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1. Introduction

The uniqueness problem and reconstruction of coefficients of series by various

orthogonal systems has been considered in a number of papers. Uniqueness theorems

for almost everywhere convergent or summable trigonometric series were obtained

in the papers [1] and [4], under some additional conditions imposed on the series.

Results on uniqueness and restoration of coefficients for series by Haar and Franklin

systems have been obtained, for instance, in the papers [3], [6], [7] and [11]-[14].

Here we quote a result by G. Gevorkyan [3] on restoration of coefficients of series

by Franklin system.

Specifically, in [3] it was proved that if the Franklin series
∑∞
n=0 anfn(x) converges

a.e. to a function f(x) and

lim
λ→∞

(
λ · |{x ∈ [0, 1] : sup

k∈N
|Sk(x)| > λ}|

)
= 0,

where |A| denotes the Lebesgue measure of a set A and

Sk(x) =

k∑
j=0

ajfj(x),

then the coefficients an of the Franklin series can be reconstructed by the following

formula

an = lim
λ→∞

∫ 1

0

[
f(x)

]
λ
fn(x)dx,

where [
f(x)

]
λ

=

{
f(x), if |f(x)| ≤ λ,
0, if |f(x)| > λ.
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Similar result on uniqueness is also obtained for the Haar system (see [5]).

Afterwards Gevorkyan’s result was extended by V. Kostin [12] to the series by

generalized Haar system.

Consider the d-dimensional Franklin series∑
n∈Nd0

anfn(x),

where n = (n1, · · · , nd) ∈ Nd0 is a vector with non-negative integer coordinates,

N0 = N ∪ {0}, x = (x1, · · · , xd) ∈ [0, 1]d and

fn(x) = fn1
(x1) ···· ·fnd(xd).

The following theorem for multiple Franklin series was proved in [7].

Theorem A.([7]) If the partial sums

σ2k(x) =
∑

n:ni≤2k,i=1,··· ,d

anfn(x)

converge in measure to a function f and

lim
m→∞

(
λm · |{x ∈ [0, 1]d : sup

k
|σ2k(x)| > λm}|

)
= 0

for some sequence λm → +∞, then for any n ∈ Nd0

an = lim
m→∞

∫
[0,1]d

[
f(x)

]
λm
fn(x)dx.

In this theorem instead of the partial sums σ2k(x) one can take cubic partial sums

σqk(x), where {qk} is any increasing sequence of natural numbers, for which the

ratio qk+1/qk is bounded. The following theorem is proved in [13].

Theorem B.([13]) Let {qk} be an increasing sequence of natural numbers such

that the ratio qk+1/qk is bounded. If the partial sums σqk(x) converge in measure

to a function f and there exists a sequence λm → +∞ so that

lim
m→∞

(
λm · |{x ∈ [0, 1]d : sup

k
|σqk(x)| > λm}|

)
= 0,

then for any n ∈ Nd0

an = lim
m→∞

∫
[0,1]d

[
f(x)

]
λm
fn(x)dx.

Note that similar questions for series by Franklin system was considered by K.

Keryan in [11].

In this paper we generalize the Theorem A for multiple Ciesielski series.

We are concerned with orthonormal spline systems of order k with dyadic partitions.

Let k ≥ 2 be an integer. For n in the range −k+ 2 ≤ n ≤ 1, let S(k)
n be the space of

polynomials of order not exceeding n+k− 1 (or degree not exceeding n+k− 2) on

the interval [0, 1] and {f (k)
n }1n=−k+2 be the collection of orthonormal polynomials
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in L2 ≡ L2[0, 1] such that the degree of f (k)
n is n+ k− 2. For n ≥ 2, let n = 2ν + j,

where ν ≥ 0, 1 ≤ j ≤ 2ν . Denote

sn,i =


0, −k + 1 ≤ i ≤ 0
i

2ν+1 , 1 ≤ i ≤ 2j
i−j
2ν , 2j + 1 ≤ i ≤ n− 1

1, n ≤ i ≤ n+ k − 1,

and let Tn be the ordered sequence of points sn,i. Note that Tn is obtained from

Tn−1 by adding the point sn,2j−1. In that case, we also define S(k)
n to be the space

of polynomial splines of order k with grid points Tn. For each n ≥ 2, the space S(k)
n−1

has codimension 1 in S(k)
n and, therefore, there exists a function f (k)

n ∈ S(k)
n , that

is orthogonal to the space S(k)
n−1 and ‖f (k)

n ‖2 = 1. Observe that this function f (k)
n is

unique up to the sign.

