a = \frac{(1-|a|^2)^{1+\frac{\lambda-1}{p}}}{\overline{a}(1-\overline{a}z)}$. It is easy to see that $h_a \in \mathcal{L}_{p,\lambda}$ and $\sup_{a \in \mathbb{D}} \|h_a\|_{\mathcal{L}_{p,\lambda}} \lesssim 1$. Hence

$$\|I_g h_a\|_{F(p,p-1-\lambda,s)} \le \|I_g\| \ \|h_a\|_{\mathcal{L}_{p,\lambda}} \lesssim \|I_g\|.$$
55

Lemma 4.12 of [27] gives

$$\begin{split} \|I_g h_a\|_{F(p,p-1-\lambda,s)}^p \gtrsim \int_{\mathbb{D}} |g(z)|^p \frac{(1-|a|^2)^{p+\lambda-1}}{|1-\bar{a}z|^{2p}} (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ \gtrsim \int_{D(a,r)} |g(z)|^p \frac{(1-|a|^2)^{p+\lambda-1}}{|1-\bar{a}z|^{2p}} (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ \gtrsim |g(a)|^p, \end{split}$$

which implies that $g \in H^{\infty}$ and $||g||_{H^{\infty}} \leq ||I_g||$.

Conversely, suppose that $g \in H^{\infty}$. First we consider the case $2 \leq p < \infty$, $0 \leq \lambda < 1 < s < \infty$. Let $f \in \mathcal{L}_{p,\lambda}$. Then by [18, Lemma 2.4],

$$||f'(z)||^p \lesssim \frac{||f||^p_{\mathcal{L}_{p,\lambda}}}{(1-|z|^2)^{p+1-\lambda}}$$

Combined with Lemma 3.10 of [27], we have

$$\begin{split} \|I_g f\|_{F(p,p-1-\lambda,s)}^p &\leq \|g\|_{H^{\infty}}^p \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &\leq \|g\|_{H^{\infty}}^p \|f\|_{\mathcal{L}_{p,\lambda}}^p \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} (1-|z|^2)^{-2} (1-|\sigma_a(z)|^2)^s dA(z) \\ &\leq \|g\|_{H^{\infty}}^p \|f\|_{\mathcal{L}_{p,\lambda}}^p \sup_{a\in\mathbb{D}} (1-|a|^2)^s \int_{\mathbb{D}} \frac{(1-|z|^2)^{s-2}}{|1-\overline{a}z|^{2s}} dA(z) \quad (s>1) \\ &\leq \|g\|_{H^{\infty}}^p \|f\|_{\mathcal{L}_{p,\lambda}}^p. \end{split}$$

Thus, $I_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded and $||I_g|| \le ||g||_{H^{\infty}}$.

When $p = 2, 0 \le \lambda < 1$ and $\lambda < s < \infty$. From above, we have

$$\begin{split} \|I_g f\|_{F(2,1-\lambda,s)}^2 &\leq \|g\|_{H^{\infty}}^2 \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2)^{1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &\leq \|g\|_{H^{\infty}}^2 \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2)^{1-\lambda} (1-|\sigma_a(z)|^2)^\lambda dA(z) \\ &\lesssim \|g\|_{H^{\infty}}^2 \sup_{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2) dA(z) \leq \|g\|_{H^{\infty}}^2 \|f\|_{\mathcal{L}_{2,\lambda}}^2 \end{split}$$

The proof is complete.

Using Theorems 3.1 and 3.2, we get the characterization of the boundedness of the multiplication operator $M_g: \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$.

Theorem 3.3. Suppose that $2 \leq p < \infty$, $0 \leq \lambda < 1 < s < \infty$ or p = 2, $0 \leq \lambda < 1$ and $\lambda < s < \infty$. Then $M_g : \mathcal{L}_{p,\lambda} \to F(p, p - 1 - \lambda, s)$ is bounded if and only if $g \in H^{\infty}$.

