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1. INTRODUCTION

The uniqueness problem and reconstruction of coefficients of series by various
orthogonal systems has been considered in a number of papers. Uniqueness theorems
for almost everywhere convergent or summable trigonometric series were obtained
in the papers [I] and [4], under some additional conditions imposed on the series.
Results on uniqueness and restoration of coeflicients for series by Haar and Franklin
systems have been obtained, for instance, in the papers [3], [6], [7] and [1T]-[14].
Here we quote a result by G. Gevorkyan [3] on restoration of coefficients of series
by Franklin system.

Specifically, in [3] it was proved that if the Franklin series Y ay fn(2) converges
a.e. to a function f(z) and
Jm (Ao € 0,17 sup 5] > 2)1) =0,

where |A| denotes the Lebesgue measure of a set A and

k
Si(z) =Y a;f;(x),
=0

then the coefficients a,, of the Franklin series can be reconstructed by the following

formula X
a, = Alim [f(x)} /\fn(:r)d:c,
—00 0
where
) @), i [f(z)] S A
@]y = {o, it f(x)] > A
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Similar result on uniqueness is also obtained for the Haar system (see [5]).
Afterwards Gevorkyan’s result was extended by V. Kostin [12] to the series by
generalized Haar system.
Consider the d-dimensional Franklin series

Z n fn(X),

neNg
where n = (ny,---,n4) € Nd is a vector with non-negative integer coordinates,
No =NU{0}, x= (21, -+ ,2q4) €[0,1] and

Ja(X) = fo, (1) - frg(@a)-
The following theorem for multiple Franklin series was proved in [7].
Theorem A.([7]) If the partial sums
Ok (X) = Z an fn (X)
n:n; <2k i=1,.-- d

converge in measure to a function f and

lim <)\m qx €[0,1)% : sup |oor (x)| > )\m}|) =0
k

m—r oo

for some sequence \,,, — +00, then for any n € Ng

an = lim [f(x)]Am fa(x)dx.
m—o0 [071]d

In this theorem instead of the partial sums oqx(X) one can take cubic partial sums
04, (x), where {qgi} is any increasing sequence of natural numbers, for which the
ratio qx11/qr is bounded. The following theorem is proved in [13].

Theorem B.([13]) Let {g;} be an increasing sequence of natural numbers such
that the ratio gx+1/qx is bounded. If the partial sums o, (x) converge in measure

to a function f and there exists a sequence A, — 400 so that

lim <)\m {x € 0,1 : sup oy, (x)| > )\m}> =0,
k

m—r oo

then for any n € N¢

an = lim [f(x)]km fa(x)dx.
m—oo 0,14

Note that similar questions for series by Franklin system was considered by K.
Keryan in [11].

In this paper we generalize the Theorem A for multiple Ciesielski series.

We are concerned with orthonormal spline systems of order k£ with dyadic partitions.
Let £ > 2 be an integer. For n in the range —k+2 <n <1, let Sr(Lk) be the space of
polynomials of order not exceeding n+k — 1 (or degree not exceeding n+ k —2) on

the interval [0,1] and { f,sk)}lz_ k4o be the collection of orthonormal polynomials
18
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in L? = L?[0,1] such that the degree of £ isn+k—2. Forn > 2, let n = 2V + j,
where v > 0, 1 < j < 2”. Denote

0, —k+1<i<0

. A, 1<i<2j

)5, 2+1<i<n-—1
1, n<i<n+k-1,

[\

and let 7, be the ordered sequence of points s, ;. Note that 7, is obtained from
Tn—1 by adding the point s, 9;—1. In that case, we also define S,(Lk) to be the space
of polynomial splines of order k with grid points 7. For each n > 2, the space S;Lk_)l
has codimension 1 in S,gk) and, therefore, there exists a function f,gk) € S,(,k), that
is orthogonal to the space Sflk_)l and || fflk) |l = 1. Observe that this function f,(lk) is
unique up to the sign.

The system of functions { f,(lk) ne_ 4o 1s called the Ciesielski system of order k.
Let us note that the case k = 2 corresponds to orthonormal systems of piecewise
linear functions, i.e., the Franklin system.