The system of functions {f (k)
n }∞n=−k+2 is called the Ciesielski system of order k.

Let us note that the case k = 2 corresponds to orthonormal systems of piecewise

linear functions, i.e., the Franklin system.

Let d be a natural number. Consider the d-dimensional Ciesielski series

(1.1)
∑
n∈Λd

anfn(x),

where n = (n1, · · · , nd) ∈ Λd is a vector with integer coordinates,

Λ := {n ∈ Z | n ≥ −k + 1}, x = (x1, · · · , xd) ∈ [0, 1]d and

fn(x) = fn1
(x1) ···· ·fnd(xd).

Denote by σ2µ(x) the cubic partial sums of the series (1.1) with indices 2µ, that is

(1.2) σ2µ(x) =
∑

n:ni≤2µ,i=1,··· ,d

anfn(x).

The main result of this paper is the following theorem:

Theorem 1.1. If the partial sums σ2µ(x) converge in measure to a function f and

(1.3) lim
q→∞

(
λq · |{x ∈ [0, 1]d : sup

µ
|σ2µ(x)| > λq}|

)
= 0

for some sequence λq → +∞, then for any n ∈ Λd

(1.4) an = lim
q→∞

∫
[0,1]d

[
f(x)

]
λq
fn(x)dx.
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2. Properties of B-spline functions and auxiliary lemmas

We define the functions (Nn,i)
n−1
i=−k+1 to be the collection of L∞-normalized

B-spline functions of order k corresponding to the partition Tn. The functions

(Nn,i)
n−1
i=−k+1 form a basis for S(k)

n . Those functions are non-negative and are

normalized in such a way that they form a partition of unity, i.e.,

Nn,i(x) ≥ 0 and
n−1∑

i=−k+1

Nn,i(x) = 1 for all x ∈ [0, 1].

Moreover

δn,i := suppNn,i = [sn,i, sn,i+k] and
∫ 1

0

Nn,i(x)dx =
|δn,i|
k

.

The L1-normalized B-spline functions Mn,i in S(k)
n are given by the formula

Mn,i(x) =
k

|δn,i|
Nn,i(x),

and satisfy the inequalities

0 ≤Mn,i(x) ≤ k

|δn,i|
, x ∈ [0, 1].

Let n = 2µ + j, with µ ≥ 0, 1 ≤ j ≤ 2µ. Clearly we have that Nn−1,i(x) = Nn,i(x),

if −k+ 1 ≤ i ≤ 2j − k− 2 and Nn−1,i(x) = Nn,i+1(x), if 2j − 1 ≤ i ≤ n− 2. Böhm

formula (see [15]) gives us the following relationship between the B-splines Nn,i and

Nn−1,i, if 2j − k − 1 ≤ i ≤ 2j − 2

(2.1) Nn−1,i(x) = an,iNn,i(x) + (1− an,i+1)Nn,i+1(x).

Later we shall mostly deal with the n = 2µ, so let us introduce the following notation

N
(µ)
i (x) := N2µ,i(x), M

(µ)
i (x) := M2µ,i(x), δ

(µ)
i := δ2µ,i.

For any natural µ we set

Λµ := {−k + 1, · · · , 2µ}.

It is clear that

σ2µ(x) =
∑

n∈Λdµ

anfn(x).

For any vector i = (i1, · · · , id) ∈ Λdµ denote

∆
(µ)
i := δ

(µ)
i1
× · · · × δ(µ)

id
,

N
(µ)
i (x) = N

(µ)
i (x1, · · · , xd) = N

(µ)
i1

(x1) · . . . ·N (µ)
id

(xd).

Obviously

supp(N
(µ)
i ) = ∆

(µ)
i .
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Let us notice that∫
[0,1]d

N
(µ)
i (x)dx =

∫
∆

(µ)
i

N
(µ)
i (x)dx =

d∏
j=1

∫
δ
(µ)
ij

N
(µ)
ij

(xj)dxj =

d∏
j=1

|δ(µ)
ij
|

k
=
|∆(µ)

i |
kd

.

Hence for M (µ)
i (x) we have

0 ≤M (µ)
i (x) ≤ kd

|∆(µ)
i |

, x ∈ [0, 1]d.