Proof. Assume that $M_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded. Let $h \in F(p, p-1-\lambda, s)$ and $b \in \mathbb{D}$. We have (see [26])

$$|h'(b)| \lesssim \frac{\|h\|_{F(p,p-1-\lambda,s)}}{(1-|b|^2)^{1+\frac{1-\lambda}{p}}},$$

and hence

$$|h(b)| \lesssim \frac{\|h\|_{F(p,p-1-\lambda,s)}}{(1-|b|^2)^{\frac{1-\lambda}{p}}}.$$

For any $a \in \mathbb{D}$, let f_a be defined as in (2.2). Then $\{f_a\}$ is bounded in $\mathcal{L}_{p,\lambda}$. By the assumption we see that $M_g f_a \in F(p, p-1-\lambda, s)$. Hence

$$|M_g f_a(z)| \lesssim \frac{\|M_g f_a\|_{F(p,p-1-\lambda,s)}}{(1-|z|^2)^{\frac{1-\lambda}{p}}} \lesssim \frac{\|M_g\|}{(1-|z|^2)^{\frac{1-\lambda}{p}}} \lesssim \frac{\|M_g\|}{(1-|z|^2)^{\frac{1-\lambda}{p}}},$$

which implies that

$$\left|\frac{1-|a|^2}{(1-\bar{a}z)^{1+\frac{1-\lambda}{p}}}g(z)\right| \lesssim \frac{\|M_g\|}{(1-|z|^2)^{\frac{1-\lambda}{p}}}.$$

By the arbitrariness of $z, a \in \mathbb{D}$, let a = z, we obtain that $g \in H^{\infty}$ and $||g||_{H^{\infty}} \leq ||M_g||$.

Conversely, assume that $g \in H^{\infty}$. It follows from Theorems 3.1 and 3.2 that

$$J_g: \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s) \text{ and } I_g: \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$$

are bounded. So by the following relation

$$J_g f + I_g f = M_g f - f(0)g(0),$$

we see that $M_g: \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded.

4. Essential norm of J_g and I_g

In this section, we give an estimation of the essential norm of J_g and I_g . First, let us recall the definition of the essential norm of a operator. Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. The essential norm of $T: X \to Y$, denoted by $||T||_{e,X\to Y}$, is defined by

$$||T||_{e,X\to Y} = \inf_{S} \{ ||T - S||_{X\to Y} : S \text{ is compact from } X \text{ to } Y \}.$$

Lemma 4.1. [17] If $f \in \mathcal{B}$, then

$$\limsup_{|z| \to 1} (1 - |z|^2) |f'(z)| \asymp \limsup_{r \to 1} ||f - f_r||_{\mathcal{B}}.$$

Here $f_r(z) = f(rz), \ 0 < r < 1, z \in \mathbb{D}$.

Lemma 4.2. Let $2 \le p < \infty$, $0 \le \lambda < 1$ and $\lambda < s < \infty$. If 0 < r < 1 and $g \in \mathcal{B}$, then $J_{g_r} : \mathcal{L}_{p,\lambda} \to F(p, p - 1 - \lambda, s)$ is compact.

Г		1
L		
L		

Proof. Let $\{f_k\}$ be a bounded sequence in $\mathcal{L}_{p,\lambda}$ such that $\{f_k\}$ converges to zero uniformly on compact subsets of \mathbb{D} and $\sup_k \|f_k\|_{\mathcal{L}_{p,\lambda}} \leq 1$. Then

$$\begin{split} \|J_{g_r} f_k\|_{F(p,p-1-\lambda,s)}^p &\leq \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} |f_k(z)|^p |g_r'(z)|^p (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &\lesssim \frac{\|g\|_{\mathcal{B}}^p}{(1-r^2)^p} \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} |f_k(z)|^p (1-|z|^2)^{p-1-\lambda} (1-|\sigma_a(z)|^2)^s dA(z) \\ &\lesssim \frac{\|g\|_{\mathcal{B}}^p}{(1-r^2)^p} \int_{\mathbb{D}} |f_k(z)|^p (1-|z|^2)^{p-1-\lambda} dA(z) \\ &\lesssim \frac{\|g\|_{\mathcal{B}}^p}{(1-r^2)^p} \int_{\mathbb{D}} (1-|z|^2)^{p-2} dA(z). \end{split}$$

By the dominated convergence theorem, we get the result.

Theorem 4.1. Let $2 \le p < \infty$, $0 \le \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$ such that $J_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded, then

$$||J_g||_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \asymp \limsup_{|z|\to 1} (1-|z|^2)|g'(z)|.$$

Proof. By Lemma 4.2, $J_{g_r} : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is compact. Hence

$$\begin{split} \|J_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} &\leq \|J_g - J_{g_r}\|_{\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \\ &= \|J_{g-g_r}\|_{\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \asymp \|g - g_r\|_{\mathcal{B}} \end{split}$$

Using Lemma 4.1, we have

$$\|J_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \lesssim \limsup_{r\to 1} \|g - g_r\|_{\mathcal{B}} \asymp \limsup_{|z|\to 1} (1-|z|^2)|g'(z)|.$$