Let d be a natural number. Consider the d-dimensional Ciesielski series

(L1) > anfalx),

neAd

where n = (n1,---,nq) € A% is a vector with integer coordinates,
A={ne€Z|n>-k+1}, x= (21, -+ ,24) €[0,1]¢ and

fa(x) = fo, (1) - frg(@a)-
Denote by oau (x) the cubic partial sums of the series (1.1) with indices 2/, that is

(1.2) oon(x) = Z an fn(X).

n:n; <24 ,4=1,--- ,d

The main result of this paper is the following theorem:

Theorem 1.1. If the partial sums oou(x) converge in measure to a function f and
(1.3) lim <>\q |z e [0,1)¢ : sup |oon (x)] > )\q}|> =0

q—ro0 w
for some sequence \; — +oo, then for any n € A4

(1.4) an = lim [f(a:)]/\qfn(a:)daz.

77 JI0,1]¢
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2. PROPERTIES OF B-SPLINE FUNCTIONS AND AUXILIARY LEMMAS

We define the functions (N,;)7"~*, 41 to be the collection of L°°-normalized

B-spline functions of order k corresponding to the partition 7,. The functions
(N,”)f::lk 41 form a basis for Sy(Lk). Those functions are non-negative and are
normalized in such a way that they form a partition of unity, i.e.,

n—1
Npi(x) >0 and > Nypg(z)=1 forall € [0,1].
i=—k+1

Moreover

1 .
On,i :=Supp Npi = [8n,i, Sn,itk) and / Ny i(x)de = —>
0

The L'-normalized B-spline functions M,, ; in Sr(bk) are given by the formula

k
Mn,i(m) = |5 V‘Nn,i(x)y

and satisfy the inequalities

Let n = 2" 4 j, with ;1 > 0, 1 < j < 2. Clearly we have that N,,_1 ;(z) = N,, ;(z),
if —k+1<i<2j—k—2and Ny_1,(2) = Nyiy1(z), if 2j — 1 < i <n—2. B6hm
formula (see [15]) gives us the following relationship between the B-splines N,, ; and
Ny1,if2j—k—1<i<2j—2

(21) anl,i(x) = an’iNn7¢($) + (1 — anﬁHl)Nn’Hl(x).

Later we shall mostly deal with the n = 2#, so let us introduce the following notation

N (z) i= Now i(x), MY (2) = Mo 3(x), 6 = 6o .

K2

For any natural p we set
Ay ={-k+1,--- 2"}

It is clear that

oou(x) = Z an fn(X).

d
nEA“

For any vector i = (i1, ,iq) € Aﬁ denote
() . s(w) (1)
AP =0 o gt

N.(”)(x) = Ni(“)(Ih C LX) = Nz'(f)@l) e 'N(M)(xd)-

i 14
Obviously
supp(Ni(”)) — Ai('u)'
20
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Let us notice that

d
(1) — (M) — u) -
o N (x)dx = o N (x)dx = H " NlJ (xj)dz; = U

Hence for M*) (x) we have
d

0< MM (x) < x € [0,1]%

A (M)|

To prove Theorem 1 we will need the following two lemmas.

Lemma 2.1. Let Px(x) be a polynomial of degree k defined on
A= [ay,b1] X -+ X [ag,bq], d €N, then

maxyxea | Pr(X)] |A|
: > - 7 > .
HX €4 [BRI= 2d = (4k2)d

This lemma is a generalization of Corollary 3.1 from [9] and the proof of one
dimensional case can be found in [8].

Proof. The proof will be carried out by induction. The case d = 1 coincides with
Corollary 3.1 ([9]). Suppose that lemma is valid for dimension d, and let us prove
it for dimension d + 1.

Let the function Py(x) be defined on A := [a,b1] X -+ X [aq4, bq] and let |Py(x)]
attains its greatest value at the point (o, - - , @g41). The function Py (aq, - - - , aq,x),

T € [ad+1,ba+1], satisfies the assumptions of Corollary 3.1 from [9]. Therefore

1
(22) {JS S [ad+17bd+1] : |Pk(0[1,"' y X, T )| > 5 x€aX|Pk( )|}‘

2

S b1 — Gd+1
- 4k2
For a fixed « € [ag41,b4+1], the function

Pk('r17"' ,J}d,.’]?), (-Tla"' 7xd) S [a/labl] X X [ad;bd]

satisfies the induction assumption. Therefore

Pilag, - ,aq,x
{(an ) s € s P g )] 2 PO o0l

(b1 —ay)---(bqg — aq)
- (4k2)
It follows from relations (2.2) and (2.3) that

(2.3)

maXy P.(x
‘{(xlv"’ >xdaxd+1):xi€[alv } ‘Pk(xla"' 7xd7xd+1)233+|1k()|}‘
S (b1 —a1)---(bg — aq)(bay1 — ad+1)
= (4k2)d+1
The proof is complete. O
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Repeatedly using Bohm formula (2.1) one can proof the following lemma (see

[9]), which is the generalization of Lemma 2 from [8].