To prove Theorem 1 we will need the following two lemmas.

Lemma 2.1. Let Pk(x) be a polynomial of degree k defined on

∆ := [a1, b1]× · · · × [ad, bd], d ∈ N, then∣∣∣∣{x ∈ ∆ : |Pk(x)| ≥ maxx∈∆ |Pk(x)|
2d

}∣∣∣∣ ≥ |∆|
(4k2)d

.

This lemma is a generalization of Corollary 3.1 from [9] and the proof of one

dimensional case can be found in [8].

Proof. The proof will be carried out by induction. The case d = 1 coincides with

Corollary 3.1 ([9]). Suppose that lemma is valid for dimension d, and let us prove

it for dimension d+ 1.

Let the function Pk(x) be defined on ∆ := [a1, b1] × · · · × [ad, bd] and let |Pk(x)|
attains its greatest value at the point (α1, · · · , αd+1). The function Pk(α1, · · · , αd, x),

x ∈ [ad+1, bd+1], satisfies the assumptions of Corollary 3.1 from [9]. Therefore

(2.2)
∣∣∣∣{x ∈ [ad+1, bd+1] : |Pk(α1, · · · , αd, x)| ≥ 1

2
·max
x∈∆
|Pk(x)|

}∣∣∣∣
≥ bd+1 − ad+1

4k2
.

For a fixed x ∈ [ad+1, bd+1], the function

Pk(x1, · · · , xd, x), (x1, · · · , xd) ∈ [a1, b1]× · · · × [ad, bd]

satisfies the induction assumption. Therefore∣∣∣∣{(x1, · · · , xd) : xi ∈ [ai, bi], |Pk(x1, · · · , xd, x)| ≥ |Pk(α1, · · · , αd, x)|
2d

}∣∣∣∣
(2.3) ≥ (b1 − a1) · · · (bd − ad)

(4k2)d
.

It follows from relations (2.2) and (2.3) that∣∣∣∣{(x1, · · · , xd, xd+1) : xi ∈ [ai, bi], |Pk(x1, · · · , xd, xd+1)| ≥ maxx∈∆ |Pk(x)|
2d+1

}∣∣∣∣
≥ (b1 − a1) · · · (bd − ad)(bd+1 − ad+1)

(4k2)d+1
.

The proof is complete. 2
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Repeatedly using Böhm formula (2.1) one can proof the following lemma (see

[9]), which is the generalization of Lemma 2 from [8].

Lemma 2.2. ([9]) There exist α(µ)
ij ≥ 0 so that

M
(µ)
i (x) =

2µ+1−1∑
j=−k+1

αijM
(µ+1)
j (x), with αij > 0 iff δ

(µ+1)
j ⊂ δ(µ)

i .

Lemma 2.3. There exist αj ≥ 0 so that

M
(µ)
i (x) =

∑
j∈Λdµ

αjM
(µ+1)
j (x), with αj > 0 iff ∆

(µ+1)
j ⊂ ∆

(µ)
i .

This lemma is the generalization of the previous lemma (for d-dimensional case).

3. The proof of the main theorem

Let the partial sums (1.2) converge in measure to a function f and the series (1.1)

satisfy the condition (1.3). First let’s prove that for an arbitrary µ0 and i0 ∈ Λdµ0
,

the following statement is true:

(3.1)
∫

[0,1]d
σ2µ0 (x)M

(µ0)
i0 (x)dx = lim

q→∞

∫
[0,1]d

[
f(x)

]
λq
M

(µ0)
i0 (x)dx.

Denote

Eq := {x ∈ supp(M
(µ0)
i0 ) = ∆

(µ0)
i0 : sup

µ
|σ2µ(x)| > λq}.

Let ε be an arbitrary positive number. Under the conditions of the theorem, one

can take the natural number q0 such that the following inequalities hold:

(3.2) 25d · 2µ0d · k2d · λq · |Eq| < ε, when q ≥ q0,

and

(3.3) |Eq| <
1

23d · k3d
· |∆(µ0)

i0 |, when q ≥ q0.

Suppose µ ≥ µ0. We set

Ωµ :=

{
A : A =

[
i1
2µ
,
i1 + 1

2µ

]
× · · · ×

[
id
2µ
,
id + 1

2µ

]
, A ⊂ supp(M

(µ0)
i0 )

}
.