Next we prove that

$$\|J_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)}\gtrsim \limsup_{|z|\to 1}(1-|z|^2)|g'(z)|.$$

Let $\{a_k\}$ be a sequence in \mathbb{D} such that $\lim_{k\to\infty} |a_k| = 1$ and f_k be defined as in (2.3). Then $\{f_k\}$ is bounded in $\mathcal{L}_{p,\lambda}$ and converges to zero uniformly on each compact subset of \mathbb{D} . For any given compact operator $S : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$, by [16, Lemma 2.10] we have $\lim_{k\to\infty} \|Sf_k\|_{F(p,p-1-\lambda,s)} = 0$. Then

$$\begin{split} \|J_{g} - S\|_{\mathcal{L}_{p,\lambda} \to F(p,p-1-\lambda,s)} &\gtrsim \limsup_{k \to \infty} \|(J_{g} - S)f_{k}\|_{F(p,p-1-\lambda,s)} \\ &\gtrsim \limsup_{k \to \infty} \left(\|J_{g}f_{k}\|_{F(p,p-1-\lambda,s)} - \|Sf_{k}\|_{F(p,p-1-\lambda,s)} \right) \\ &\geq \limsup_{k \to \infty} \left(\int_{\mathbb{D}} |f_{k}(z)|^{p} |g'(z)|^{p} (1 - |z|^{2})^{p-1-\lambda} (1 - |\sigma_{a_{k}}(z)|^{2})^{s} dA(z) \right)^{\frac{1}{p}} \\ &\gtrsim \limsup_{k \to \infty} (1 - |a_{k}|^{2}) |g'(a_{k})|, \end{split}$$

which implies the desired result.

VOLTERRA INTEGRAL OPERATORS FROM CAMPANATO SPACES ...

Using Theorem 4.1 and the well-known result that $T: X \to Y$ is compact if and only if $||T||_{e,X\to Y} = 0$, we easily get the following corollary.

Corollary 4.1. Let $2 \leq p < \infty$, $0 \leq \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$, then $J_g : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is compact if and only if $g \in \mathcal{B}_0$.

Theorem 4.2. Suppose that $2 \le p < \infty$, $0 \le \lambda < 1 < s < \infty$ or p = 2, $0 < \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$ and $I_g : \mathcal{L}_{p,\lambda} \to F(p, p - 1 - \lambda, s)$ is bounded, then

$$\|I_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \asymp \|g\|_{H^{\infty}}.$$

Proof. First, Theorem 3.2 gives

$$\|I_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} = \inf_{S} \|I_g - S\|_{\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \le \|I_g\|_{\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)} \le \|g\|_{H^{\infty}}.$$
Now we prove that

Now we prove that

$$\|I_g\|_{e,\mathcal{L}_{p,\lambda}\to F(p,p-1-\lambda,s)}\gtrsim \|g\|_{H^{\infty}}$$

Let $\{a_k\}, \{f_k\}$ and S be defined as in the proof of Theorem 4.1. Since $S : \mathcal{L}_{p,\lambda} \to F(p, p-1-\lambda, s)$ is compact, by [16, Lemma 2.10] we get $\lim_{k\to\infty} \|Sf_k\|_{F(p,p-1-\lambda,s)} = 0$. Hence,

$$\begin{split} \|I_g - S\|_{\mathcal{L}_{p,\lambda} \to F(p,p-1-\lambda,s)} \gtrsim \limsup_{k \to \infty} \|(I_g - S)f_k\|_{F(p,p-1-\lambda,s)} \\ \gtrsim \limsup_{k \to \infty} \left(\|I_g f_k\|_{F(p,p-1-\lambda,s)} - \|Sf_k\|_{F(p,p-1-\lambda,s)} \right) \\ = \limsup_{k \to \infty} \|I_g f_k\|_{F(p,p-1-\lambda,s)}. \end{split}$$

Similarly to the proof of Theorem 3.2, we get $||I_g f_k||_{F(p,p-1-\lambda,s)} \gtrsim |g(a_k)|$, which implies the desired result.

Using Theorem 4.2, we easily get the following corollary.

Corollary 4.2. Suppose that $2 \le p < \infty$, $0 \le \lambda < 1 < s < \infty$ or p = 2, $0 \le \lambda < 1$ and $\lambda < s < \infty$. If $g \in H(\mathbb{D})$, then $I_g : \mathcal{L}_{p,\lambda} \to F(p, p - 1 - \lambda, s)$ is compact if and only if g = 0.