Lemma 2.2. ([9]) There exist agf) >0 so that
outl_q
Mz(#) (.23) = Z O{iij(MJrl)(l‘), with Q4 >0 Zﬁ (SJ(-M+1) C (5Z(H)
j=—k+1

Lemma 2.3. There exist oj > 0 so that
M (x) = 3" ogMP TV (x), with o3>0 iff ATV c AP
jead

This lemma is the generalization of the previous lemma (for d-dimensional case).

3. THE PROOF OF THE MAIN THEOREM

Let the partial sums (1.2) converge in measure to a function f and the series (1.1)
satisfy the condition (1.3). First let’s prove that for an arbitrary po and iy € AZO,

the following statement is true:

(3.1) / 00 (x) M) (x)dx = lim [F(x)], M (x)dx.
[0,1]¢ =2 Jjo,1¢ ‘

Denote

E,:={x¢€ supp(Mi(O““)) = Ai(gm) :sup |ogun (X)| > Ag}-
“w
Let € be an arbitrary positive number. Under the conditions of the theorem, one

can take the natural number gy such that the following inequalities hold:

(3.2) 25d . gpod , p2d Ag - |Eql <&, when ¢ > qq,
and

1
(3.3) |Eq| < 584 gad |Ai((fm)\7 when ¢ > qo.

Suppose p > . We set

. a1 iqg tqg+1 (10)
Qu-—{A-A—[QW 5 }x [2#, o }, A C supp(M;)™) ¢

Notice, that if for some A € Q,,, > po, the inequality

1
(3.4) |E, N Al < CWTE |A]
holds, then
(3.5) |oau (x)| < 29N, for x € A.

Let suppose that A € Q, and for some point x" € A the inequality (3.5) does not
hold, i.e.
|oau (x')] > 290,
22
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According to the Lemma (2.1), we obtain that

A
‘{X cA: ‘O’Q#(X)‘ > )\q}‘ > ﬁ,

which contradicts (3.4). From (3.3) we have

|A.(ILO) 1

(36)  |EnAl< o | = gaa ad

534 j3d |A|, when A€ Q.

Now let’s define by induction the families €, and Q7, > po. If j1 = pug, then we
set
1
Q}LO = {AE Quo : [ANEy| > 93d . j2d |A|}7 Quo = U A,
AeQ]
and
O ={AcQ,:AZQu}, Pu,= |J A
Aeq?
10

From (3.6) we have, that Q,, = 0 and the closure of P, is the supp(Mi(O“")). Now
suppose we have defined the sets Qi,, 0?2, Qv and P, for all p/ < p.

s
Let’s denote

1

(3.7) Q) = AeQH:\AmEq|>W-\A| and A¢ | Qu ¢,

w<p

Qu=J A Q={4cq,:A¢ |JQv;. P.= | A

AeQ, w<p AeQ,
Thus we have defined the families ), Q2 and the sets Q,, P, satisfying to the

w

following conditions

Q, CQ. Q) CQ,,
(3.8) supp(Mi(O”O)) =P, U U Qul, P.nN U Qu | =0,
w<p w<p
(39) Q;Uf/ m Qll” = @, 1f HJI # HJH,

Next, it follows from (3.7) and (3.9) that

(3.10) U Qu| < 2% k*|E,|, forany p> puo.
w<p

For any p > po denote

L={ieAl: AW NQ,#0 and AW c P},
and observe that if i = (i1, ,iq4) € I, then, for any set B, B C Ai(”), B € Q, the
following inequality holds:

(3.11) |E,NB| < IB].

1
4d . 2d
23
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Indeed, if for some B the inequality (3.11) is not satisfied, then for a cube D € Q,,_1,
with B C D, we would have

1

1D,
because
|D| =2%-|B.
Then, it follows from (3.12) that
DcC U Qu, therefore B C U Qs and Ai(“)ﬂ U Qu | #0,
w<p W<p W<p

which contradicts the condition Ai(“ ) ¢ P,_; and the relation (3.12).