Notice, that if for some A ∈ Ωµ, µ ≥ µ0, the inequality

(3.4) |Eq ∩A| <
1

2 · 4d · k2d
· |A|

holds, then

(3.5) |σ2µ(x)| ≤ 2dλq, for x ∈ A.

Let suppose that A ∈ Ωµ and for some point x′ ∈ A the inequality (3.5) does not

hold, i.e.

|σ2µ(x′)| > 2dλq.
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According to the Lemma (2.1), we obtain that∣∣∣∣{x ∈ A : |σ2µ(x)| > λq

}∣∣∣∣ ≥ |A|
4d · k2d

,

which contradicts (3.4). From (3.3) we have

(3.6) |Eq ∩A| <
1

23d · k3d
· |∆(µ0)

i0 | =
1

23d · k2d
· |A|, when A ∈ Ωµ0

.

Now let’s define by induction the families Ω1
µ and Ω2

µ, µ ≥ µ0. If µ = µ0, then we

set

Ω1
µ0

:=

{
A ∈ Ωµ0 : |A ∩ Eq| >

1

23d · k2d
· |A|

}
, Qµ0 :=

⋃
A∈Ω1

µ0

A,

and

Ω2
µ0

:= {A ∈ Ωµ0
: A 6⊂ Qµ0

} , Pµ0
:=

⋃
A∈Ω2

µ0

A.

From (3.6) we have, that Qµ0
= ∅ and the closure of Pµ0

is the supp(M
(µ0)
i0 ). Now

suppose we have defined the sets Ω1
µ′ , Ω2

µ′ , Qµ′ and Pµ′ for all µ′ < µ.

Let’s denote

(3.7) Ω1
µ :=

A ∈ Ωµ : |A ∩ Eq| >
1

23d · k2d
· |A| and A 6⊂

⋃
µ′<µ

Qµ′

 ,

Qµ :=
⋃

A∈Ω1
µ

A, Ω2
µ :=

A ∈ Ωµ : A 6⊂
⋃
µ′≤µ

Qµ′

 , Pµ :=
⋃

A∈Ω2
µ

A.

Thus we have defined the families Ω1
µ,Ω

2
µ and the sets Qµ, Pµ, satisfying to the

following conditions

Ω1
µ ⊂ Ωµ, Ω2

µ ⊂ Ωµ,

(3.8) supp(M
(µ0)
i0 ) = Pµ ∪

 ⋃
µ′≤µ

Qµ′

 , Pµ ∩

 ⋃
µ′≤µ

Qµ′

 = ∅,

(3.9) Qµ′ ∩Qµ′′ = ∅, if µ′ 6= µ′′.

Next, it follows from (3.7) and (3.9) that

(3.10)

∣∣∣∣∣∣
⋃
µ′≤µ

Qµ′

∣∣∣∣∣∣ < 23d · k2d · |Eq|, for any µ ≥ µ0.

For any µ > µ0 denote

Iµ = {i ∈ Λdµ : ∆
(µ)
i ∩Qµ 6= ∅ and ∆

(µ)
i ⊂ Pµ−1},

and observe that if i = (i1, · · · , id) ∈ Iµ then, for any set B, B ⊂ ∆
(µ)
i , B ∈ Ωµ the

following inequality holds:

(3.11) |Eq ∩B| <
1

4d · k2d
· |B|.
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Indeed, if for some B the inequality (3.11) is not satisfied, then for a cubeD ∈ Ωµ−1,

with B ⊂ D, we would have

(3.12) |Eq ∩D| ≥
1

2d · 4d · k2d
· |D|,

because

|D| = 2d · |B|.

Then, it follows from (3.12) that

D ⊂
⋃
µ′<µ

Qµ′ , therefore B ⊂
⋃
µ′<µ

Qµ′ and ∆
(µ)
i ∩

 ⋃
µ′<µ

Qµ′

 6= ∅,
which contradicts the condition ∆

(µ)
i ⊂ Pµ−1 and the relation (3.12).

Therefore

(3.13) |σ2µ(x)| ≤ 2d · λq, if x ∈ ∆
(µ)
i , i ∈ Iµ.

Similarly, we can obtain that if ∆
(µ)
i ⊂ Pµ, then

(3.14)
∣∣∣Eq ∩∆

(µ)
i

∣∣∣ ≤ 1

23d · k2d
· |∆(µ)

i |,

therefore

(3.15) |σ2µ(x)| ≤ 2d · λq, if x ∈ ∆
(µ)
i ⊂ Pµ.