Remark. We conclude the article with a remark. There is a class of Möbius invariant spaces that are closely related to the Bloch space and BMOA, namely, the Q_s space. Let $2 \le p < \infty$, $0 \le \lambda < 1$ and 0 < s < 1. An interesting and nature question is to find an analytic function space X for which

$$J_g: \mathcal{L}_{p,\lambda} \to X$$
 is bounded if and only if $g \in Q_s$.
59

Список литературы

- [1] P. Duren, Theory of H^p Spaces, Academic Press, New York (1970).
- [2] A. Aleman and J. Cima, "An integral operator on H^p and Hardy's inequality", J. Anal. Math., 85, 157 - 176 (2001).
- [3] A. Aleman and A. Siskakis, "An integral operator on H^p", Complex Variables Theory Appl., 28, 149 – 158 (1995).
- [4] A. Aleman and A. Siskakis, "Integration operators on Bergman spaces", Indiana Univ. Math. J., 46, 337 – 356 (1997).
- [5] P. Li, J. Liu and Z. Lou, "Integral operators on analytic Morrey spaces", Sci. China Math., 57, 1961 – 1974 (2014).
- S. Li, J. Liu and C. Yuan, "Embedding theorems for Dirichlet type spaces", Canad. Math. Bull. http://dx.doi.org/10.4153/S0008439519000201.
- [7] S. Li and S. Stević, "Riemann-Stieltjes operators between α-Bloch spaces and Besov spaces", Math. Nachr., 282, 899 – 911 (2009).
- [8] S. Li and S. Stević, "Volterra type operators on Zygmund spaces", J. Inequal. Appl., 2007, Article ID 32124, 10 pages.
- [9] S. Li and H. Wulan, "Volterra type operators on Q_K spaces", Taiwanese J. Math., 14, 195 211 (2010).
- [10] J. Liu and Z. Lou, "Carleson measure for analytic Morrey spaces", Nonlinear Anal., 125, 423 – 432 (2015).
- [11] J. Pau and R. Zhao, "Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces", Integr. Equ. Oper. Theory, 78, 483 – 514 (2014).
- [12] C. Pommerenke, "Schlichte funktionen und analytische funktionen von beschränkten mittlerer Oszillation", Comm. Math. Helv.", 52, 591 – 602 (1977).
- [13] J. Rättyä, "On some complex function spaces and classes", Ann. Acad. Sci. Fenn. Math. Diss., 124, 73 pages (2001).
- [14] Y. Shi and S. Li, "Essential norm of integral operators on Morrey type spaces", Math. Inequal. Appl., 19, 385 – 393 (2016).
- [15] A. Siskakis and R. Zhao, "A Volterra type operator on spaces of analytic functions", Contemp. Math., 232, 299 – 311 (1999).
- [16] M. Tjani, Compact Composition Operators on Some Möbius Invariant Banach Spaces, PhD dissertation, Michigan State University (1996).
- [17] M. Tjani, Distance of a Bloch function to the little Bloch space, Bull. Austral. Math. Soc., 74, 101 – 119 (2006).
- [18] J. Wang, "The Carleson measure problem between analytic Morrey spaces", Canad. Math. Bull., 59, 878 – 890 (2016).
- [19] J. Wang and J. Xiao, "Analytic Campanato spaces by functionals and operators", J. Geom. Anal., 26, 2996 – 3018 (2016).
- [20] Z. Wu and C. Xie, " Q_p spaces and Morrey spaces", J. Funct. Anal., 201, 282 297 (2003).
- [21] H. Wulan and J. Zhou, " Q_K and Morrey type spaces", Ann. Acad. Sci. Fenn. Math., **38**, 193 207 (2013).
- [22] J. Xiao, Holomorphic Q Classes, Springer, LNM 1767, Berlin (2001).
- [23] J. Xiao, "The Q_p Carleson measure problem", Adv. Math., **217**, 2075 2088 (2008).
- [24] J. Xiao and W. Xu, "Composition operators between analytic Campanato space", J. Geom. Anal., 24, 649 – 666 (2014).
- [25] J. Xiao and C. Yuan, "Analytic Campanato spaces and their compositions", Indian. Univ. Math. J., 64, 1001 – 1025 (2015).
- [26] R. Zhao, "On a general family of function spaces", Ann. Acad. Sci. Fenn. Math. Diss., 105, 56 pages (1996).
- [27] K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007).

Поступила 19 мая 2020

После доработки 21 июля 2020

Принята к публикации 16 сентября 2020