Therefore
(3.13) loan (x)] <242 2,, if xe AW ic 1,

Similarly, we can obtain that if Ai(“ ) P,, then
1

(1) (1)
(3.14) ’Eq A < gaa gz 1A )
therefore
(3.15) loan (%) <2722, if xe AW C P,

)

Now by induction we define expansions 1),, for Mi(ou 9/ satisfying the conditions:

7

. . = = (oD . —+ A RS

3.16 MI(ONO) wu En) Ml(") Bl(M)Ml(M)
n=po icl, i?Ai(H>CPH
where
Iz
(3.17) Y Y a3 g =1 o™ >0, 85 0.
n=po iEIH i:Agﬂ)CPH

Since P,, = supp(Mi(O“O)), then v, = Mi(om’). Assuming that 1, satisfying the
conditions (3.16), (3.17), is already defined, we define 9,,;1. By Lemma (2.3), we

have
(3.18) M = S VI BN O P
i1A-(“+1>Csupp M

Inserting the expressions (3.18) in (3.16) and grouping similar terms, we obtain

pt1
(ko) (n) 3 r(n) (p+1) 5 r(p+1)
(3.19) M; ™ = thugr = Z Z o M+ Z o M
n=po i€l, EAGHDCp,

24
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Since the integrals of all functions Mi(” ) are equal to one, from (3.19) we obtain

pt1
Y Yalt Y o1 el zoal 20

n=po i€, i:Ag“+1)CPH+1
Thus, the possibility of representation (3.16) with coefficients satisfying (3.17), is
proved.
Suppose we are given a number p > po and p = (p1,- - ,pa) such that max;{p;} >
2#. Then, according to the definition of functions f, and M*, we get
(for, M) = / fo(x)M" (x)dx = 0, for any i€ A
[0,1)4
Therefore, for any n > p and for all i € AZ one can write
(02"’Mi(u)) = Z ap(fvai(H)) = Z ap(fp7Mi(#)) = (02“aMi(H))-
peAd pPEA]
Taking into account (3.16), for n > pg we can write

(02#0 : Mi(ouo)) _ /

rano (M ()x = [ o (MU ()i
[0,1]4 .

A.IO
10

"
=3 S oo, M)+ ST B (0, M) = Ly + Lo

n=po icly, AW cp,
For 1,1 we will have the inequality
10 p
L] < ) (ggn, M™)| < 297 () M (x)dx.
Leal € 30 D aloom M <2 D D g™ [ M (x)dx
n=po i€l, n=po i€, i
Denote
n
(3.20) D= |J Ua™.
n=po i€l,

From the definition of the set I,,, it follows that
1A N Q> k~IAf™M.

The last relation and (3.9), (3.10) imply

(3.21) |D,| < k.23 k20| E, .
We obtain
1
3220 > Y o e M™(x)dx < /D M) (x)dx < || M ||oo| Dyl

n=po i€l,

It is clear that

(3.23) Lal <242 - 1M || D,
25
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Hence, from (3.23), (3.21) and (3.2), we obtain

d d
k .kd.23d.k2d.|Eq|§g.<k> .
|A(M0) 2

io

(3.24) L] <2400, -

For I, » we will have the representation

Lo= (o2, > BPYMM)= (00 - 115, oM

AP, A cp,
() q )y .
+([fy,, D BMY) = s+ L.
AW cp,
Denote
Ho= |J A" and T,={xe Al |f(x)] >}
AW cp,

It is clear that T, C E,, therefore |Tj,| < |E,|. From (3.2) we get

g

(325) |Tq‘ < 25d . Quod . f2d . )\q.

Next from (3.15) we have |ogu (x)| < 2% - )\, for x € H,,, and hence

(3.26) loon (x) — [f(x)] )\q| <(27+1)- ), for x€H,.

It is clear that

(3.27) 113 < (loan(x) — [f(x)]/\q|, Z ﬂi(M)Mi(u))
A cp,

H,

< / o2 (x) = [£ ()], 1M () e < 200 / o2 (x) = [£(x)],,, ldx
HH

m

—2ot | [ Joan) = G, o+ [ o) - [0, Jax
H\T, H,NT,
From (3.25) and (3.26) for the second integral on the right-hand side of (3.27), we
have
2ot [ jow ) - [£00], i < o2
H,NT,
From (3.26) we have that the |ogu(x) — [f(x)])\q| is bounded on H,, and it tends

to zero in measure outside the set T, since
o3 (%) = [£()] | = loan(x) — F(x)| on TL.
q

Hence

/ logn (x) — [f(x)]/\q\dx ;H—oo> 0.
H\Tqy
26
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Therefore, for sufficiently large p we have

(3.28) I15] < g
For I, 4, from (3.16) we have
m
(3.29) Ia=([f] )\q,Mi(O#O)) —([f] A Z Z ai(n)Mi(n))
n=po i€l,
_ ([f]/\q7Mi(()”°)) 1,5

The relations (3.2),(3.21),(3.22) imply that
o\ ¢
(3.30) Lsl<e (=) .