Now by induction we define expansions ψµ for M (µ0)
i0 , satisfying the conditions:

(3.16) M
(µ0)
i0 = ψµ =

µ∑
n=µ0

∑
i∈Iµ

α
(n)
i M

(n)
i +

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i M

(µ)
i ,

where

(3.17)
µ∑

n=µ0

∑
i∈Iµ

α
(n)
i +

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i = 1, α

(n)
i ≥ 0, β

(µ)
i ≥ 0.

Since Pµ0 = supp(M
(µ0)
i0 ), then ψµ0 = M

(µ0)
i0 . Assuming that ψµ, satisfying the

conditions (3.16), (3.17), is already defined, we define ψµ+1. By Lemma (2.3), we

have

(3.18) M
(µ)
i =

∑
i:∆(µ+1)

i ⊂suppM
(µ)
i

γ
(µ+1)
i M

(µ+1)
i , γ

(µ+1)
i ≥ 0.

Inserting the expressions (3.18) in (3.16) and grouping similar terms, we obtain

(3.19) M
(µ0)
i0 = ψµ+1 =

µ+1∑
n=µ0

∑
i∈Iµ

α
(n)
i M

(n)
i +

∑
i:∆(µ+1)

i ⊂Pµ+1

α
(µ+1)
i M

(µ+1)
i .
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Since the integrals of all functions M (µ)
i are equal to one, from (3.19) we obtain

µ+1∑
n=µ0

∑
i∈Iµ

α
(n)
i +

∑
i:∆(µ+1)

i ⊂Pµ+1

α
(µ+1)
i = 1, α

(n)
i ≥ 0, α

(µ+1)
i ≥ 0.

Thus, the possibility of representation (3.16) with coefficients satisfying (3.17), is

proved.

Suppose we are given a number µ ≥ µ0 and p = (p1, · · · , pd) such that maxi{pi} >
2µ. Then, according to the definition of functions fp and Mµ

i , we get

(fp,M
(µ)
i ) =

∫
[0,1]d

fp(x)M
(µ)
i (x)dx = 0, for any i ∈ Λdµ.

Therefore, for any n ≥ µ and for all i ∈ Λdµ one can write

(σ2n ,M
(µ)
i ) =

∑
p∈Λdn

ap(fp,M
(µ)
i ) =

∑
p∈Λdµ

ap(fp,M
(µ)
i ) = (σ2µ ,M

(µ)
i ).

Taking into account (3.16), for n > µ0 we can write

(σ2µ0 ,M
(µ0)
i0 ) =

∫
[0,1]d

σ2µ0 (x)M
(µ0)
i0 (x)dx =

∫
∆

(µ0)

i0

σ2µ(x)M (µ0)
i0 (x)dx

=

µ∑
n=µ0

∑
i∈Iµ

α
(n)
i (σ2n ,M

(n)
i ) +

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i (σ2µ ,M

(µ)
i ) =: Iµ,1 + Iµ,2.

For Iµ,1 we will have the inequality

|Iµ,1| ≤
µ∑

n=µ0

∑
i∈Iµ

α
(n)
i |(σ2n ,M

(n)
i )| ≤ 2dλq

µ∑
n=µ0

∑
i∈Iµ

α
(n)
i

∫
∆

(n)
i

M
(n)
i (x)dx.

Denote

(3.20) Dµ =

µ⋃
n=µ0

⋃
i∈Iµ

∆
(n)
i .

From the definition of the set Iµ, it follows that

|∆(n)
i ∩Qµ| ≥ k−d∆(n)

i .

The last relation and (3.9), (3.10) imply

(3.21) |Dµ| ≤ kd · 23d · k2d · |Eq|.

We obtain

(3.22)
µ∑

n=µ0

∑
i∈Iµ

α
(n)
i

∫
∆

(n)
i

M
(n)
i (x)dx ≤

∫
Dµ

M
(µ0)
i0 (x)dx ≤ ||M (µ0)

i0 ||∞|Dµ|.

It is clear that

(3.23) |Iµ,1| ≤ 2d · λq · ||M (µ0)
i0 ||∞|Dµ|.
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Hence, from (3.23), (3.21) and (3.2), we obtain

(3.24) |Iµ,1| ≤ 2d · λq ·
kd

|∆(µ0)
i0 |

· kd · 23d · k2d · |Eq| ≤ ε ·
(
k

2

)d
.

For Iµ,2 we will have the representation

Iµ,2 = (σ2µ ,
∑

i:∆(µ)
i ⊂Pµ

β
(µ)
i M

(µ)
i ) = (σ2µ −

[
f
]
λq
,

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i M

(µ)
i )

+(
[
f
]
λq
,

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i M

(µ)
i ) =: Iµ,3 + Iµ,4.

Denote

Hµ =
⋃

i:∆(µ)
i ⊂Pµ

∆
(µ)
i and Tq = {x ∈ ∆

(µ0)
i0 : |f(x)| > λq}.

It is clear that Tq ⊂ Eq, therefore |Tq| < |Eq|. From (3.2) we get

(3.25) |Tq| <
ε

25d · 2µ0d · k2d · λq
.

Next from (3.15) we have |σ2µ(x)| ≤ 2d · λq, for x ∈ Hµ, and hence

(3.26) |σ2µ(x)−
[
f(x)

]
λq
| ≤ (2d + 1) · λq, for x ∈ Hµ.

It is clear that

(3.27) |Iµ,3| ≤ (|σ2µ(x)−
[
f(x)

]
λq
|,

∑
i:∆(µ)

i ⊂Pµ

β
(µ)
i M

(µ)
i )

≤
∫
Hµ

|σ2µ(x)−
[
f(x)

]
λq
|M (µ0)

i0 (x)dx ≤ 2µ0d

∫
Hµ

|σ2µ(x)−
[
f(x)

]
λq
|dx

= 2µ0d

 ∫
Hµ\Tq

|σ2µ(x)−
[
f(x)

]
λq
|dx +

∫
Hµ∩Tq

|σ2µ(x)−
[
f(x)

]
λq
|dx

 .

From (3.25) and (3.26) for the second integral on the right-hand side of (3.27), we

have

2µ0d

∫
Hµ∩Tq

|σ2µ(x)−
[
f(x)

]
λq
|dx ≤ ε

25d
.

From (3.26) we have that the |σ2µ(x) −
[
f(x)

]
λq
| is bounded on Hµ and it tends

to zero in measure outside the set Tq, since

|σ2µ(x)−
[
f(x)

]
λq
| = |σ2µ(x)− f(x)| on T cq .

Hence ∫
Hµ\Tq

|σ2µ(x)−
[
f(x)

]
λq
|dx −−−−→

µ→∞
0.
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Therefore, for sufficiently large µ we have

(3.28) |Iµ,3| <
ε

2
.

For Iµ,4, from (3.16) we have

(3.29) Iµ,4 = (
[
f
]
λq
,M

(µ0)
i0 )− (

[
f
]
λq
,

µ∑
n=µ0

∑
i∈Iµ

α
(n)
i M

(n)
i )

= (
[
f
]
λq
,M

(µ0)
i0 ) + Iµ,5.

The relations (3.2),(3.21),(3.22) imply that

(3.30) |Iµ,5| ≤ ε ·
(
k

2

)d
.

Therefore by (3.24), (3.28), (3.29), (3.30) we get∣∣∣∣∣
∫

[0,1]d
σ2µ0 (x)M

(µ0)
i0 (x)dx−

∫
[0,1]d

[
f(x)

]
λq
M

(µ0)
i0 (x)dx

∣∣∣∣∣ < Ck,d · ε for q ≥ q0.

Now let’s prove that for any n ∈ Λd the coefficient an can be reconstructed by

(1.4). First let’s fix a number µ satisfying max1≤i≤d ni ≤ 2µ. Since fn ∈ S2µ and

the system of functions {M (µ)
i }i∈Λdµ

is a basis in the space S2µ , then one can find

numbers βi, i ∈ Λdµ, such that

fn(x) =
∑
i∈Λdµ

βiM
(µ)
i (x).

Therefore

an = (σ2µ , fn) =
∑
i∈Λdµ

βi(σ2µ ,M
(µ)
i ) =

∑
i∈Λdµ

βi lim
q→∞

∫
[0,1]d

[
f(x)

]
λq
M

(µ)
i (x)dx

= lim
q→∞

∫
[0,1]d

[
f(x)

]
λq
fn(x)dx,

which finishes the proof of Theorem 1.1.
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