Therefore by (3.24), (3.28), (3.29), (3.30) we get

/ O2ro (X)Mi(ouo)(x)dx — / [f(x)]A Mi(om’)(x)dx < Ck,q-€ for ¢ > qo.
[0,1)¢ [0,1)¢ !

Now let’s prove that for any n € A% the coefficient a, can be reconstructed by
(1.4). First let’s fix a number p satisfying maxj<;<qn; < 2. Since fn € Sov and
the system of functions {Mi(“ )}ie Ad is a basis in the space Sau, then one can find

numbers f;, i € A, such that

w
fax) = 3 BiMP ().

ieAd
ieAy

Therefore

an = (02, fa) = Y Biloze, M) = 3" f; lim [F()], M (x)dx

q—0 d q
3 d i d [071]
1EAM 1€AM

= lim [f(X)])\ In (x)dx,

q—o0 [071]{1 q

which finishes the proof of Theorem 1.1.

CIUCOK JIMTEPATYPHI

[1] A. B. Aleksandrov, “A-integrability of the boundary values of harmonic functions”, Math.
Notes 30, no. 1, 515 — 523 (1981).

[2] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 522 — 528 (1928).

[3] G. G. Gevorkyan, “Uniqueness of Franklin series”, Math. Notes of the Academy of Sciences
of the USSR, no. 2, 609 — 615 (1989).

[4] G. G. Gevorkyan, “On the uniqueness of trigonometric series”, Mathematics of the USSR~
Sbornik, no. 2, 325 — 338 (1991).

[5] G. G. Gevorkyan, “On uniqueness of additive functions of dyadic cubes and series by Haar
systems”, J. Contemp. Math. Analysis, no. 5, 2 — 13 (1995).

[6] G. G. Gevorkyan, K. A. Navasardyan, “On Haar series of A-integrable functions”, J. Contemp.
Math. Analysis, 52, no. 3, 149 — 160 (2017).

[7] G. G. Gevorkyan, M. P. Poghosyan, “On recovering of coefficients of a Franklin series with
the ”good” majorant of partial sums”, Izv. NAN Armenii. Ser. Math., 52, no. 5, 254 — 260
(2017).

27



(8]
(9]

[10]
(11]

[12]
[13]
(14]

[15]

A. KHACHATRYAN

G. G. Gevorkyan, “Uniqueness theorem for multiple Franklin series”, Math. Notes, no. 2, 219
— 229 (2017).

G. G. Gevorkyan, K. A. Keryan, M. P. Poghosyan, “Convergence to infinity for orthonormal
spline series”, Acta Mathematica Hungarica (in print).

B. S. Kashin, A. A. Sahakyan, Orthogonal Series, Moscow, AFC (1999).

K. A. Keryan, “Uniqueness theorem for Franklin series”, Izv. NAN Armenii. Ser. Math., 52,
no. 2, 26 — 38 (2017).

V. V. Kostin, “Reconstructing coefficients of series from certain orthogonal systems of
function”, Mathematical Notes, no. 5, 662 — 679 (2003).

K. A. Navasardyan, “Uniqueness theorems for multiple Franklin series”, Proceedings of the
YSU. Physical and Mathematical Sciences, no. 3, 241 — 249 (2017).

K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Proceedings of the
YSU. Physical and Mathematical Sciences, no. 2, 93 — 100 (2018).

W. B6hm, “Inserting new knots into B-spline curves”, Computer-Aided Design., no. 4, 199 —
201 (1980).

ITocrynmna 23 asrycra 2020
Tloce nopaborku 8 okTsiopst 2020
[IpunsTa ¥ mybmmkammn 25 oktsaops 2020

28



	1. Introduction
	2. Properties of B-spline functions and auxiliary lemmas
	3. The proof of the main theorem
	Список литературы

